A General Framework for Representing and Reasoning with Annotated Semantic Web Data

Umberto Straccia
ISTI-CNR
Pisa, Italy

Nuno Lopes, Gergely Lukácsy, and Axel Polleres
Digital Enterprise Research Institute
National University of Ireland, Galway
RDFS is both a logic and standard W3C Semantic Web Language

- basic ingredient: triples \((\text{subject}, \text{predicate}, \text{object})\)

But triples alone are often not enough . . .

RDFS statements are true with respect to a certain domain

- Time
 - \((\text{umberto}, \text{workedFor}, \text{ISTI})\)
 - true since 2001

- Vagueness
 - \((\text{AAAI10Hotel}, \text{closeTo}, \text{OlimpicPark})\)
 - true to some degree

- Provenance
 - \((\text{umberto}, \text{knows}, \text{axel})\)
 - true in http://www.straccia.info/foaf.rdf
RDFS variants are emerging including some specific domains such as
time, fuzziness, provenance, . . .

Our contribution:
- A very general framework for annotating RDFS triples
- A deductive system, which straightforwardly extends the one for classical RDFS
 - Implementation is simple
- Crisp RDF is a special case
 - Backward compatibility is guaranteed
- Computational complexity and scalability: as for crisp RDFS
 - . . . if domain computations are not too expensive
Outline

- Annotated RDF
- Query answering
- Summary & Outlook
From RDFS to Annotated RDFS
RDFS Syntax

- Pairwise disjoint alphabets
 - \(U \) (RDF URI references)
 - \(B \) (Blank nodes)
 - \(L \) (Literals)

- For simplicity we will denote unions of these sets simply concatenating their names

- We call elements in **UBL terms** (denoted \(t \))
- We call elements in \(B \) **variables** (denoted \(x \))
RDF triple (or RDF atom):

\((s, p, o) \in UBL \times U \times UBL\)

- \(s\) is the subject
- \(p\) is the predicate
- \(o\) is the object

Example:

\((umberto, workedFor, IEI)\)
\(\rho \text{df} \) (restricted RDFS) [Munoz et al., 2007]

- \(\rho \text{df} \) (read rho-df, the \(\rho \) from restricted rdf)
- \(\rho \text{df} \) is defined as the following subset of the RDFS vocabulary:

\[
\rho \text{df} = \{ \text{sp}, \text{sc}, \text{type}, \text{dom}, \text{range} \}
\]

- \((p, \text{sp}, q)\)
 - property \(p \) is a sub property of property \(q \)
- \((c, \text{sc}, d)\)
 - class \(c \) is a sub class of class \(d \)
- \((a, \text{type}, b)\)
 - \(a \) is of type \(b \)
- \((p, \text{dom}, c)\)
 - domain of property \(p \) is \(c \)
- \((p, \text{range}, c)\)
 - range of property \(p \) is \(c \)
Graph (or Knowledge Base) is a set of triples \mathcal{T}

The universe of a graph G, denoted by $universe(G)$, is the set of elements in UBL that occur in the triples of G.

The vocabulary of G, denoted by $voc(G)$ is the set $universe(G) \cap UL$.

A graph is ground if it has no blank nodes (i.e. variables).
Annotated RDFS: Syntax

- Statement (triples) may have attached a value λ taken from an *Annotation Domain*

 \[(s, p, o): \lambda\]

- For instance,

 (umberto, workedFor, IEI): [1992, 2001]

 (AAAI10Hotel, closeTo, OlimpicPark): 0.8

 (umberto, knows, axel): http://www.straccia.info/foaf.rdf
Annotated RDFS: Semantics

- What do annotations mean for RDFS semantics?
- How do I combine, annotated triples semantically?

\[(umberto, \text{type}, \text{IEIEmployee}) : [1992, 2001]\]
\[(\text{IEIEmployee}, \text{sc}, \text{PisaCenterEmployee}) : [1968, 2000]\]
\[(umberto, \text{type}, \text{PisaCenterEmployee}) : [?, ?]\]
Annotation Domains: Informally

Illustration by Example: Time

- An Annotation Domain consists of
 - A lattice L of annotation values
 - e.g. $[1968, 2000]$ and $\{[1968, 2000], [2003, 2004]\}$
 - An order between elements:
 - if $\lambda \preceq \lambda'$, then $\tau: \lambda$ is true to a lesser extent than $\tau': \lambda'$
 - e.g. $[1968, 2000] \preceq [1952, 2007]$ (\preceq is \subseteq)
 - Top and bottom elements:
 - $\top = [-\infty, +\infty], \bot = \emptyset$
 - “Conjunction” function \otimes
 - $[1992, 2001] \otimes [1968, 2000] = [1992, 2000]$ (\otimes is \cap)
 - “Combination” function \lor
Annotation Domains: Informally

Illustration by Example: Time

- An Annotation Domain consists of
 - A lattice L of annotation values
 - e.g. $[1968, 2000]$ and $\{[1968, 2000], [2003, 2004]\}$
 - An order between elements:
 - if $\lambda \preceq \lambda'$, then $\tau : \lambda$ is true to a lesser extent than $\tau' : \lambda'$
 - e.g. $[1968, 2000] \preceq [1952, 2007]$ (\preceq is \subseteq)
 - Top and bottom elements:
 - $\top = [-\infty, +\infty]$, $\bot = \emptyset$
 - “Conjunction” function \otimes
 - $[1992, 2001] \otimes [1968, 2000] = [1992, 2000]$ (\otimes is \cap)
 - “Combination” function \vee
Annotation Domains: Informally

Illustration by Example: Time

▶ An Annotation Domain consists of
 ▶ A lattice L of annotation values
 ▶ e.g. [1968, 2000] and \{[1968, 2000], [2003, 2004]\}
 ▶ An order between elements:
 ▶ if $\lambda \leq \lambda'$, then $\tau: \lambda$ is true to a lesser extent than $\tau': \lambda'$
 ▶ e.g. [1968, 2000] \leq [1952, 2007] (\leq is \subseteq)
 ▶ Top and bottom elements:
 ▶ $\top = [-\infty, +\infty]$, $\bot = \emptyset$
 ▶ “Conjunction” function \otimes
 ▶ [1992, 2001] \otimes [1968, 2000] = [1992, 2000] (\otimes is \cap)
 ▶ “Combination” function \vee
Annotation Domains: Informally

Illustration by Example: Time

▶ An Annotation Domain consists of
 ▶ A lattice L of annotation values
 ▶ e.g. $[1968, 2000]$ and $\{[1968, 2000], [2003, 2004]\}$
 ▶ An order between elements:
 ▶ if $\lambda \preceq \lambda'$, then $\tau : \lambda$ is true to a lesser extent than $\tau' : \lambda'$
 ▶ e.g. $[1968, 2000] \preceq [1952, 2007]$ (\preceq is \subseteq)
 ▶ Top and bottom elements:
 ▶ $\top = [−\infty, +\infty], \bot = \emptyset$
 ▶ “Conjunction” function \otimes
 ▶ $[1992, 2001] \otimes [1968, 2000] = [1992, 2000]$ (\otimes is \cap)
 ▶ “Combination” function \vee
Annotation Domains: Informally

Illustration by Example: Time

▶ An Annotation Domain consists of
 ▶ A lattice L of annotation values
 ▶ e.g. $[1968, 2000]$ and $\{[1968, 2000], [2003, 2004]\}$
 ▶ An order between elements:
 ▶ if $\lambda \preceq \lambda'$, then $\tau: \lambda$ is true to a lesser extent than $\tau': \lambda'$
 ▶ e.g. $[1968, 2000] \preceq [1952, 2007]$ (\preceq is \subseteq)
 ▶ Top and bottom elements:
 ▶ $\top = [-\infty, +\infty]$, $\bot = \emptyset$
 ▶ “Conjunction” function \otimes
 ▶ $[1992, 2001] \otimes [1968, 2000] = [1992, 2000]$ (\otimes is \cap)
 ▶ “Combination” function \lor
Annotation Domain (Formally)

- An annotation domain is an algebraic structure that is well-known for Many-Valued FOL
- **Annotation Domain**: is a *residuated bounded lattice*

\[
D = \langle L, \preceq, \land, \lor, \otimes, \Rightarrow, \bot, \top \rangle,
\]

i.e.

1. \(\langle L, \preceq, \land, \lor, \bot, \top \rangle\) is a bounded lattice, where \(\bot\) and \(\top\) are bottom and top elements, \(\land\) and \(\lor\) are the meet and join operators;
2. \(\langle L, \otimes, \top \rangle\) is a commutative monoid;
3. \(\Rightarrow\) is the so-called residuum implication of \(\otimes\), i.e. for all \(x, y, z\),

\[
z \preceq (x \Rightarrow y) \text{ iff } x \otimes z \preceq y.
\]

Remark: \(x \Rightarrow y = \sup \{z \mid x \otimes z \preceq y\}\)
Annotation Domain (Formally)

- An annotation domain is an algebraic structure that is well-known for Many-Valued FOL
- **Annotation Domain**: is a *residuated bounded lattice*

\[D = \langle L, \preceq, \wedge, \vee, \otimes, \Rightarrow, \bot, \top \rangle, \]

i.e.

1. \[\langle L, \preceq, \wedge, \vee, \bot, \top \rangle \] is a bounded lattice, where \(\bot \) and \(\top \) are bottom and top elements, \(\wedge \) and \(\vee \) are the meet and join operators;
2. \[\langle L, \otimes, \top \rangle \] is a commutative monoid;
3. \(\Rightarrow \) is the so-called residuum implication of \(\otimes \), i.e. for all \(x, y, z \),

\[z \preceq (x \Rightarrow y) \iff x \otimes z \preceq y. \]

Remark: \(x \Rightarrow y = \sup \{ z \mid x \otimes z \preceq y \} \)
Annotation Domain (Formally)

- An annotation domain is an algebraic structure that is well-known for Many-Valued FOL
- **Annotation Domain**: is a *residuated bounded lattice*

\[D = \langle L, \preceq, \land, \lor, \otimes, \Rightarrow, \bot, \top \rangle, \]

i.e.

1. \(\langle L, \preceq, \land, \lor, \bot, \top \rangle \) is a bounded lattice, where \(\bot \) and \(\top \) are bottom and top elements, \(\land \) and \(\lor \) are the meet and join operators;
2. \(\langle L, \otimes, \top \rangle \) is a commutative monoid;
3. \(\Rightarrow \) is the so-called residuum implication of \(\otimes \), i.e. for all \(x, y, z \),

\[z \preceq (x \Rightarrow y) \text{ iff } x \otimes z \preceq y. \]

Remark: \(x \Rightarrow y = \sup \{ z \mid x \otimes z \preceq y \} \)
Other domains: Example

- **Fuzzy**: $(AAA10\text{Hotel}, \text{closeTo}, \text{OlimpicPark}): 0.8$
 - $L = [0, 1]$
 - $\otimes =$ any t-norm
 - $\lor =$ max

- **Provenance**: $(\text{umberto}, \text{knows}, \text{axel}): p$
 - $L =$ DNF propositional formulae over URIs
 - $\otimes =$ \land
 - $\lor =$ \lor

- **Multiple Domains**: our frameworks allows to combine domains

 $(\text{CountryXXX}, \text{type}, \text{Dangerous}): ([1975, 1983], 0.8, 0.6)$

$Time \times \text{Fuzzy} \times \text{Trust}$
Other domains: Example

- **Fuzzy**: \((AAAI10\text{Hotel}, closeTo, OlimpicPark): 0.8\)
 - \(L = [0, 1]\)
 - \(\otimes = \text{any t-norm}\)
 - \(\lor = \text{max}\)

- **Provenance**: \((umberto, knows, axel): p\)
 - \(L = \text{DNF propositional formulae over URIs}\)
 - \(\otimes = \land\)
 - \(\lor = \lor\)

- **Multiple Domains**: our frameworks allows to combine domains
 \((CountryXXX, type, Dangerous): \langle [1975, 1983], 0.8, 0.6 \rangle\)

\(Time \times Fuzzy \times Trust\)
Other domains: Example

- **Fuzzy**: \((\text{AAA}10\text{Hotel}, \text{closeTo}, \text{OlimpicPark}): 0.8\)
 - \(L = [0, 1]\)
 - \(\otimes = \text{any t-norm}\)
 - \(\lor = \text{max}\)

- **Provenance**: \((\text{umberto}, \text{knows}, \text{axel}): p\)
 - \(L = \text{DNF propositional formulae over URIs}\)
 - \(\otimes = \land\)
 - \(\lor = \lor\)

- **Multiple Domains**: our frameworks allows to combine domains
 \((\text{CountryXXX}, \text{type}, \text{Dangerous}): \langle[1975, 1983], 0.8, 0.6\rangle\)

\(Time \times Fuzzy \times Trust\)
Annotated RDFS Semantics

- Semantics generalises that of crisp RDFS
- **Annotated RDF interpretation** \mathcal{I} over a vocabulary V is a tuple

\[\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \cdot \mathcal{I} \rangle, \]

where
- $\Delta_R, \Delta_P, \Delta_C, \Delta_L$ are the finite interpretations domains of \mathcal{I}
- $P[\cdot], C[\cdot], \cdot \mathcal{I}$ are the interpretation functions of \mathcal{I}
\[\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \cdot^\mathcal{I} \rangle \]

Common parts between Crisp RDFS and Annotated RDFS

1. Δ_R is a nonempty set of resources, called the domain or universe of \mathcal{I}
2. Δ_P is a set of property names (not necessarily disjoint from Δ_R)
3. $\Delta_C \subseteq \Delta_R$ is a distinguished subset of Δ_R identifying if a resource denotes a class of resources
4. $\Delta_L \subseteq \Delta_R$, a set of literal values, Δ_L contains all plain literals in $L \cap V$
5. $\cdot^\mathcal{I}$ maps each $t \in UL \cap V$ into a value $t^\mathcal{I} \in \Delta_R \cup \Delta_P$, i.e. assigns a resource or a property name to each element of UL in V, and such that $\cdot^\mathcal{I}$ is the identity for plain literals and assigns an element in Δ_R to elements in L
6. $\cdot^\mathcal{I}$ maps each variable $x \in B$ into a value $x^\mathcal{I} \in \Delta_R$, i.e. assigns a resource to each variable in B

7. What are $P[\cdot]$ and $C[\cdot]$?
\[\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], I \rangle \]

Common parts between Crisp RDFS and Annotated RDFS

1. \(\Delta_R \) is a nonempty set of resources, called the domain or universe of \(\mathcal{I} \)
2. \(\Delta_P \) is a set of property names (not necessarily disjoint from \(\Delta_R \))
3. \(\Delta_C \subseteq \Delta_R \) is a distinguished subset of \(\Delta_R \) identifying if a resource denotes a class of resources
4. \(\Delta_L \subseteq \Delta_R \), a set of literal values, \(\Delta_L \) contains all plain literals in \(L \cap V \)
5. \(I \) maps each \(t \in UL \cap V \) into a value \(t^I \in \Delta_R \cup \Delta_P \), i.e. assigns a resource or a property name to each element of \(UL \) in \(V \), and such that \(I \) is the identity for plain literals and assigns an element in \(\Delta_R \) to elements in \(L \)
6. \(I \) maps each variable \(x \in B \) into a value \(x^I \in \Delta_R \), i.e. assigns a resource to each variable in \(B \)
7. What are \(P[\cdot] \) and \(C[\cdot] \)?
Common parts between Crisp RDFS and Annotated RDFS

1. Δ_R is a nonempty set of resources, called the domain or universe of \mathcal{I}
2. Δ_P is a set of property names (not necessarily disjoint from Δ_R)
3. $\Delta_C \subseteq \Delta_R$ is a distinguished subset of Δ_R identifying if a resource denotes a class of resources
4. $\Delta_L \subseteq \Delta_R$, a set of literal values, Δ_L contains all plain literals in $L \cap V$
5. $\cdot^\mathcal{I}$ maps each $t \in UL \cap V$ into a value $t^\mathcal{I} \in \Delta_R \cup \Delta_P$, i.e. assigns a resource or a property name to each element of UL in V, and such that $\cdot^\mathcal{I}$ is the identity for plain literals and assigns an element in Δ_R to elements in L
6. $\cdot^\mathcal{I}$ maps each variable $x \in B$ into a value $x^\mathcal{I} \in \Delta_R$, i.e. assigns a resource to each variable in B
7. What are $P[\cdot]$ and $C[\cdot]$?
\[\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \cdot^\mathcal{I} \rangle \]

Common parts between Crisp RDFS and Annotated RDFS

1. \(\Delta_R \) is a nonempty set of resources, called the domain or universe of \(\mathcal{I} \)
2. \(\Delta_P \) is a set of property names (not necessarily disjoint from \(\Delta_R \))
3. \(\Delta_C \subseteq \Delta_R \) is a distinguished subset of \(\Delta_R \) identifying if a resource denotes a class of resources
4. \(\Delta_L \subseteq \Delta_R \), a set of literal values, \(\Delta_L \) contains all plain literals in \(L \cap V \)
5. \(\cdot^\mathcal{I} \) maps each \(t \in UL \cap V \) into a value \(t^\mathcal{I} \in \Delta_R \cup \Delta_P \), i.e. assigns a resource or a property name to each element of \(UL \) in \(V \), and such that \(\cdot^\mathcal{I} \) is the identity for plain literals and assigns an element in \(\Delta_R \) to elements in \(L \)
6. \(\cdot^\mathcal{I} \) maps each variable \(x \in B \) into a value \(x^\mathcal{I} \in \Delta_R \), i.e. assigns a resource to each variable in \(B \)
7. What are \(P[\cdot] \) and \(C[\cdot] \)?
$$\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \cdot^\mathcal{I} \rangle$$

Common parts between Crisp RDFS and Annotated RDFS

1. Δ_R is a nonempty set of resources, called the domain or universe of \mathcal{I}
2. Δ_P is a set of property names (not necessarily disjoint from Δ_R)
3. $\Delta_C \subseteq \Delta_R$ is a distinguished subset of Δ_R identifying if a resource denotes a class of resources
4. $\Delta_L \subseteq \Delta_R$, a set of literal values, Δ_L contains all plain literals in $L \cap V$
5. $\cdot^\mathcal{I}$ maps each $t \in UL \cap V$ into a value $t^\mathcal{I} \in \Delta_R \cup \Delta_P$, i.e. assigns a resource or a property name to each element of UL in V, and such that $\cdot^\mathcal{I}$ is the identity for plain literals and assigns an element in Δ_R to elements in L
6. $\cdot^\mathcal{I}$ maps each variable $x \in B$ into a value $x^\mathcal{I} \in \Delta_R$, i.e. assigns a resource to each variable in B
7. What are $P[\cdot]$ and $C[\cdot]$?
\[\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, \mathcal{P}[\cdot], \mathcal{C}[\cdot], \cdot^\mathcal{I} \rangle \]

Common parts between Crisp RDFS and Annotated RDFS

1. \(\Delta_R \) is a nonempty set of resources, called the domain or universe of \(\mathcal{I} \)
2. \(\Delta_P \) is a set of property names (not necessarily disjoint from \(\Delta_R \))
3. \(\Delta_C \subseteq \Delta_R \) is a distinguished subset of \(\Delta_R \) identifying if a resource denotes a class of resources
4. \(\Delta_L \subseteq \Delta_R \), a set of literal values, \(\Delta_L \) contains all plain literals in \(L \cap V \)
5. \(\cdot^\mathcal{I} \) maps each \(t \in UL \cap V \) into a value \(t^\mathcal{I} \in \Delta_R \cup \Delta_P \), i.e. assigns a resource or a property name to each element of \(UL \) in \(V \), and such that \(\cdot^\mathcal{I} \) is the identity for plain literals and assigns an element in \(\Delta_R \) to elements in \(L \)
6. \(\cdot^\mathcal{I} \) maps each variable \(x \in B \) into a value \(x^\mathcal{I} \in \Delta_R \), i.e. assigns a resource to each variable in \(B \)
7. What are \(\mathcal{P}[\cdot] \) and \(\mathcal{C}[\cdot] \) ?
\[\mathcal{I} = \langle \Delta_R, \Delta_P, \Delta_C, \Delta_L, P[\cdot], C[\cdot], \mathcal{I} \rangle \]

Common parts between Crisp RDFS and Annotated RDFS

1. \(\Delta_R \) is a nonempty set of resources, called the domain or universe of \(\mathcal{I} \)
2. \(\Delta_P \) is a set of property names (not necessarily disjoint from \(\Delta_R \))
3. \(\Delta_C \subseteq \Delta_R \) is a distinguished subset of \(\Delta_R \) identifying if a resource denotes a class of resources
4. \(\Delta_L \subseteq \Delta_R \), a set of literal values, \(\Delta_L \) contains all plain literals in \(L \cap V \)
5. \(\mathcal{I} \) maps each \(t \in UL \cap V \) into a value \(t^\mathcal{I} \in \Delta_R \cup \Delta_P \), i.e. assigns a resource or a property name to each element of \(UL \) in \(V \), and such that \(\mathcal{I} \) is the identity for plain literals and assigns an element in \(\Delta_R \) to elements in \(L \)
6. \(\mathcal{I} \) maps each variable \(x \in B \) into a value \(x^\mathcal{I} \in \Delta_R \), i.e. assigns a resource to each variable in \(B \)
7. What are \(P[\cdot] \) and \(C[\cdot] \)?
Crisp \(P[\cdot] \): \(P[\cdot] \) maps each property name \(p \in \Delta_P \) into a subset \(P[p] \subseteq \Delta_R \times \Delta_R \), \(i.e. \) assigns an extension to each property name; \(i.e. \)

\[
P[p] : \Delta_R \times \Delta_R \rightarrow \{0, 1\}
\]

Annotated \(P[\cdot] \): \(P[\cdot] \) maps each property name \(p \in \Delta_P \) into a function \(P[p] : \Delta_R \times \Delta_R \rightarrow L \), \(i.e. \) assigns an annotation term to each pair of resources;

Crisp \(C[\cdot] \): \(C[\cdot] \) maps each class \(c \in \Delta_C \) into a subset \(C[c] \subseteq \Delta_R \), \(i.e. \) assigns a set of resources to every resource denoting a class; \(i.e. \)

\[
C[c] : \Delta_R \rightarrow \{0, 1\}
\]

Annotated \(C[\cdot] \): \(C[\cdot] \) maps each class \(c \in \Delta_C \) into a function \(C[c] : \Delta_R \rightarrow L \), \(i.e. \) assigns an annotation term to every resource
Crisp $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a subset $P[p] \subseteq \Delta_R \times \Delta_R$, i.e. assigns an extension to each property name; i.e.

$$P[p] : \Delta_R \times \Delta_R \rightarrow \{0, 1\}$$

Annotated $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a function $P[p] : \Delta_R \times \Delta_R \rightarrow \mathcal{L}$, i.e. assigns an annotation term to each pair of resources;

Crisp $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a subset $C[c] \subseteq \Delta_R$, i.e. assigns a set of resources to every resource denoting a class; i.e.

$$C[c] : \Delta_R \rightarrow \{0, 1\}$$

Annotated $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a function $C[c] : \Delta_R \rightarrow \mathcal{L}$, i.e. assigns an annotation term to every resource
Crisp $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a subset $P[p] \subseteq \Delta_R \times \Delta_R$, i.e. assigns an extension to each property name; i.e.

$$P[p] : \Delta_R \times \Delta_R \rightarrow \{0, 1\}$$

Annotated $P[\cdot]$: $P[\cdot]$ maps each property name $p \in \Delta_P$ into a function $P[p] : \Delta_R \times \Delta_R \rightarrow L$, i.e. assigns an annotation term to each pair of resources;

Crisp $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a subset $C[c] \subseteq \Delta_R$, i.e. assigns a set of resources to every resource denoting a class; i.e.

$$C[c] : \Delta_R \rightarrow \{0, 1\}$$

Annotated $C[\cdot]$: $C[\cdot]$ maps each class $c \in \Delta_C$ into a function $C[c] : \Delta_R \rightarrow L$, i.e. assigns an annotation term to every resource
Crisp \(P[\cdot] \): \(P[\cdot] \) maps each property name \(p \in \Delta_P \) into a subset \(P[p] \subseteq \Delta_R \times \Delta_R \), i.e. assigns an extension to each property name; i.e.

\[
P[p] : \Delta_R \times \Delta_R \rightarrow \{0, 1\}
\]

Annotated \(P[\cdot] \): \(P[\cdot] \) maps each property name \(p \in \Delta_P \) into a function \(P[p] : \Delta_R \times \Delta_R \rightarrow L \), i.e. assigns an annotation term to each pair of resources;

Crisp \(C[\cdot] \): \(C[\cdot] \) maps each class \(c \in \Delta_C \) into a subset \(C[c] \subseteq \Delta_R \), i.e. assigns a set of resources to every resource denoting a class; i.e.

\[
C[c] : \Delta_R \rightarrow \{0, 1\}
\]

Annotated \(C[\cdot] \): \(C[\cdot] \) maps each class \(c \in \Delta_C \) into a function \(C[c] : \Delta_R \rightarrow L \), i.e. assigns an annotation term to every resource.
Crisp RDFS : For ground triples, $\mathcal{I} \models (s, p, o)$ if
- p is interpreted as a property name
- s and o are interpreted as resources
- the interpretation of the pair (s, o) belongs to the extension of the property assigned to p

Annotated RDF : For ground triples, $\mathcal{I} \models (s, p, o) : \lambda$ if
- p is interpreted as a property name
- s and o are interpreted as resources
- the interpretation of the pair (s, o) belongs to the extension of the property assigned to p to a wider extent than λ
Models (Intuitively)

Crisp RDFS : For ground triples, $I \models (s, p, o)$ if
- p is interpreted as a property name
- s and o are interpreted as resources
- the interpretation of the pair (s, o) belongs to the extension of the property assigned to p

Annotated RDF : For ground triples, $I \models (s, p, o): \lambda$ if
- p is interpreted as a property name
- s and o are interpreted as resources
- the interpretation of the pair (s, o) belongs to the extension of the property assigned to p to a wider extent than λ
Let G be a graph over ρ_{df}.

- An interpretation \mathcal{I} is a model of G under ρ_{df}, denoted $\mathcal{I} \models G$, iff
 - \mathcal{I} is an interpretation over the vocabulary $\rho_{df} \cup \text{universe}(G)$
 - \mathcal{I} satisfies the following conditions:
Crisp Simple:

1. for each \((s, p, o) \in G, p^I \in \Delta_P\) and \((s^I, o^I) \in P[p^I]\);

Annotated Simple:

1. for each \((s, p, o) : \lambda \in G, p^I \in \Delta_P\) and \(P[p^I](s^I, o^I) \geq \lambda\);

Crisp Subclass:

1. \(P[sc^I]\) is transitive over \(\Delta_C\);
2. if \((c, d) \in P[sc^I]\) then \(c, d \in \Delta_C\) and \(C[c] \subseteq C[d]\);

Annotated Subclass:

1. \(P[sc^I]\) is transitive over \(\Delta_C\);
2. \(P[sc^I](c, d) = \min_{x \in \Delta_R} C[c](x) \Rightarrow C[d](x)\).
Crisp Simple:

1. for each \((s, p, o) \in G, p^\mathcal{T} \in \Delta_P\) and \((s^\mathcal{T}, o^\mathcal{T}) \in P[p^\mathcal{T}]\);

Annotated Simple:

1. for each \((s, p, o): \lambda \in G, p^\mathcal{T} \in \Delta_P\) and \(P[p^\mathcal{T}](s^\mathcal{T}, o^\mathcal{T}) \geq \lambda\);

Crisp Subclass:

1. \(P[sc^\mathcal{T}]\) is transitive over \(\Delta_C\);
2. if \((c, d) \in P[sc^\mathcal{T}]\) then \(c, d \in \Delta_C\) and \(C[c] \subseteq C[d]\);

Annotated Subclass:

1. \(P[sc^\mathcal{T}]\) is transitive over \(\Delta_C\);
2. \(P[sc^\mathcal{T}](c, d) = \min_{x \in \Delta_R} C[c](x) \Rightarrow C[d](x)\).
Crisp Simple:

1. for each \((s, p, o) \in G\), \(p^I \in \Delta_P\) and \((s^I, o^I) \in P[p^I]\);

Annotated Simple:

1. for each \((s, p, o)\): \(\lambda \in G\), \(p^I \in \Delta_P\) and \(P[p^I](s^I, o^I) \succeq \lambda\);

Crisp Subclass:

1. \(P[sc^I]\) is transitive over \(\Delta_C\);
2. if \((c, d) \in P[sc^I]\) then \(c, d \in \Delta_C\) and \(C[c] \subseteq C[d]\);

Annotated Subclass:

1. \(P[sc^I]\) is transitive over \(\Delta_C\);
2. \(P[sc^I](c, d) = \min_{x \in \Delta_R} C[c](x) \Rightarrow C[d](x)\).
Crisp Simple:
1. for each \((s, p, o) \in G, p^I \in \Delta_P\) and \((s^I, o^I) \in P[p^I]\);

Annotated Simple:
1. for each \((s, p, o): \lambda \in G, p^I \in \Delta_P\) and
 \[P[p^I](s^I, o^I) \geq \lambda;\]

Crisp Subclass:
1. \(P[sc^I]\) is transitive over \(\Delta_C\);
2. if \((c, d) \in P[sc^I]\) then \(c, d \in \Delta_C\) and \(C[c] \subseteq C[d]\);

Annotated Subclass:
1. \(P[sc^I]\) is transitive over \(\Delta_C\);
2. \(P[sc^I](c, d) = \min_{x \in \Delta_R} C[c](x) \Rightarrow C[d](x)\).
Models (cont.)

- In the crisp case, if \(c \) is a sub-class of \(d \) then we impose that \(C[c] \subseteq C[d] \).
- This may be seen as the formula

\[
\forall x. c(x) \Rightarrow d(x),
\]

- In the annotated framework this is (\(\forall x \equiv \min_{x \in \Delta_R} \))

\[
P[sc^I](c, d) = \min_{x \in \Delta_R} C[c](x) \Rightarrow C[d](x);
\]

- Transitivity: for a set \(\Delta \subseteq \Delta_R \cup \Delta_P \), we say that a function \(f: \Delta \times \Delta \to L \) is transitive) over \(\Delta \) iff for all \(x, z \in \Delta \),

\[
f(x, y) \succeq \max_{z \in \Delta} \{ f(x, z) \otimes f(z, y) \}\]
Crisp Subproperty:

1. $P[\text{sp}^T]$ is transitive over Δ_P;
2. if $(p, q) \in P[\text{sp}^T]$ then $p, q \in \Delta_P$ and $P[p] \subseteq P[q]$;

Annotated Subproperty:

1. $P[\text{sp}^T]$ is transitive over Δ_P;
2. $P[\text{sp}^T](p, q) = \min_{(x, y) \in \Delta_R \times \Delta_R} P[p](x, y) \Rightarrow P[q](x, y)$
Crisp Typing I:

1. \(x \in \mathbb{C}[c] \) iff \((x, c)\) \(\in\) \(P[type^I]\);
2. if \((p, c)\) \(\in\) \(P[dom^I]\) and \((x, y)\) \(\in\) \(P[p]\) then \(x \in \mathbb{C}[c]\);
3. if \((p, c)\) \(\in\) \(P[range^I]\) and \((x, y)\) \(\in\) \(P[p]\) then \(y \in \mathbb{C}[c]\);

Annotated Typing I:

1. \(\mathbb{C}[c](x) = P[type^I](x, c) \);
2. \(P[dom^I](p, c) = \inf_{(x,y) \in \Delta_R \times \Delta_R} P[p](x,y) \Rightarrow \mathbb{C}[c](x) \);
3. \(P[range^I](p, c) = \inf_{(x,y) \in \Delta_R \times \Delta_R} P[p](x,y) \Rightarrow \mathbb{C}[c](y) \);
Crisp Typing II:

1. For each $e \in \rho \text{df}$, $e^\mathcal{I} \in \Delta_P$
2. if $(p, c) \in P[\text{dom}^\mathcal{I}]$ then $p \in \Delta_P$ and $c \in \Delta_C$
3. if $(p, c) \in P[\text{range}^\mathcal{I}]$ then $p \in \Delta_P$ and $c \in \Delta_C$
4. if $(x, c) \in P[\text{type}^\mathcal{I}]$ then $c \in \Delta_C$

Annotated Typing II:

1. For each $e \in \rho \text{df}$, $e^\mathcal{I} \in \Delta_P$
2. $P[\text{dom}^\mathcal{I}](p, c)$ is defined only for $p \in \Delta_P$ and $c \in \Delta_C$
3. $P[\text{range}^\mathcal{I}](p, c)$ is defined only for $p \in \Delta_P$ and $c \in \Delta_C$
4. $P[\text{type}^\mathcal{I}](x, c)$ is defined only for $c \in \Delta_C$
G entails H under ρ df, denoted $G \models H$, iff
- every model under ρ df of G is also a model under ρ df of H

Proposition (Consistency)

Any annotated RDFS graph has a finite model.
Deduction System for Annotated RDFS (excerpt)

1. Crisp Subproperty:

\[
\begin{align*}
(a) & \quad \frac{(A, \text{sp}, B), (B, \text{sp}, C)}{(A, \text{sp}, C)} \\
(b) & \quad \frac{(A, \text{sp}, B), (X, A, Y)}{(X, B, Y)}
\end{align*}
\]

2. Annotated Subproperty:

\[
\begin{align*}
(a) & \quad \frac{(A, \text{sp}, B) : \lambda_1, (B, \text{sp}, C) : \lambda_2}{(A, \text{sp}, C) : \lambda_1 \otimes \lambda_1} \\
(b) & \quad \frac{(A, \text{sp}, B) : \lambda_1, (X, A, Y) : \lambda_2}{(X, B, Y) : \lambda_1 \otimes \lambda_2}
\end{align*}
\]
1. Crisp Subproperty:

 (a) \(\frac{(A, sp, B), (B, sp, C)}{(A, sp, C)} \)

 (b) \(\frac{(A, sp, B), (X, A, Y)}{(X, B, Y)} \)

2. Annotated Subproperty:

 (a) \(\frac{(A, sp, B): \lambda_1, (B, sp, C): \lambda_2}{(A, sp, C): \lambda_1 \otimes \lambda_1} \)

 (b) \(\frac{(A, sp, B): \lambda_1, (X, A, Y): \lambda_2}{(X, B, Y): \lambda_1 \otimes \lambda_2} \)
1. Crisp Subclass:

(a) \(\frac{(A,sc,B),(B,sc,C)}{(A,sc,C)} \)
(b) \(\frac{(A,sc,B),(X,type,A)}{(X,type,B)} \)

2. Annotated Subclass:

(a) \(\frac{(A,sc,B): \lambda_1,(B,sc,C): \lambda_2}{(A,sc,C): \lambda_1 \otimes \lambda_2} \)
(b) \(\frac{(A,sc,B): \lambda_1,(X,type,A): \lambda_2}{(X,type,B): \lambda_1 \otimes \lambda_2} \)

3. Crisp Typing:

(a) \(\frac{(A,dom,B),(X,A,Y)}{(X,type,B)} \)
(b) \(\frac{(A,range,B),(X,A,Y)}{(Y,type,B)} \)

4. Annotated Typing:

(a) \(\frac{(A,dom,B): \lambda_1,(X,A,Y): \lambda_2}{(X,type,B): \lambda_1 \otimes \lambda_2} \)
(b) \(\frac{(A,range,B): \lambda_1,(X,A,Y): \lambda_2}{(Y,type,B): \lambda_1 \otimes \lambda_2} \)
1. Crisp Subclass:

\[
\begin{align*}
(a) & \quad \frac{(A, \text{sc}, B), (B, \text{sc}, C)}{(A, \text{sc}, C)} \quad (b) & \quad \frac{(A, \text{sc}, B), (X, \text{type}, A)}{(X, \text{type}, B)}
\end{align*}
\]

2. Annotated Subclass:

\[
\begin{align*}
(a) & \quad \frac{(A, \text{sc}, B) : \lambda_1, (B, \text{sc}, C) : \lambda_2}{(A, \text{sc}, C) : \lambda_1 \otimes \lambda_2} \quad (b) & \quad \frac{(A, \text{sc}, B) : \lambda_1, (X, \text{type}, A) : \lambda_2}{(X, \text{type}, B) : \lambda_1 \otimes \lambda_2}
\end{align*}
\]

3. Crisp Typing:

\[
\begin{align*}
(a) & \quad \frac{(A, \text{dom}, B), (X, A, Y)}{(X, \text{type}, B)} \quad (b) & \quad \frac{(A, \text{range}, B), (X, A, Y)}{(Y, \text{type}, B)}
\end{align*}
\]

4. Annotated Typing:

\[
\begin{align*}
(a) & \quad \frac{(A, \text{dom}, B) : \lambda_1, (X, A, Y) : \lambda_2}{(X, \text{type}, B) : \lambda_1 \otimes \lambda_2} \quad (b) & \quad \frac{(A, \text{range}, B) : \lambda_1, (X, A, Y) : \lambda_2}{(Y, \text{type}, B) : \lambda_1 \otimes \lambda_2}
\end{align*}
\]
1. Crisp Subclass:

(a) \[\frac{(A, sc, B), (B, sc, C)}{(A, sc, C)} \]
(b) \[\frac{(A, sc, B), (X, type, A)}{(X, type, B)} \]

2. Annotated Subclass:

(a) \[\frac{\lambda_1 \cdot (B, sc, C)}{(A, sc, C)} : \lambda_2 \]
(b) \[\frac{(A, sc, B) : \lambda_1 \cdot (X, type, A)}{(X, type, B)} : \lambda_2 \]

3. Crisp Typing:

(a) \[\frac{(A, dom, B), (X, A, Y)}{(X, type, B)} \]
(b) \[\frac{(A, range, B), (X, A, Y)}{(Y, type, B)} \]

4. Annotated Typing:

(a) \[\frac{(X, type, B)}{(A, dom, B) : \lambda_1 \cdot (X, A, Y) : \lambda_2} \]
(b) \[\frac{(Y, type, B)}{(A, range, B) : \lambda_1 \cdot (X, A, Y) : \lambda_2} \]
1. Crisp Implicit Typing:

(a) \[\frac{(A, \text{dom}, B), (C, \text{sp}, A), (X, C, Y)}{(X, \text{type}, B)} \]

(b) \[\frac{(A, \text{range}, B), (C, \text{sp}, A), (X, C, Y)}{(Y, \text{type}, B)} \]

2. Annotated Implicit Typing:

(a) \[\frac{(A, \text{dom}, B): \lambda_1, (C, \text{sp}, A): \lambda_2, (X, C, Y): \lambda_3}{(X, \text{type}, B): \lambda_1 \otimes \lambda_2 \otimes \lambda_3} \]

(b) \[\frac{(A, \text{range}, B): \lambda_1, (C, \text{sp}, A): \lambda_2, (X, C, Y): \lambda_3}{(Y, \text{type}, B): \lambda_1 \otimes \lambda_2 \otimes \lambda_3} \]
The annotated rules carry over all RDFS rules:

- If a classical RDFS triple τ can be inferred by applying a classical RDFS inference rule to triples τ_1, \ldots, τ_n

$$\{\tau_1, \ldots, \tau_n\} \vdash_{\text{RDFS}} \tau$$

then the annotation term of τ will be $\bigotimes_i \lambda_i$, where λ_i is the annotation of triple τ_i

- That is:

$$(A) \quad \frac{\tau_1 : \lambda_1, \ldots, \tau_n : \lambda_n, \{\tau_1, \ldots, \tau_n\} \vdash_{\text{RDFS}} \tau}{\tau : \bigotimes_i \lambda_i}$$

- Eventually, we need also the Generalisation Rule:

$$\tau : \lambda_1, \tau : \lambda_2 \quad \frac{}{\tau : \lambda_1 \lor \lambda_2} \quad \text{(and remove } \tau : \lambda_1, \tau : \lambda_2 \text{)}$$
Deduction System for Annotated RDFS (cont.)

- Notion of proof (as for crisp RDFS)
- Closure

\[cl(G) = \{ \tau : \lambda \mid G \vdash \tau : \lambda \} \]

Proposition (Soundness, Completeness, Complexity)

For an annotated graph, the proof system \(\vdash \) is sound and complete for \(\models \), that is,

1. if \(G \vdash \tau : \lambda \) then \(G \models \tau : \lambda \)
2. if \(G \models \tau : \lambda \) then there is \(\lambda' \succeq \lambda \) with \(G \vdash \tau : \lambda' \)
3. Computational complexity: is as for RDFS, plus the cost of the operations \(\otimes \) and \(\lor \) in \(L \)
Example (Proof)

\[G = \{ (\text{audiTT}, \text{type}, \text{SportsCar}) : 0.8, (\text{SportsCar}, \text{sc}, \text{PassengerCar}) : 0.9 \} \quad \otimes \text{is product} \]

Let us proof that

\[G \models (\text{audiTT}, \text{type}, \text{PassengerCar}) : 0.72 \]

\begin{align*}
G & \models (\text{audiTT}, \text{type}, \text{SportsCar}) : 0.8, \quad (1) \quad \text{Hypothesis} \\
G & \models (\text{SportsCar}, \text{sc}, \text{PassengerCar}) : 0.9 \quad (2) \quad \text{Hypothesis} \\
G & \models (\text{audiTT}, \text{type}, \text{PassengerCar}) : 0.72 \quad (3) \quad \text{Rule SubClass (b) applied to (1) + (2) using product t-norm} \\
\end{align*}

Similarly, we get

\[
(\text{umberto}, \text{type}, \text{IEIEmployee}) : [1992, 2001] \\
(\text{IEIEmployee, sc, PisaCenterEmployee}) : [1968, 2000] \\
\hline
(\text{umberto, type, PisaCenterEmployee}) : [1992, 2000] \\
\]

where \([1992, 2000] = [1992, 2001] \otimes [1968, 2000] \quad (\otimes = \cap)\]
Conjunctive query:

\[q(x, v) \leftarrow \exists y \exists v'. \varphi(x, v, y, v') \]

where

- \(\varphi(x, v, y, v') \) is a conjunction of annotated triples and built-in predicates
- \(x, y \) range over RDFS terms
- \(v, v' \) range over annotation values
- \(x, v, y \) and \(v' \) are pairwise disjoint

Example: “sports car drivers between 1975 and 1985 and the temporal term at which this was true”

\[q(x, v) \leftarrow (x, \text{type}, \text{SportsCarDriver}) : v \land (v \leq [1975, 1985]) \]

\[G \models q(t, c) \text{ iff for any } I \models G \text{ there is a vector } t' \text{ of terms and a vector } c' \text{ of annotation values such that } I \models \varphi(t, c, t', c') \]

Answer Set:

\[\text{ans}(G, q) = \{ \langle t, c \rangle \mid G \models q(t, c) \text{ and for any } c' \neq c \text{ such that } G \models q(t, c'), c' \preceq c \text{ holds} \} \]

Proposition

Given a graph \(G \), \(\langle t, c \rangle \) is an answer to \(q \) iff \(\exists y \exists v'. \varphi(t, c, y, v') \) is true in the closure of \(G \).
Annotated RDFS Query Answering (cont.)

- A simple query answering procedure is the following:
 - Represent annotated triples as reified RDFS triples
 - Compute the closure of a graph off-line
 - Store the annotated RDFS triples into a relational database
 - Translate the query into SQL statement
 - Execute the SQL statement over the relational database

- A prototype has been implemented (in SWI-Prolog):
 - http://anql.deri.org
We have presented Annotated RDFS:

- It’s general and flexible
 - define an annotation domain with operations \otimes and \lor

- Conservative extension of RDFS
- Deductive system generalises crisp RDFS
- Conservative extension of conjunctive query answering
- Implementation relatively easy (prototype already available)

Forthcoming:

- AnQL: a conservative SPARQL (1.1) extension to query annotated RDFS graphs

Questions? Ask him...