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Abstract

We present the state of the art in representing and reasoning with fuzzy
knowledge in Semantic Web Languages such as triple languages RDF/RDFS,
conceptual languages of the OWL 2 family and rule languages. We further
show how one may generalise them to so-called annotation domains, that cover
also e.g. temporal and provenance extensions.

1 Introduction

Managing uncertainty and fuzziness is growing in importance in Semantic Web re-
search as recognised by a large number of research efforts in this direction [279,
285, 287, 288, 291]. Semantic Web Languages (SWL) are the languages used to
provide a formal description of concepts, terms, and relationships within a given
domain, among which the OWL 2 family of languages [221], triple languages RDF &
RDFS [64] and rule languages (such as RuleML [138], Datalog± [68] and RIF [237])
are major players.

While their syntactic specification is based on XML [313], their semantics is based
on logical formalisms: briefly,

• RDFS is a logic having intensional semantics and the logical counterpart is
ρdf [219];

∗This is an updated version of [291] and acts as accompanying material to my invited talk and
slides at the 2018 Artificial Intelligence International Conference (A2IC-18).
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• OWL 2 is a family of languages that relate to Description Logics (DLs) [4];

• rule languages relate roughly to the Logic Programming (LP) paradigm [177];

• both OWL 2 and rule languages have an extensional semantics.

Uncertainty versus Fuzziness. One of the major difficulties, for those unfamiliar
on the topic, is to understand the conceptual differences between uncertainty and
fuzziness. Specifically, we recall that there has been a long-lasting misunderstanding
in the literature of artificial intelligence and uncertainty modelling, regarding the role
of probability/possibility theory and vague/fuzzy theory. A clarifying paper is [109].
We recall here the salient concepts.

Uncertainty. Under uncertainty theory fall all those approaches in which state-
ments rather than being either true or false, are true or false to some probability
or possibility (for example, “it will rain tomorrow”). That is, a statement is true
or false in any world/interpretation, but we are “uncertain” about which world to
consider as the right one, and thus we speak about e.g. a probability distribution or
a possibility distribution over the worlds. For example, we cannot exactly establish
whether it will rain tomorrow or not, due to our incomplete knowledge about our
world, but we can estimate to which degree this is probable, possible, or necessary.

To be somewhat more formal, consider a propositional statement (formula) φ
(“tomorrow it will rain”) and a propositional interpretation (world) I. We may see
I as a function mapping propositional formulae into {0, 1}, i.e. I(φ) ∈ {0, 1}. If
I(φ) = 1, denoted also as I |= φ, then we say that the statement φ under I is true,
false otherwise. Now, each interpretation I depicts some concrete world and, given
n propositional letters, there are 2n possible interpretations. In uncertainty theory,
we do not know which interpretation I is the actual one and we say that we are
uncertain about which world is the real one that will occur.

To deal with such a situation, one may construct a probability distribution over
the worlds, that is a function Pr mapping interpretations in [0, 1], i.e. Pr(I) ∈ [0, 1],
with

∑
I Pr(I) = 1, where Pr(I) indicates the probability that I is the actual world

under which to interpret the propositional statement at hand. Then, the probability
of a statement φ in Pr , denoted Pr(φ), is the sum of all Pr(I) such that I |= φ, i.e.

Pr(φ) =
∑
I|=φ

Pr(I) .
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Fuzziness. On the other hand, under fuzzy theory fall all those approaches in
which statements (for example, “heavy rain”) are true to some degree, which is
taken from a truth space (usually [0, 1]). That is, the convention prescribing that
a proposition is either true or false is changed towards graded propositions. For
instance, the compatibility of “heavy” in the phrase “heavy rain” is graded and the
degree depends on the amount of rain is falling.1 Often we may find rough definitions
about rain types, such as: 2

Rain. Falling drops of water larger than 0.5 mm in diameter. In forecasts, “rain”
usually implies that the rain will fall steadily over a period of time;

Light rain. Rain falls at the rate of 2.6 mm or less an hour;

Moderate rain. Rain falls at the rate of 2.7 mm to 7.6 mm an hour;

Heavy rain. Rain falls at the rate of 7.7 mm an hour or more.

It is evident that such definitions are quite harsh and resemble a bivalent (two-valued)
logic: e.g. a precipitation rate of 7.7mm/h is a heavy rain, while a precipitation rate
of 7.6mm/h is just a moderate rain. This is clearly unsatisfactory, as quite naturally
the more rain is falling, the more the sentence “heavy rain” is true and, vice-versa,
the less rain is falling the less the sentence is true.

In other words, this means essentially, that the sentence “heavy rain” is
no longer either true or false as in the definition above, but is intrinsically
graded.

A more fine grained way to define the various types of rains is illustrated in Figure 1.
Light rain, moderate rain and heavy rain are called Fuzzy Sets in the literature [318]
and are characterised by the fact that membership is a matter of degree. Of course,
the definition of fuzzy sets is frequently context dependent and subjective: e.g. the
definition of heavy rain is quite different from heavy person and the latter may be
defined differently among human beings.

From a logical point of view, a propositional interpretation maps a statement φ
to a truth degree in [0, 1], i.e. I(φ) ∈ [0, 1]. Essentially, we are unable to establish
whether a statement is entirely true or false due to the involvement of vague/fuzzy
concepts, such as “heavy”.

1More concretely, the intensity of precipitation is expressed in terms of a precipitation rate
R: volume flux of precipitation through a horizontal surface, i.e. m3/m2s = ms−1. It is usually
expressed in mm/h.

2http://usatoday30.usatoday.com/weather/wds8.htm
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Figure 1: Light, Moderate and Heavy Rain.

Note that all fuzzy statements are truth-functional, that is, the degree of truth
of every statement can be calculated from the degrees of truth of its constituents,
while uncertain statements cannot always be a function of the uncertainties of their
constituents [108]. For the sake of illustrative purpose, an example of truth functional
interpretation of propositional statements is as follows:

I(φ ∧ ψ) = min(I(φ), I(ψ))
I(φ ∨ ψ) = max(I(φ), I(ψ))
I(¬φ) = 1− I(φ) .

In such a setting one may be interested in the so-called notions of minimal (resp.
maximal) degree of satisfaction of a statement, i.e. minI I(φ) (resp. maxI I(φ)).

Uncertain fuzzy sentences. Let us recap: in a probabilistic setting each state-
ment is either true or false, but there is e.g. a probability distribution telling us how
probable each interpretation is, i.e. I(φ) ∈ {0, 1} and Pr(I) ∈ [0, 1]. In fuzzy theory
instead, sentences are graded, i.e. we have I(φ) ∈ [0, 1].

A natural question is: can we have sentences combining the two orthogonal con-
cepts? Yes, for instance, “there will be heavy rain tomorrow” is an uncertain fuzzy
sentence. Essentially, there is uncertainty about the world we will have tomorrow,
and there is fuzziness about the various types of rain we may have tomorrow.

From a logical point of view, we may model uncertain fuzzy sentences in the
following way:

• we have a probability distribution over the worlds, i.e. a function Pr mapping
interpretations in [0, 1], i.e. Pr(I) ∈ [0, 1], with

∑
I Pr(I) = 1;
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• sentences are graded. Specifically, each interpretation is truth functional and
maps sentences into [0, 1], i.e. I(φ) ∈ [0, 1];

• for a sentence φ, we are interested in the so-called expected truth of φ, denoted
ET (φ), namely

ET (φ) =
∑
I

Pr(I) · I(φ) .

Note that if I is bivalent (that is, I(φ) ∈ {0, 1}) then ET (φ) = Pr(φ).

Overview. We present here some salient aspects in representing and reasoning
with fuzzy knowledge in Semantic Web Languages (SWLs) such as triple languages
[64] (see, e.g. [280, 292]), conceptual languages [221] (see, e.g. [195, 260, 268]) and
rule languages (see, e.g. [86, 231, 265, 266, 270, 272, 279]). We refer the reader to
[285] for an extensive presentation concerning fuzziness and semantic web languages.
We then further show how one may generalise them to so-called annotation domains,
that cover also e.g. temporal and provenance extensions (see, e.g. [179, 178, 321]).

2 Basics: From Fuzzy Sets to Mathematical Fuzzy

Logic and Annotation Domains

2.1 Fuzzy Sets Basics

The aim of this section is to introduce the basic concepts of fuzzy set theory. To
distinguish between fuzzy sets and classical (non fuzzy) sets, we refer to the latter
as crisp sets. For an in-depth treatment we refer the reader to, e.g. [107, 156].

From Crisp Sets to Fuzzy Sets. To better highlight the conceptual shift from
classical sets to fuzzy sets, we start with some basic definitions and well-known
properties of classical sets. Let X be a universal set containing all possible elements
of concern in each particular context. The power set, denoted 2A, of a set A ⊂ X, is
the set of subsets of A, i.e., 2A = {B | B ⊆ A}. Often sets are defined by specifying
a property satisfied by its members, in the form A = {x | P (x)}, where P (x) is a
statement of the form “x has property P” that is either true or false for any x ∈ X.
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Examples of universe X and subsets A,B ∈ 2X may be

X = {x | x is a day}
A = {x | x is a rainy day}
B = {x | x is a day with precipitation rate R ≥ 7.5mm/h} .

In the above case we have B ⊆ A ⊆ X.
The membership function of a set A ⊆ X, denoted χA, is a function mapping

elements of X into {0, 1}, i.e. χA : X → {0, 1}, where χA(x) = 1 iff x ∈ A. Note that
for any sets A,B ∈ 2X , we have that

A ⊆ B iff ∀x ∈ X. χA(x) ≤ χB(x) . (1)

The complement of a set A is denoted Ā, i.e. Ā = X \A. Of course, ∀x ∈ X. χĀ(x) =
1−χA(x). In a similar way, we may express set operations of intersection and union
via the membership function as follows:

∀x ∈ X. χA∩B(x) = min(χA(x), χB(x)) (2)

∀x ∈ X. χA∪B(x) = max(χA(x), χB(x)) . (3)

The Cartesian product, A×B, of two sets A,B ∈ 2X is defined as A×B = {〈a, b〉 |
a ∈ A, b ∈ B}. A relation R ⊆ X × X is reflexive if for all x ∈ X χR(x, x) = 1,
is symmetric if for all x, y ∈ X χR(x, y) = χR(y, x). The inverse of R is defined as
function χR−1 : X ×X → {0, 1} with membership function χR−1(y, x) = χR(x, y).

As defined so far, the membership function of a crisp set A assigns a value of
either 1 or 0 to each individual of the universe set and, thus, discriminates between
being a member or not being a member of A.

A fuzzy set [318] is characterised instead by a membership function χA : X →
[0, 1], or denoted simply A : X → [0, 1]. With 2̃X we denote the fuzzy power set over
X, i.e. the set of all fuzzy sets over X. For instance, by referring to Figure 1, the
fuzzy set

C = {x | x is a day with heavy precipitation rate R}

is defined via the membership function

χC(x) =


1 if R ≥ 7.5
(x− 5)/2.5 if R ∈ [5, 7.5)
0 otherwise .
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(a) (b)

(c) (d)

Figure 2: (a) Trapezoidal function trz (a, b, c, d); (b) Triangular function tri(a, b, c);
(c) L-function ls(a, b); and (d) R-function rs(a, b).

As pointed out previously, the definition of the membership function may depend on
the context and may be subjective. Moreover, also the shape of such functions may be
quite different. Luckily, the trapezoidal (Fig. 2 (a)), the triangular (Figure 2 (b)), the
L-function (left-shoulder function, Figure 2 (c)), and the R-function (right-shoulder
function, Figure 2 (d)) are simple, but most frequently used to specify membership
degrees.

The usefulness of fuzzy sets depends critically on our capability to construct
appropriate membership functions. The problem of constructing meaningful mem-
bership functions is a difficult one and we refer the interested reader to, e.g. [156,
Chapter 10]. However, one easy and typically satisfactory method to define the
membership functions (for a numerical domain) is to uniformly partition the range
of, e.g. precipitation rates values (bounded by a minimum and maximum value), into
5 or 7 fuzzy sets using either trapezoidal functions (e.g. as illustrated in Figure 3),
or using triangular functions (as illustrated in Figure 4). The latter one is the more
used one, as it has less parameters.
Another popular method is based on fuzzy clustering, e.g. using the so-called Fuzzy
C-Means algorithm [10] (see figure 5). Fuzzy C-Means extends K-Means to accom-
modates graded membership: essentially, we create five clusters, c1, . . . , c5, from the
clusters c1, . . . , c5 we take the centroids π1, . . . , π5, and then build the fuzzy sets from
the centroids.

The standard fuzzy set operations are defined for any x ∈ X as in 2 and 3. Note

7



Figure 3: Fuzzy sets construction using trapezoidal functions.

Figure 4: Fuzzy sets construction using triangular functions.

Figure 5: Fuzzy sets construction using Fuzzy C-Means.
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Table 1: Properties for t-norms and s-norms.

Axiom Name T-norm S-norm

Tautology / Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a⊕ (b⊕ c)
Monotonicity if b ≤ c, then a⊗ b ≤ a⊗ c if b ≤ c, then a⊕ b ≤ a⊕ c

Table 2: Properties for implication and negation functions.

Axiom Name Implication Function Negation Function

Tautology / Contradiction 0⇒ b = 1, a⇒ 1 = 1, 1⇒ 0 = 0 	 0 = 1, 	 1 = 0
Antitonicity if a ≤ b, then a⇒ c ≥ b⇒ c if a ≤ b, then 	 a ≥ 	 b
Monotonicity if b ≤ c, then a⇒ b ≤ a⇒ c

also that the set inclusion defined as in 1 is indeed crisp in the sense that either
A ⊆ B or A 6⊆ B.

Norm-Based Fuzzy Set Operations. Standard fuzzy set operations are not
the only ones that can be conceived to be suitable to generalise the classical Boolean
operations. For each of the three types of operations there is a wide class of plausible
fuzzy version. The most notable ones are characterised by the so-called class of t-
norms ⊗ (called triangular norms), t-conorms ⊕ (also called s-norm), and negation
	 (see, e.g. [155]). An additional operator is used to define set inclusion (called
implication ⇒). Indeed, the degree of subsumption between two fuzzy sets A and
B, denoted A v B, is defined as infx∈X A(x) ⇒ B(x), where ⇒ is an implication
function.

An important aspect of such functions is that they satisfy some properties that
one expects to hold (see Tables 1 and 2). Usually, the implication function ⇒ is
defined as r-implication, that is,

a⇒ b = sup {c | a⊗ c ≤ b} .

Of course, due to commutativity, ⊗ and ⊕ are monotone also in the first argument.
We say that ⊗ is indempotent if a⊗ a = a, for any a ∈ [0, 1]. For any a ∈ [0, 1], we
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say that a negation function 	 is involutive iff 		a = a . Salient negation functions
are:

Standard or  Lukasiewicz negation: 	la = 1− a;

Gödel negation: 	ga is 1 if a = 0, else is 0.

Of course,  Lukasiewicz negation is involutive, while Gödel negation is not.
Salient t-norm functions are:

Gödel t-norm: a⊗g b = min(a, b);

Bounded difference or  Lukasiewicz t-norm: a⊗l b = max(0, a+ b− 1);

Algebraic product or product t-norm: a⊗p b = a · b;

Drastic product: a⊗d b =

{
0 when (a, b) ∈ [0, 1[×[0, 1[
min(a, b) otherwise

Salient s-norm functions are:

Gödel s-norm: a⊕g b = max(a, b);

Bounded sum or  Lukasiewicz s-norm: a⊕l b = min(1, a+ b);

Algebraic sum or product s-norm: a⊕p b = a+ b− ab;

Drastic sum: a⊕d b =

{
1 when (a, b) ∈]0, 1]×]0, 1]
max(a, b) otherwise

We recall that the following important properties can be shown about t-norms and
s-norms.

1. There is the following ordering among t-norms (⊗ is any t-norm):

⊗d ≤ ⊗ ≤ ⊗g
⊗d ≤ ⊗l ≤ ⊗p ≤ ⊗g .

2. The only idempotent t-norm is ⊗g.

3. The only t-norm satisfying a⊗ a = 0 for all a ∈ [0, 1[ is ⊗d.

10



Table 3: Combination functions of various fuzzy logics.

 Lukasiewicz Logic Gödel Logic Product Logic SFL

a⊗ b max(a+ b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a+ b, 1) max(a, b) a+ b− a · b max(a, b)

a⇒ b min(1− a+ b, 1)

{
1 if a ≤ b
b otherwise

min(1, b/a) max(1− a, b)

	 a 1− a

{
1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1− a

4. There is the following ordering among s-norms (⊕ is any s-norm):

⊕g ≤ ⊕ ≤ ⊕d
⊕g ≤ ⊕p ≤ ⊕l ≤ ⊕d .

5. The only idempotent s-norm is ⊕g.

6. The only s-norm satisfying a⊕ a = 1 for all a ∈]0, 1] is ⊕d.

The dual s-norm of ⊗ is defined as

a⊕ b = 1− (1− a)⊗ (1− b) . (4)

Some t-norms, s-norms, implication functions, and negation functions are shown in
Table 3. One usually distinguishes three different sets of fuzzy set operations (called
fuzzy logics), namely,  Lukasiewicz, Gödel, and Product logic; the popular Standard
Fuzzy Logic (SFL) is a sublogic of  Lukasiewicz logic as min(a, b) = a ⊗l (a ⇒l b)
and max(a, b) = 1 −min(1 − a, 1 − b). The importance of these three logics is due
to the Mostert–Shields theorem [216] that states that any continuous t-norm can be
obtained as an ordinal sum of these three (see also [129]).

The implication x ⇒ y = max(1 − x, y) is called Kleene-Dienes implication in
the fuzzy logic literature. Note that we have the following inferences: let a ≥ n and
a⇒ b ≥ m. Then, under Kleene-Dienes implication, we infer that if n > 1−m then
b ≥ m. Under r-implication relative to a t-norm ⊗, we infer that b ≥ n⊗m.

The composition of two fuzzy relations R1 : X×X → [0, 1] and R2 : X×X → [0, 1]
is defined as (R1 ◦ R2)(x, z) = supy∈X R1(x, y) ⊗ R2(y, z). A fuzzy relation R is
transitive iff R(x, z)> (R ◦R)(x, z).

11



Table 4: Some additional properties of combination functions of various fuzzy logics.

Property  Lukasiewicz Logic Gödel Logic Product Logic SFL

x⊗	x = 0 + − − −
x⊕	x = 1 + − − −
x⊗ x = x − + − +
x⊕ x = x − + − +
		x = x + − − +

x⇒ y = 	x⊕ y + − − +
	 (x⇒ y) = x⊗	 y + − − +
	 (x⊗ y) = 	x⊕	 y + + + +
	 (x⊕ y) = 	x⊗	 y + + + +

Fuzzy Modifiers. Fuzzy modifiers are an interesting feature of fuzzy set theory.
Essentially, a fuzzy modifier, such as very, more or less, and slightly, apply to
fuzzy sets to change their membership function.

Formally, a fuzzy modifier m represents a function

fm : [0, 1]→ [0, 1] .

For example, we may define fvery(x) =x2 and fslightly(x) =
√
x. In this way, we may

express the fuzzy set of very heavy rain by applying the modifier very to the fuzzy
membership function of “heavy rain” i.e.

χvery heavyrain(x) = fvery(χheavyrain(x)) = (χheavyrain(x))2 = (rs(5, 7.5)(x))2 .

A typical shape of modifiers is the so-called linear modifiers, as illustrated in Figure 6.
Note that such a modifier can be parameterized by means of one parameter c only,
i.e. lm(a, b) = lm(c), where a = c/(c+ 1) , b = 1/(c+ 1).

2.2 Mathematical Fuzzy Logic Basics

We recap here briefly that in Mathematical Fuzzy Logic [129], the convention pre-
scribing that a statement is either true or false is changed and is a matter of degree
measured on an ordered scale that is no longer {0, 1}, but [0, 1]. This degree is called
degree of truth of the logical statement φ in the interpretation I. Fuzzy statements
have the form 〈φ, r〉, where r∈ [0, 1] (see, e.g. [128, 129]) and φ is a statement, which
encodes that the degree of truth of φ is greater or equal r. A fuzzy interpretation

12
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Figure 6: Linear modifier lm(a, b).

I maps each basic statement pi into [0, 1] and is then extended inductively to all
statements:

I(φ ∧ ψ) = I(φ)⊗ I(ψ)
I(φ ∨ ψ) = I(φ)⊕ I(ψ)
I(φ→ ψ) = I(φ)⇒ I(ψ)
I(φ↔ ψ) = I(φ→ ψ)⊗ I(ψ → φ)
I(¬φ) = 	I(φ)
I(∃x.φ) = supa∈∆I Iax(φ)
I(∀x.φ) = infa∈∆I Iax(φ) ,

(5)

where ∆I is the domain of I, and ⊗, ⊕, ⇒, and 	 are the t-norms, t-conorms,
implication functions, a negation functions we have seen in the previous section.3

One may also consider the following abbreviations:

φ ∧g ψ
def
= φ ∧ (φ→ ψ) (6)

φ ∨g ψ
def
= (φ→ ψ)→ φ) ∧g (ψ → φ)→ ψ) (7)

¬⊗φ
def
= φ→ 0 . (8)

(9)

In case ⇒ is the r-implication based on ⊗, then ∧g (resp. ∨g) is interpreted as
Gödel t-norm (resp. s-norm), while ¬⊗ is interpreted as the negation function related
to ⊗.

A fuzzy interpretation I satisfies a fuzzy statement 〈φ, r〉, or I is a model of
〈φ, r〉, denoted I |= 〈φ, r〉, iff I(φ) ≥ r. We say that I is a model of φ if I(φ) = 1.
A fuzzy knowledge base (or simply knowledge base, if clear from context) is a set of

3The function Iax is as I except that x is interpreted as a.
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fuzzy statements and an interpretation I satisfies (is a model of) a knowledge base,
denoted I |= K, iff it satisfies each element in it.

We say 〈φ, n〉 is a tight logical consequence of a set of fuzzy statements K iff n is the
infimum of I(φ) subject to all models I of K. Notice that the latter is equivalent to
n= sup {r | K |= 〈φ, r〉}. n is called the best entailment degree of φ w.r.t. K (denoted
bed(K, φ)), i.e.

bed(K, φ) = sup {r | K |= 〈φ, r〉} . (10)

On the other hand, the best satisfiability degree of φ w.r.t. K (denoted bsd(K, φ)) is

bsd(K, φ) = sup
I
{I(φ) | I |= K} . (11)

Of course, the properties of Table 4 immediately translate into equivalence among
formulae. For instance, the following equivalences hold (in brackets we indicate the
logic for which the equivalences holds)

¬¬φ ≡ φ ( L)

φ ∧ φ ≡ φ (G)

¬(φ ∧ ¬φ) ≡ 1 ( L, G,Π)

φ ∨ ¬φ ≡ 1 ( L) .

Remark 1. Unlike the classical case, in general, we do not have that ∀x.φ and
¬∃x.¬φ are equivalent. They are equivalent for  Lukasiewicz logic and SFL, but are
neither equivalent for Gödel nor for Product logic. For instance, under Gödel nega-
tion, just consider an interpretation I with domain {a} and I(p(a)) = u, with
0 < u < 1. Then I(∀x.p(x)) = u, while I(¬∃x.¬p(x)) = 1 and, thus, ∀x.p(x) 6≡
¬∃x.¬p(x).

We refer the reader to [285] for an overview of reasoning algorithms for fuzzy propo-
sitional and First-Order Logics.

2.3 Conjunctive Queries

The classical case. In case a KB is a classical knowledge base, a conjunctive query
is a rule-like expression of the form

q(~x)← ∃~y.ϕ(~x, ~y) (12)

where the rule body ϕ(~x, ~y) is a conjunction4 of predicates Pi(~zi) (1 ≤ i ≤ n) and ~zi
is a vector of distinguished or non-distinguished variables.

4We use the symbol “,′′ to denote conjunction in the rule body.
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For instance,
q(x, y)← AdultPerson(x), Age(x, y)

is a conjunctive query, whose intended meaning is to retrieve all adult people and
their age.

Given a vector ~x = 〈x1, . . . , xk〉 of variables, a substitution over ~x is a vector
of individuals ~t replacing variables in ~x with individuals. Then, given a query
q(~x) ← ∃~y.ϕ(~x, ~y), and two substitutions ~t, ~t′ over ~x and ~y, respectively, the query
instantiation ϕ(~t,~t′) is derived from ϕ(~x, ~y) by replacing ~x and ~y with ~t and ~t′,
respectively.

We adopt here the following notion of entailment. Given a knowledge base K,
a query q(~x) ← ∃~y.ϕ(~x, ~y), and a vector ~t of individuals occurring in K, we say
that q(~t) is entailed by K, denoted K |= q(~t), if and only if there is a vector ~t′ of
individuals occurring in K such that in any two-valued model I of K, I is a model
of any atom in the query instantiation ϕ(~t,~t′).

If K |= q(~t) then ~t is called a answer to q. We call these kinds of answers also
certain answers. The answer set of q w.r.t. K is defined as

ans(K, q) = {~t | K |= q(~t)} .

The fuzzy case. Consider a new alphabet of fuzzy variables (denoted Λ). To start
with, a fuzzy query is of the form

〈q(~x),Λ〉 ← ∃~y∃Λ′.ϕ(~x,Λ, ~y, ~Λ′) (13)

in which ϕ(~x,Λ, ~y, ~Λ′) is a conjunction (as for the crisp case, we use “,” as conjunction
symbol) of fuzzy predicates and built-in predicates, ~x and Λ are the distinguished

variables, ~y and ~Λ′ are the vectors of non-distinguished variables (existential quan-

tified variables), and ~x, Λ, ~y and ~Λ′ are pairwise disjoint. Variable Λ and variables

in ~Λ′ can only appear in place of degrees of truth or built-in predicates. The query
head contains at least one variable.

For instance, the query

〈q(x), s〉 ← 〈SportsCar(x), s1〉, hasPrice(x, y), s :=s1 · ls(10000, 15000)(y)

has intended meaning to retrieve all cheap sports cars. Any answer x is scored
according to the product of being cheap and a sports car, were cheap is encode as
the fuzzy membership function ls(10000, 15000).

From a semantics point of view, given a fuzzy KB K, a query 〈q(~x),Λ〉 ←
∃~y∃Λ′.ϕ(~x,Λ, ~y, ~Λ′), a vector ~t of individuals occurring in K and a truth degree
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λ in [0, 1], we say that 〈q(~t), λ〉 is entailed by K, denoted K |= 〈q(~t), λ〉, if and only

if there is a vector ~t′ of individuals occurring K and a vector ~λ′ of truth degrees in
[0, 1] such that for any model I of K, I is a model of all fuzzy atoms occurring in

ϕ(~t, λ,~t′, ~λ′). If K |= 〈q(~t), λ〉 then 〈~t, λ〉 is called an answer to q. The answer set of
q w.r.t. K is

ans(K, q) = {〈~t, λ〉 | K |= 〈q(~t), λ〉, λ 6= 0 and

for any λ′ 6= λ such that K |= 〈q(~t), λ′〉, λ′ ≤ λ holds} .

That is, for any tuple ~t, the truth degree λ is as large as possible.

Fuzzy queries with aggregation operators. We may extend conjunctive queries
to disjunctive queries and to queries including aggregation operators as well. For-
mally, let @ be an aggregate function with

@ ∈ {SUM,AVG,MAX,MIN,COUNT,⊕,⊗}

then a query with aggregates is of the form

〈q(~x),Λ〉 ← ∃~y∃Λ′.ϕ(~x, ~y,Λ′),
GroupedBy(w̃),
Λ:=@[f(~z)] ,

(14)

where ~w are variables in ~x or ~y and each variable in ~x occurs in ~w and any variable
in ~z occurs in ~y or ~Λ′.

From a semantics point of view, we say that I is a model of (satisfies) 〈q(~t), λ〉,
denoted I |= 〈q(~t), λ〉 if and only if

λ = @[λ1, . . . , λk] where g = {〈~t,~t′1, ~λ′1〉, . . . , 〈~t,~t′k, ~λ′k〉},
is a group of k tuples with identical projection

on the variables in ~w, ϕ(~t,~t′r,
~λ′r) is true in I

and λr = f(~~t) where ~~t is the projection of 〈~t′r, ~λ′r〉
on the variables ~z .

Now, the notion of K |= 〈q(~t), λ〉 is as usual: any model of K is a model of 〈q(~t), λ〉.
The notion of answer and answer set of a disjunctive query is a straightforward

extension of the ones for conjunctive queries.
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Top-k Retrieval. As now each answer to a query has a degree of truth (i.e. score),
a basic inference problem that is of interest is the top-k retrieval problem, formulated
as follows.

Given a fuzzy KB K, and a query q, retrieve k answers 〈~t, λ〉 with maximal degree
and rank them in decreasing order relative to the degree λ, denoted

ansk(K, q) = Topk ans(K, q) .

2.4 Annotation Domains

We have seen that fuzzy statements extend statements with an annotation r ∈ [0, 1].
Interestingly, we may further generalise this by allowing a statement being annotated
with a value λ taken from a so-called annotation domain [66, 178, 179, 292, 321],5

which allow to deal with several domains (such as, fuzzy, temporal, provenance) and
their combination, in a uniform way. Formally, let us consider a non-empty set L.
Elements in L are our annotation values. For example, in a fuzzy setting, L = [0, 1],
while in a typical temporal setting, L may be time points or time intervals. In
the annotation framework, an interpretation will map statements to elements of the
annotation domain. Now, an annotation domain is an idempotent, commutative
semi-ring

D = 〈L,⊕,⊗,⊥,>〉 ,
where ⊕ is >-annihilating [66]. That is, for λ, λi ∈ L

1. ⊕ is idempotent, commutative, associative;

2. ⊗ is commutative and associative;

3. ⊥⊕ λ = λ, >⊗ λ = λ, ⊥⊗ λ = ⊥, and >⊕ λ = >;

4. ⊗ is distributive over ⊕, i.e.λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);

It is well-known that there is a natural partial order on any idempotent semi-ring:
an annotation domain D = 〈L,⊕,⊗,⊥,>〉 induces a partial order � over L defined
as:

λ1 � λ2 if and only if λ1 ⊕ λ2 = λ2 .

The order � is used to express redundant/entailed/subsumed information. For
instance, for temporal intervals, an annotated statement 〈φ, [2000, 2006]〉 entails
〈φ, [2003, 2004]〉, as [2003, 2004] ⊆ [2000, 2006] (here, ⊆ plays the role of �).

5The readers familiar with the annotated logic programming framework [153], will notice the
similarity of the approaches.
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Remark 2. ⊕ is used to combine information about the same statement. For in-
stance, in temporal logic, from 〈φ, [2000, 2006]〉 and 〈φ, [2003, 2008]〉, we infer 〈φ, [2000, 2008]〉,
as [2000, 2008] = [2000, 2006]∪ [2003, 2008]; here, ∪ plays the role of ⊕. In the fuzzy
context, from 〈φ, 0.7〉 and 〈φ, 0.6〉, we infer 〈φ, 0.7〉, as 0.7 = max(0.7, 0.6) (here,
max plays the role of ⊕).

Remark 3. ⊗ is used to model the “conjunction” of information. In fact, a ⊗ is
a generalisation of boolean conjunction to the many-valued case. In fact, ⊗ satisfies
also that

1. ⊗ is bounded: i.e.λ1 ⊗ λ2 � λ1.

2. ⊗ is �-monotone, i.e. for λ1 � λ2, λ⊗ λ1 � λ⊗ λ2

For instance, on interval-valued temporal logic, from 〈φ, [2000, 2006]〉 and 〈φ→ ψ, [2003, 2008]〉,
we may infer 〈ψ, [2003, 2006]〉, as [2003, 2006] = [2000, 2006] ∩ [2003, 2008]; here, ∩
plays the role of ⊗. In the fuzzy context, one may chose any t-norm [129, 155],
e.g. product, and, thus, from 〈φ, 0.7〉 and 〈φ→ ψ, 0.6〉, we will infer 〈ψ, 0.42〉, as
0.42 = 0.7 · 0.6) (here, · plays the role of ⊗).

Remark 4. Observe that the distributivity condition is used to guarantee that e.g. we
obtain the same annotation λ ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2) ⊕ (λ1 ⊗ λ3) of ψ that can be
inferred from 〈φ, λ1〉, 〈φ→ ψ, λ2〉 and 〈φ→ ψ, λ3〉.

Note that, conceptually, in order to build an annotation domain, one has to:

1. determine the set of annotation values L (typically a countable set6), identify
the top and bottom elements;

2. define a suitable operations ⊗ and ⊕ that acts as “conjunction” and “disjunc-
tion” function, to support the intended inferences.

Eventually, annotated queries are as fuzzy queries in which annotation variables and
terms are used in place of fuzzy variables and values r ∈ [0, 1] instead. We refer the
reader to [321] for more details about annotation domains.

6Note that one may use XML decimals in [0, 1] in place of real numbers for the fuzzy domain.
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3 Fuzzy Logic and Semantic Web Languages

We have seen in the previous section how to “fuzzyfy” a classical language such as
propositional logic and FOL, namely fuzzy statements are of the form 〈φ, r〉, where
φ is a statement and r ∈ [0, 1].

The natural extension to SWLs consists then in replacing φ with appropriate
expressions belonging to the logical counterparts of SWLs, namely ρdf, DLs and
LPs, as we will illustrate next.

3.1 Fuzzy RDFS

The basic ingredients of RDF are triples of the form (s, p, o), such as (umberto, likes, tomato),
stating that subject s has property p with value o. In RDF Schema (RDFS),
which is an extension of RDF, additionally some special keywords may be used
as properties to further improve the expressivity of the language. For instance we
may also express that the class of ’tomatoes are a subclass of the class of veg-
etables’, (tomato, sc, vegetables), while Zurich is an instance of the class of cities,
(zurich, type, city).

Form a computational point of view, one computes the so-called closure (denoted
cl(K)) of a set of triples K. That is, one infers all possible triples using inference
rules [206, 219, 232], such as

(A, sc, B), (X, type, A)

(X, type, B)

“if A subclass of B and X instance of A then infer that X is instance of B”,

and then store all inferred triples into a relational database to be used then for
querying. We recall also that there also several ways to store the closure cl(K) in a
database (see [1, 139]). Essentially, either we may store all the triples in table with
three columns subject, predicate, object, or we use a table for each predicate, where
each table has two columns subject, object. The latter approach seems to be better
for query answering purposes.

In Fuzzy RDFS (see [280, 285] and references therein), triples are annotated with
a degree of truth in [0, 1]. For instance, “Rome is a big city to degree 0.8” can
be represented with 〈(Rome, type,BigCity), 0.8〉. More formally, fuzzy triples are
expressions of the form 〈τ, r〉, where τ is a RDFS triple (the truth value r may be
omitted and, in that case, the value r = 1 is assumed).

The interesting point is that from a computational point of view the inference
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rules parallel those for “crisp” RDFS: indeed, the rules are of the form

〈τ1, r1〉, . . . , 〈τk, rk〉, {τ1, . . . , τk} `RDFS τ

〈τ,
⊗

i ri〉
(15)

Essentially, this rule says that if a classical RDFS triple τ can be inferred by applying
a classical RDFS inference rule to triples τ1, . . . , τk (denoted {τ1, . . . , τk} `RDFS τ),
then the truth degree of τ will be

⊗
i ri.

As a consequence, the rule system is quite easy to implement for current inference
systems. Specifically, as for the crisp case, one may compute the closure cl(K) of a
set of fuzzy triples K, store them in a relational database and thereafter query the
database.

Concerning conjunctive queries, they are essentially the same as in Section 2.3,
where predicates are replaced with triples. For instance, the query

〈q(x), s〉 ← 〈(x, type,SportsCar), s1〉, (x, hasPrice, y), s = s1 · cheap(y) (16)

where e.g. cheap(y) = ls(10000, 15000)(y), has intended meaning to retrieve all cheap
sports car. Then, any answer is scored according to the product of being cheap and
a sports car.

3.1.1 Annotation domains & RDFS.

The generalisation to annotation domains is conceptual easy, as now one may replace
truth degrees with annotation terms taken from an appropriate domain. For further
details see [321].

3.2 Fuzzy DLs

Description Logics (DLs) [4] are the logical counterpart of the family of OWL lan-
guages. So, to illustrate the basic concepts of fuzzy OWL, it suffices to show the
fuzzy DL case (see [13, 195, 285], for a survey). We recap that the basic ingredients
are the descriptions of classes, properties, and their instances, such as

• a:C, such as a:Person u ∀hasChild.Femal, meaning that individual a is an in-
stance of concept/class C (here C is seen as a unary predicate);

• (a, b):R, such as (tom,mary):hasChild, meaning that the pair of individuals 〈a, b〉
is an instance of the property/role R (here R is seen as a binary predicate);

• C v D, such as Person v ∀hasChild.Person, meaning that the class C is a
subclass of class D;
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So far, several fuzzy variants of DLs have been proposed: they can be classified
according to

• the description logic resp. ontology language that they generalize [16, 22, 24,
25, 28, 43, 47, 52, 106, 189, 190, 191, 192, 194, 196, 197, 238, 239, 240, 251,
257, 263, 264, 270, 278, 306, 317];

• the allowed fuzzy constructs [21, 29, 31, 32, 33, 35, 36, 38, 105, 133, 134, 135,
136, 137, 142, 143, 144, 145, 146, 147, 148, 149, 201, 263, 282, 302];

• the underlying fuzzy logic [18, 20, 26, 130, 131, 262, 274, 269];

• their reasoning algorithms and computational complexity results [5, 6, 12, 14,
15, 17, 18, 19, 23, 34, 37, 39, 40, 42, 11, 44, 45, 50, 51, 54, 55, 56, 57, 58, 60,
59, 61, 249, 49, 46, 53, 62, 48, 63, 72, 73, 74, 114, 222, 252, 255, 256, 260, 261,
268, 273, 275, 289, 290, 315, 320].

In general, fuzzy DLs allow expressions of the form 〈a:C, r〉, stating that a is an
instance of concept/class C with degree at least r, i.e. the FOL formula C(a) is true
to degree at least r. Similarly, 〈C1 v C2, r〉 states a vague subsumption relationships.
Informally, 〈C1 v C2, r〉 dictates that the FOL formula ∀x.C1(x) → C2(x) is true
to degree at least r. Essentially, fuzzy DLs are then obtained by interpreting the
statements as fuzzy FOL formulae and attaching a weight n to DL statements, thus,
defining so fuzzy DL statements.

Example 5. Consider the following background knowledge about cars:

Car v ∃HasPrice.Price
Sedan v Car
V an v Car

CheapPrice v Price
ModeratePrice v Price
ExpensivePrice v Price
〈CheapPrice v ModeratePrice, 0.7〉

〈ModeratePrice v ExpensivePrice, 0.4〉
CheapCar = Car u ∃HasPrice.CheapPrice

ModerateCar = Car u ∃HasPrice.ModeratePrice
ExpensiveCar = Car u ∃HasPrice.ExpensivePrice

Essentially, the vague concepts here are CheapPrice,ModeratePrice, and ExpensivePrice
and the graded GCIs declare to which extent there is a relationship among them.
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The facts about two specific cars a and b are encoded with:

〈a:Sedan u ∃HasPrice.CheapPrice, 0.7〉
〈b:V an u ∃HasPrice.ModeratePrice, 0.8〉 .

So, a is a sedan having a cheap price, while b is a van with a moderate price.
Under Gödel semantics it can be shown that

K |= 〈a:ModerateCar, 0.7〉
K |= 〈b:ExpensiveCar, 0.4〉 .

From a decision procedure point of view, a popular approach consists of a set of
inference rules that generate a set of in-equations (that depend on the t-norm and
fuzzy concept constructors) that have to be solved by an operational research solver
(see, e.g. [26, 263]). An informal rule example is as follows:

“If individual a is instance of the class intersection C1 u C2 to degree
greater or equal to xa:C1 u C2

,7 then a is instance of Ci (i = 1, 2) to
degree greater or equal to xa:Ci , where additionally the following in-
equation holds:

xa:C1 u C2
≤ xa:C1

⊗ xa:C2
.”

Concerning conjunctive queries, they are essentially the same as in Section 2.3, where
predicates are replaced with unay and binary predicates. For instance, the fuzzy DL
analogue of the RDFS query (16) is

〈q(x), s〉 ← 〈SportsCar(x), s1〉,HasPrice(x, y), s :=s1 · cheap(y) . (17)

Applications. Fuzzy set theory and fuzzy logic [318] have proved to be suitable
formalisms to handle fuzzy knowledge. Not surprisingly, fuzzy ontologies already
emerge as useful in several applications, such as information retrieval [3, 67, 175,
298, 299, 311, 319], recommendation systems [71, 164, 224, 314], image interpreta-
tion [95, 96, 97, 215, 254, 258, 259], the Semantic Web and the Internet [80, 226, 241],
ambient intelligence [103, 104, 174, 235], ontology merging [75, 301], matchmaking [2,
79, 227, 228, 229, 230, 231, 296, 297], decision making [281], summarization [163],
robotics [111, 112], machine learning [166, 167, 168, 169, 170, 171, 172, 173, 294] and
many others [7, 94, 113, 140, 158, 165, 176, 208, 225, 234, 248, 282].

7For a fuzzy DL formula φ we consider a variable xφ with intended meaning: the degree of truth
of φ is greater or equal to xφ.
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Representing Fuzzy OWL Ontologies in OWL. OWL [220] and its succes-
sor OWL 2 [81, 221] are standard W3C languages for defining and instantiating
Web ontologies whose logical counterpart are classical DLs. So far, several fuzzy
extensions of DLs exists and some fuzzy DL reasoners have been implemented,
such as fuzzyDL [21, 41], DeLorean [16], Fire [115, 253], SoftFacts [284],
GURDL [125], GERDS [126], YADLR [157], FRESG [312] and DLMedia [283, 299].
Not surprisingly, each reasoner uses its own fuzzy DL language for representing fuzzy
ontologies and, thus, there is a need for a standard way to represent such informa-
tion. A first possibility would be to adopt as a standard one of the fuzzy extensions
of the languages OWL and OWL 2 that have been proposed, such as [122, 250, 251].
However, as it is not expected that a fuzzy OWL extension will become a W3C
proposed standard in the near future, [27, 30, 33] identifies the syntactic differences
that a fuzzy ontology language has to cope with, and proposes to use OWL 2 itself
to represent fuzzy ontologies [121].

3.2.1 Annotation domains & OWL.

The generalisation to annotation domains is conceptual easy, as now one may replace
truth degrees with annotation terms taken from an appropriate domain (see, e.g. [54,
56, 269].

3.3 Fuzzy Rule Languages

The foundation of the core part of rule languages is Datalog [304], i.e. a Logic Pro-
gramming Language (LP) [177]. In LP, the management of imperfect information
has attracted the attention of many researchers and numerous frameworks have been
proposed. Addressing all of them is almost impossible, due to both the large number
of works published in this field (early works date back to early 80-ties [246]) and the
different approaches proposed (see, e.g. [279]).
Below a list of references.8

Fuzzy set theory: [8, 9, 65, 70, 76, 77, 78, 110, 123, 124, 132, 141, 154, 200, 207,
217, 218, 223, 233, 245, 246, 247, 300, 305, 307, 308, 309, 310, 316]

Multi-valued logic: [69, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 98, 99, 100,
101, 102, 116, 117, 118, 119, 120, 127, 150, 151, 152, 153, 159, 160, 161, 162,
180, 181, 182, 183, 184, 185, 186, 187, 188, 191, 193, 194, 196, 198, 199, 202,

8The list of references is by no means intended to be all-inclusive. The author apologises both
to the authors and with the readers for all the relevant works, which are not cited here.
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203, 204, 205, 209, 210, 211, 212, 213, 214, 227, 228, 229, 230, 231, 236, 242,
243, 244, 265, 266, 267, 270, 271, 272, 274, 276, 277, 278, 286, 293, 295, 303]

Basically [177], a Datalog program P is made out by a set of rules and a set of facts.
Facts are ground atoms of the form P (~c). On the other hand rules are similar as
conjunctive queries and are of the form

A(~x)← ∃~y.ϕ(~x, ~y) ,

where ϕ(~x, ~y) is a conjunction of n-ary predicates. A query is a rule and the answer
set of a query q w.r.t. a set K of facts and rules is the set of tuples ~t such that there
exists ~t′ such that the instantiation ϕ(~t,~t′) of the query body is true in minimal model
of K, which is guaranteed to exists.

In the fuzzy case, rules and facts are as for the crisp case, except that now a
predicate is annotated. An example of fuzzy rule defining good hotels may be the
following:

〈GoodHotel(x), s〉 ← Hotel(x), 〈Cheap(x), s1〉, 〈CloseToV enue(x), s2〉,
〈Comfortable(x), s3〉, s := 0.3 · s1 + 0.5 · s2 + 0.2 · s3 (18)

A fuzzy query is a fuzzy rule and, informally, the fuzzy answer set is the ordered set
of weighted tuples 〈~t, s〉 such that all the fuzzy atoms in the rule body are true in the
minimal model and s is the result of the scoring function f applied to its arguments.
The existence of a minimal is guaranteed if the scoring functions in the query and
in the rule bodies are monotone [279].

We conclude by saying that most works deal with logic programs without negation
and some may provide some technique to answer queries in a top-down manner, as
e.g. [83, 153, 162, 266, 307]. Deciding whether a wighted tuple 〈~t, s〉 is the answer
set is undecidable in general, though is decidable if the truth space is finite and fixed
a priory, as then the minimal model is finite.

Another rising problem is the problem to compute the top-k ranked answers to
a query, without computing the score of all answers. This allows to answer queries
such as “find the top-k closest hotels to the conference location”. Solutions to this
problem can be found in [194, 272, 277].

3.3.1 Annotation domains & Rule Languages.

The generalisation of fuzzy rule languages to the case in which an annotation r ∈
[0, 1] is replaced with an annotation value λ taken from an annotation domain is
straightforward and proceeds as for the other SWLs.
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[6] Franz Baader and Rafael Peñaloza. GCIs make reasoning in fuzzy DLs with the
product t-norm undecidable. In Proceedings of the 24th International Workshop
on Description Logics (DL-11). CEUR Electronic Workshop Proceedings, 2011.

[7] Radu Balaj and Adrian Groza. Detecting influenza epidemics based on real-
time semantic analysis of Twitter streams. In Proceedings of the 3rd Interna-
tional Conference on Modelling and Development of Intelligent Systems (MDIS
2013), pages 30–39, 2013.

[8] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril - Fuzzy and Evidential
Reasoning in Artificial Intelligence. Research Studies Press Ltd, 1995.

[9] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Applications of fuzzy compu-
tation: Knowledge based systems: Knowledge representation. In E. H. Ruspini,
P. Bonnissone, and W. Pedrycz, editors, Handbook of Fuzzy Computing. IOP
Publishing, 1998.

[10] James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algo-
rithms. Springer Verlag, 1981.

25



[11] Fernando Bobillo. The role of crisp elements in fuzzy ontologies: The case of
fuzzy OWL 2 EL. IEEE Transactions on Fuzzy Systems, 24:1193–1209, 2016.

[12] Fernando Bobillo, Félix Bou, and Umberto Straccia. On the failure of the
finite model property in some fuzzy description logics. Fuzzy Sets and Systems,
172(1):1–12, 2011.

[13] Fernando Bobillo, Marco Cerami, Francesc Esteva, Àngel Garćıa-Cerdaña,
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tion in finitely valued fuzzy EL. LTCS-Report 15-06, Chair for Au-
tomata Theory, Institute for Theoretical Computer Science, Technische
Universität Dresden, Dresden, Germany, 2015. See http://lat.inf.tu-
dresden.de/research/reports.html.

[47] Stefan Borgwardt, Marco Cerami, and Rafael Peñaloza. The complexity of
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ming: operational semantics and applications. In Zbigniew W. Rás and Ma-
ciek Michalewicz, editors, Proceedings of the 9th International Symposium on
Foundations of Intelligent Systems, volume 1079 of Lecture Notes in Artificial
Intelligence, pages 202–211, Berlin, 1996. Springer.

[70] True H. Cao. Annotated fuzzy logic programs. Fuzzy Sets and Systems,
113(2):277–298, 2000.

[71] Christer Carlsson, Matteo Brunelli, and J&#x00f3;zsef Mezei. Decision making
with a fuzzy ontology. Soft Computing, 16(7):1143–1152, July 2012.

[72] Marco Cerami, Francesc Esteva, and Fèlix Bou. Decidability of a description
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[249] Rafael Peñaloza Stefan Borgwardt. Consistency reasoning in lattice-based
fuzzy description logics. International Journal of Approximate Reasoning,
2014. To appear.

[250] G. Stoilos, G. Stamou, and J. Z. Pan. Fuzzy extensions of OWL: Logical
properties and reduction to fuzzy description logics. International Journal of
Approximate Reasoning, 51(6):656–679, July 2010.

[251] George Stoilos and Giorgos Stamou. Extending fuzzy description logics for
the semantic web. In 3rd International Workshop of OWL: Experiences and
Directions, 2007.

[252] George Stoilos, Giorgos Stamou, Jeff Pan, Vassilis Tzouvaras, and Ian Hor-
rocks. The fuzzy description logic f-SHIN. In International Workshop on
Uncertainty Reasoning For the Semantic Web, 2005.

[253] Giorgos Stoilos, Nikolaos Simou, Giorgos Stamou, and Stefanos Kollias. Un-
certainty and the semantic web. IEEE Intelligent Systems, 21(5):84–87, 2006.

[254] Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras, Jeff Z. Pan, and Ian Hor-
rock. A Fuzzy Description Logic for Multimedia Knowledge Representation.
In Proceedings of the International Workshop on Multimedia and the Semantic
Web, 2005.

[255] Giorgos Stoilos, Giorgos B. Stamou, Jeff Z. Pan, Vassilis Tzouvaras, and Ian
Horrocks. Reasoning with very expressive fuzzy description logics. Journal of
Artificial Intelligence Research, 30:273–320, 2007.

[256] Giorgos Stoilos, Umberto Straccia, Giorgos Stamou, and Jeff Z. Pan. General
concept inclusions in fuzzy description logics. In Proceedings of the 17th Eu-
reopean Conference on Artificial Intelligence (ECAI-06), pages 457–461. IOS
Press, 2006.

51



[257] Umberto Straccia. A fuzzy description logic. In Proceedings of the 15th Na-
tional Conference on Artificial Intelligence (AAAI-98), pages 594–599, Madi-
son, USA, 1998.

[258] Umberto Straccia. Foundations of a Logic Based Approach to Multimedia Doc-
ument Retrieval. PhD thesis, Department of Computer Science, University of
Dortmund, Dortmund, Germany, June 1999.

[259] Umberto Straccia. A framework for the retrieval of multimedia objects based on
four-valued fuzzy description logics. In F. Crestani and Gabriella Pasi, editors,
Soft Computing in Information Retrieval: Techniques and Applications, pages
332–357. Physica Verlag (Springer Verlag), Heidelberg, Germany, 2000.

[260] Umberto Straccia. Reasoning within fuzzy description logics. Journal of Arti-
ficial Intelligence Research, 14:137–166, 2001.

[261] Umberto Straccia. Transforming fuzzy description logics into classical descrip-
tion logics. In Proceedings of the 9th European Conference on Logics in Ar-
tificial Intelligence (JELIA-04), volume 3229 of Lecture Notes in Computer
Science, pages 385–399, Lisbon, Portugal, 2004. Springer Verlag.

[262] Umberto Straccia. Uncertainty in description logics: a lattice-based approach.
In Proceedings of the 10th International Conference on Information Process-
ing and Managment of Uncertainty in Knowledge-Based Systems, (IPMU-04),
pages 251–258, 2004.

[263] Umberto Straccia. Description logics with fuzzy concrete domains. In Fahiem
Bachus and Tommi Jaakkola, editors, 21st Conference on Uncertainty in Arti-
ficial Intelligence (UAI-05), pages 559–567, Edinburgh, Scotland, 2005. AUAI
Press.

[264] Umberto Straccia. Fuzzy alc with fuzzy concrete domains. In Proceeedings of
the International Workshop on Description Logics (DL-05), volume 147, pages
96–103, Edinburgh, Scotland, 2005. CEUR-WS.org.

[265] Umberto Straccia. Query answering in normal logic programs under uncer-
tainty. In 8th European Conferences on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU-05), volume 3571 of Lecture Notes
in Computer Science, pages 687–700, Barcelona, Spain, 2005. Springer Verlag.

52



[266] Umberto Straccia. Uncertainty management in logic programming: Simple and
effective top-down query answering. In Rajiv Khosla, Robert J. Howlett, and
Lakhmi C. Jain, editors, 9th International Conference on Knowledge-Based &
Intelligent Information & Engineering Systems (KES-05), Part II, volume 3682
of Lecture Notes in Computer Science, pages 753–760, Melbourne, Australia,
2005. Springer Verlag.

[267] Umberto Straccia. Annotated answer set programming. In Proceedings of
the 11th International Conference on Information Processing and Managment
of Uncertainty in Knowledge-Based Systems, (IPMU-06), pages 1212–1219.
E.D.K., Paris, 2006.

[268] Umberto Straccia. Answering vague queries in fuzzy DL-Lite. In Proceedings of
the 11th International Conference on Information Processing and Managment
of Uncertainty in Knowledge-Based Systems, (IPMU-06), pages 2238–2245.
E.D.K., Paris, 2006.

[269] Umberto Straccia. Description logics over lattices. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 14(1):1–16, 2006.

[270] Umberto Straccia. Fuzzy description logic programs. In Proceedings of the 11th
International Conference on Information Processing and Managment of Un-
certainty in Knowledge-Based Systems, (IPMU-06), pages 1818–1825. E.D.K.,
Paris, 2006.

[271] Umberto Straccia. Query answering under the any-world assumption for nor-
mal logic programs. In Proceedings of the 10th International Conference on
Principles of Knowledge Representation (KR-06), pages 329–339. AAAI Press,
2006.

[272] Umberto Straccia. Towards top-k query answering in deductive databases. In
Proceedings of the 2006 IEEE International Conference on Systems, Man and
Cybernetics (SMC-06), pages 4873–4879. IEEE, 2006.

[273] Umberto Straccia. Towards top-k query answering in description logics: the
case of DL-Lite. In Proceedings of the 10th European Conference on Logics in
Artificial Intelligence (JELIA-06), volume 4160 of Lecture Notes in Computer
Science, pages 439–451, Liverpool, UK, 2006. Springer Verlag.

[274] Umberto Straccia. Uncertainty and description logic programs over lattices.
In Elie Sanchez, editor, Fuzzy Logic and the Semantic Web, Capturing Intelli-
gence, chapter 7, pages 115–133. Elsevier, 2006.

53



[275] Umberto Straccia. Reasoning in  l-SHIF : an expressive fuzzy description
logic under  lukasiewicz semantics. Technical Report TR-2007-10-18, Istituto
di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche,
Pisa, Italy, 2007.

[276] Umberto Straccia. A top-down query answering procedure for normal logic
programs under the any-world assumption. In Proceedings of the 9th European
Conference on Symbolic and Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU-07), volume 4724 of Lecture Notes in Computer Science,
pages 115–127. Springer Verlag, 2007.

[277] Umberto Straccia. Towards vague query answering in logic programming for
logic-based information retrieval. In World Congress of the International Fuzzy
Systems Association (IFSA-07), volume 4529 of Lecture Notes in Computer
Science, pages 125–134, Cancun, Mexico, 2007. Springer Verlag.

[278] Umberto Straccia. Fuzzy description logic programs. In C. Marsala
B. Bouchon-Meunier, R.R. Yager and M. Rifqi, editors, Uncertainty and Intel-
ligent Information Systems, chapter 29, pages 405–418. World Scientific, 2008.

[279] Umberto Straccia. Managing uncertainty and vagueness in description logics,
logic programs and description logic programs. In Reasoning Web, 4th Inter-
national Summer School, Tutorial Lectures, volume 5224 of Lecture Notes in
Computer Science, pages 54–103. Springer Verlag, 2008.

[280] Umberto Straccia. A minimal deductive system for general fuzzy RDF. In
Proceedings of the 3rd International Conference on Web Reasoning and Rule
Systems (RR-09), volume 5837 of Lecture Notes in Computer Science, pages
166–181. Springer-Verlag, 2009.

[281] Umberto Straccia. Multi-criteria decision making in fuzzy description logics: A
first step. In 13th International Conference on Knowledge-Based & Intelligent
Information & Engineering Systems - KES-09, volume 5711 of Lecture Notes
in Artificial Intelligence, pages 79–87. Springer, 2009.

[282] Umberto Straccia. Towards spatial reasoning in fuzzy description logics.
In 2009 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE-09),
pages 512–517. IEEE Computer Society, 2009.

[283] Umberto Straccia. An ontology mediated multimedia information retrieval
system. In Proceedings of the the 40th International Symposium on Multiple-
Valued Logic (ISMVL-10), pages 319–324. IEEE Computer Society, 2010.

54



[284] Umberto Straccia. Softfacts: A top-k retrieval engine for ontology mediated
access to relational databases. In Proceedings of the 2010 IEEE International
Conference on Systems, Man and Cybernetics (SMC-10), pages 4115–4122.
IEEE Press, 2010.

[285] Umberto Straccia. Foundations of Fuzzy Logic and Semantic Web Languages.
CRC Studies in Informatics Series. Chapman & Hall, 2013.

[286] Umberto Straccia. On the top-k retrieval problem for ontology-based access to
databases. In S lawomir Pivert, Olivier; Zadrożny, editor, Flexible Approaches
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