The logic of Soft Computing IV
Ostrava, Czech Republic, October 5-7, 2005

Fuzzy Description Logics and the Semantic Web

Umberto Straccia

I.S.T.I. - C.N.R. Pisa, Italy

straccia@isti.cnr.it

"Calla is a very large, long white flower on thick stalks"

Outline

- Introduction to Description Logics (DLs)
- Semantic Web, Ontologies and DLs
- Fuzzy DLs
- Conclusions & Future Work

Introduction to Description Logics

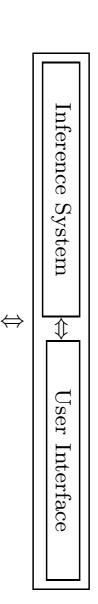
What Are Description Logics? (http://dl.kr.org/)

- A family of logic-based knowledge representation formalisms
- Descendants of semantic networks and KL-ONE
- Describe domain in terms of concepts (classes), roles (properties, relationships) and individuals
- Distinguished by:
- Formal semantics (typically model theoretic)
- * Decidable fragments of FOL
- Closely related to Propositional Modal & Dynamic Logics
- Closely related to Guarded Fragment of FOL, L2 and C2
- Provision of inference services
- * Decision procedures for key problems (e.g., satisfiability, subsumption)
- * Implemented systems (highly optimised)

DLs Basics

- Concept names are equivalent to unary predicates
- In general, concepts equiv to formulae with one free variable
- Role names are equivalent to binary predicates
- In general, roles equiv to formulae with two free variables
- Individual names are equivalent to constants
- Operators restricted so that:
- Language is decidable and, if possible, of low complexity
- No need for explicit use of variables
- * Restricted form of \exists and \forall
- Features such as counting can be succinctly expressed

Description Logic System



Knowledge Base

TBox

 $\texttt{Happy_Father} = \texttt{Man} \sqcap \exists \texttt{has_child.Female}$

ABox

"States facts about a specific world"

John:Happy_Father

 $(\mathtt{John}, \mathtt{Mary}) : \mathtt{has_child}$

The DL Family

- A given DL is defined by set of concept and role forming operators
- Smallest propositionally closed DL is \mathcal{ALC} (\mathcal{A} ttributive \mathcal{L} anguage with Complement)
- Concepts constructed using $\sqcap, \sqcup, \neg, \exists$ and \forall

$\forall R.C$	$\exists R.C \mid$	$\neg C$	$C \sqcup D \mid$	$C\sqcap D$	$A \mid$	⊢	$C,D \longrightarrow \top$	S
(universal quantification)	(existential quantification)	(concept negation)	(concept disjunction)	(concept conjunction)	(atomic concept)	(bottom concept)	(top concept)	Syntax
$\Big\ \hspace{0.1cm} orall$ has_child.Human	$\exists \mathtt{has_child.Blond}$	⊸Meat	Nice □ Rich	Human ∏ Male	Human			Example

DL Semantics

- Semantics is given in terms of an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where
- $-\Delta^{\mathcal{I}}$ is the domain (a non-empty set)
- ·^{\mathcal{I}} is an interpretation function that maps:
- * Concept (class) name A into a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$

* Role (property) name R into a subset $R^{\mathcal{I}}$ of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

- * Individual name a into an element of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- Interpretation function $\cdot^{\mathcal{I}}$ is extended to concept expressions:

DLs and FOL

- \mathcal{ALC} mapping to FOL: introduce
- a unary predicate A for an atomic concept A
- a binary predicate R for a role R
- ullet Translate concepts C and D as follows

$$t(\top,x) =$$
true
 $t(\bot,x) =$ false
 $t(A,x) \mapsto A(x)$
 $t(C_1 \sqcap C_2,x) = t(C_1,x) \land t(C_2,x)$
 $t(C_1 \sqcup C_2,x) \mapsto t(C_1,x) \lor t(C_2,x)$
 $t(\neg C,x) = \neg t(C,x)$
 $t(\exists R.C,x) = \exists y.R(x,y) \land t(C,y)$
 $t(\forall R.C,x) = \forall y.R(x,y) \Rightarrow t(C,y)$

DL Knowledge Base

- A DL Knowledge Base is a pair $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$, where
- \mathcal{T} is a TBox containing general inclusion axioms of the form $C \sqsubseteq D$ ("concept Dsubsumes concept C"),

$$\mathcal{I} \models C \sqsubseteq D \quad \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$

- * concept definitions are of the form A=C (equiv to $A\sqsubseteq C, C\sqsubseteq A$)
- * primitive concept definitions are of the form $A \sqsubseteq C$
- Sometimes, a TBox can contain primitive and concept definitions only, where no atom can be defined more than once and no recursion is allowed \mapsto Computational complexity changes dramatically
- $-\mathcal{A}$ is a ABox containing assertions of the form a:C ("individual a is an instance of concept C) and (a, b):R (individual b is an R-filler of individual a")

$$\mathcal{I} \models a:C$$
 iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$
 $\mathcal{I} \models (a,b):R$ iff $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$

Note on DL naming

$$\mathcal{AL}$$
: $C, D \longrightarrow \top \mid \bot \mid A \mid C \sqcap D \mid \neg A \mid \exists R. \top \mid \forall R. C$

- C: Concept negation, $\neg C$. Thus, $\mathcal{ALC} = \mathcal{AL} + \mathcal{C}$
- \mathcal{S} : Used for \mathcal{ALC} with transitive roles \mathcal{R}_+
- \mathcal{U} : Concept disjunction, $C_1 \sqcup C_2$
- \mathcal{E} : Existential quantification, $\exists R.C$
- \mathcal{H} : Role inclusion axioms, $R_1 \sqsubseteq R_2$
- \mathcal{N} : Number restrictions, $(\geq n \ R)$ and $(\leq n \ R)$, e.g. $(\geq 3 \text{ has_Child})$ (has at least 3 children)
- Q: Qualified number restrictions, $(\geq n \ R.C)$ and $(\leq n \ R.C)$, e.g. $(\leq 2 \ has_Child.Adult)$ (has at most 2 adult children)
- \mathcal{O} : Nominals (singleton class), $\{a\}$, e.g. \exists has_child. $\{$ mary $\}$. **Note**: a:C equiv to $\{a\} \sqsubseteq C$ and (a,b):R equiv to $\{a\} \sqsubseteq \exists R.\{b\}$
- \mathcal{I} : Inverse role, R^- , e.g.
- \mathcal{F} : Functional role, f

For instance,

$$S\mathcal{H}\mathcal{I}\mathcal{F} = S + \mathcal{H} + \mathcal{I} + \mathcal{F} = \mathcal{ALCR}_{+}\mathcal{H}\mathcal{I}\mathcal{F}$$

$$S\mathcal{HOIN} = S + \mathcal{H} + \mathcal{O} + \mathcal{I} + \mathcal{N} = \mathcal{ALCR}_{+}\mathcal{HOIN}$$

Short History of Description Logics

Phase 1: Mostly system development (early eighties)

- Incomplete systems (Back, Classic, Loom, Kandor, ...)
- Based on structural algorithms

Phase 2: first tableaux algorithms and complexity results (mid-eighties mid-nineties)

- Development of tableaux algorithms and complexity results
- Tableaux-based systems (Kris, Crack)
- Investigation of optimization techniques

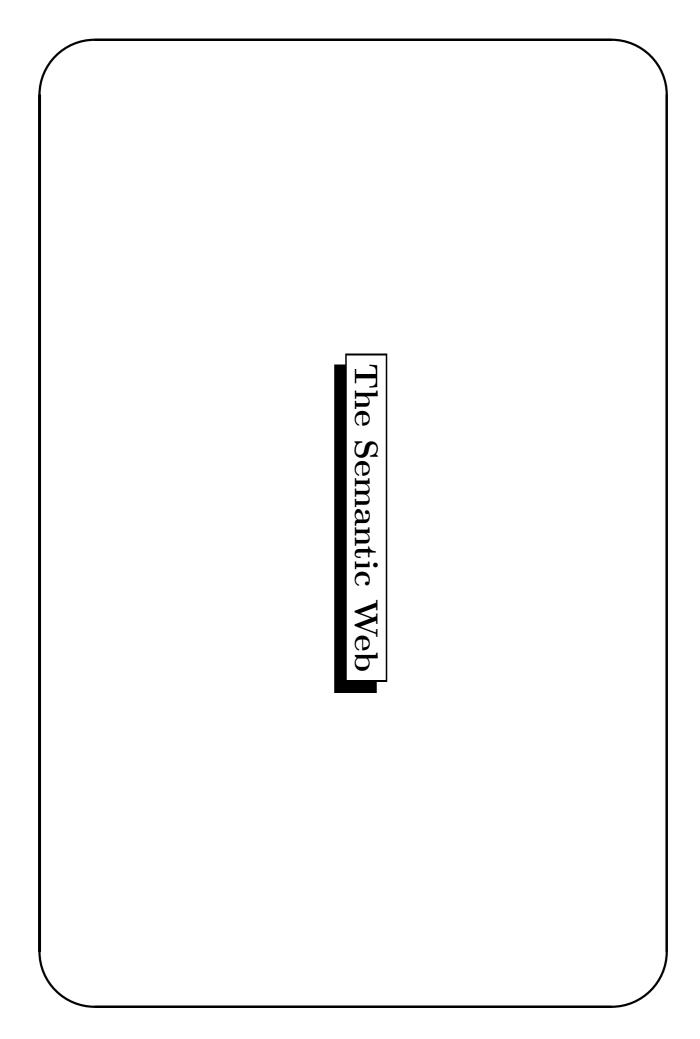
Phase 3: Optimized systems for very expressive DLs (mid-nineties - ...)

- Tableaux algorithms for very expressive DLs
- Highly optimised tableau systems (FaCT, DLP, Racer)
- Relationship to modal logic and decidable fragments of FOL

Latest developments

Phase 4:

- Mature implementations
- Mainstream applications and Tools
- Databases
- * consistency of conceptual schema (EER, UML) using e.g. \mathcal{DLR} (n-ary DL)
- * schema integration
- * Query subsumption (w.r.t. a conceptual schema)
- Ontologies and the Semantic Web (and Grid)
- * Ontology engineering (design, maintenance, integration)
- Reasoing with ontology-based markup (metadata)
- * Service description and discovery
- Commercial implemenations
- * Cerebra, Racer



The Semantic Web Vision and DLs

- The WWW as we know it now
- 1st generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active
- Both intended for direct human processing/interaction
- In next generation web, resources should be more accessible to automated
- To be achieved via semantic markup
- Metadata annotations that describe content/function

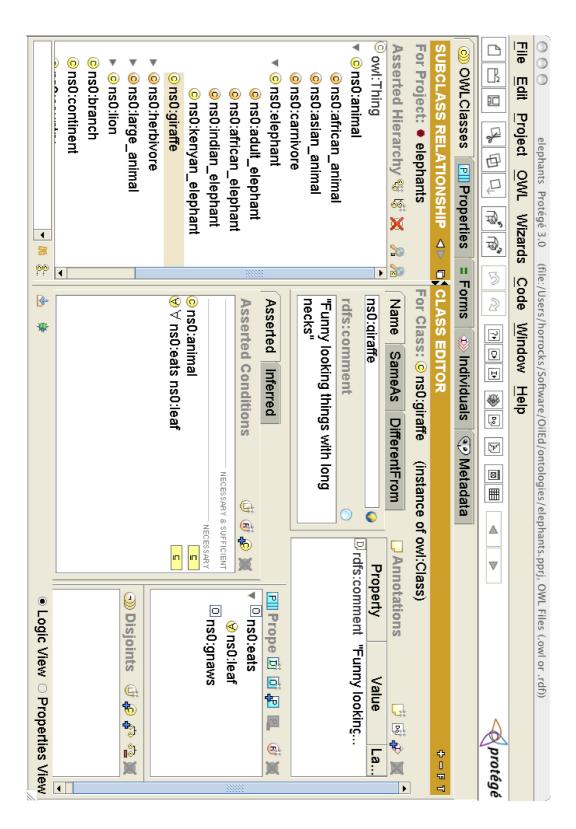
Ontologies

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
- Source of precisely defined terms (vocabulary)
- Can be shared across applications (and humans)
- Ontology typically consists of:
- Hierarchical description of important concepts in domain
- Descriptions of properties of instances of each concept
- Ontologies can be used, e.g.
- To facilitate agent-agent communication in e-commerce
- In semantic based search
- To provide richer service descriptions that can be more flexibly interpreted by intelligent agents

Example Ontology

- Vocabulary and meaning (definitions)
- Elephant is a concept whose members are a kind of animal
- Herbivore is a concept whose members are exactly those animals who eat only plants or parts of plants
- Adult_Elephant is a concept whose members are exactly those elephants whose age is greater than 20 years
- Background knowledge/constraints on the domain (general axioms)
- Adult_Elephants weigh at least 2,000 kg
- All Elephants are either African_Elephants or Indian_Elephants
- No individual can be both a Herbivore and a Carnivore

Example Ontology (Protégé)



Ontology Description Languages

- Should be sufficiently expressive to capture most useful aspects of domain knowledge representation
- Reasoning in it should be decidable and efficient
- Many different languages has been proposed: RDF, RDFS, OIL, DAML+OIL
- OWL (Ontology Web Language) is the current emerging language: it's a standard

OWL Language

- Three species of OWL
- OWL full is union of OWL syntax and RDF (but, undecidable)
- OWL DL restricted to FOL fragment (reasoning problem in NEXPTIME)
- OWL Lite is easier to implement subset of OWL DL (reasoning problem in EXPTIME)
- Semantic layering
- OWL DL ≡ OWL full within Description Logic fragment
- DL semantics officially definitive
- OWL DL based on SHIQ Description Logic $(ALCHIQR_+)$
- In fact it is equivalent to $\mathcal{SHOIN}(D)$
- OWL Lite based on SHIF Description Logic $(ALCHIFR_+)$
- Benefits from many years of DL research
- Formal properties well understood (complexity, decidability)
- Known reasoning algorithms
- Implemented systems (highly optimised)

Abstract Syntax	DL Syntax	Example
Descriptions (C)		
$A \qquad \qquad (ext{URI reference})$	A	Conference
owl:Thing	\dashv	
owl:Nothing	⊢	
$\mathtt{intersectionOf}(C_1 \ C_2 \ldots)$	$C_1 \sqcap C_2$	Reference □ Journal
${\tt unionOf}(C_1\ C_2\ldots)$	$C_1 \sqcup C_2$	$\mathtt{Organization} \sqcup \mathtt{Institution}$
${\tt complementOf}(C)$	$\neg C$	¬ MasterThesis
$\mathtt{oneOf}(o_1 \ldots)$	$\{o_1,\ldots\}$	$\{"wise","iswc",\}$
${\tt restriction}(R \; {\tt someValuesFrom}(C))$	$\exists R.C$	$\exists exttt{parts.InCollection}$
${\tt restriction}(R \; {\tt allValuesFrom}(C))$	$\forall R.C$	∀date.Date
$\mathtt{restriction}(R \; \mathtt{hasValue}(o))$	R:o	date : 2005
${\tt restriction}(R \; {\tt minCardinality}(n))$	$(\geq n \ R)$	$\geqslant 1$ location
${\tt restriction}(R \; {\tt maxCardinality}(n))$	$(\leq n R)$	\leqslant 1 publisher
${\tt restriction}(U \; {\tt someValuesFrom}(D))$	$\exists U.D$	$\exists \mathtt{issue.integer}$
$\mathtt{restriction}(U \mathtt{\ allValuesFrom}(D))$	$\forall U.D$	$\forall \mathtt{name.string}$
$\mathtt{restriction}(U \; \mathtt{hasValue}(v))$	U:v	series : "LNCS"
${\tt restriction}(U \; {\tt minCardinality}(n))$	$(\geq n\ U)$	$\geqslant 1$ title
${\tt restriction}(U \; {\tt maxCardinality}(n))$	$(\leq n \ U)$	$\leqslant 1$ author

Abstract Syntax	DL Syntax	Example
Axioms		
Class $(A \text{ partial } C_1 \dots C_n)$	$A \sqsubseteq C_1 \sqcap \ldots \sqcap C_n$	Human \sqsubseteq Animal \sqcap Biped
${ t Class}(A \ { t complete} \ C_1 \dots C_n)$	$A = C_1 \sqcap \ldots \sqcap C_n$	$ exttt{Man} = exttt{Human} \cap exttt{Male}$
$\texttt{EnumeratedClass}(A \ o_1 \dots o_n)$	$A = \{o_1\} \sqcup \ldots \sqcup \{o_n\}$	$ exttt{RGB} = \{r\} \sqcup \{g\} \sqcup \{b\}$
${ t SubClassOf}(C_1C_2)$	$C_1 \sqsubseteq C_2$	
$\texttt{EquivalentClasses}(C_1 \dots C_n)$	$C_1 = \ldots = C_n$	
${\tt DisjointClasses}(C_1 \dots C_n)$	$C_i \sqcap C_j = \perp, i \neq j$	Male $\sqsubseteq \lnot Female$
$\texttt{ObjectProperty}(R \; \mathtt{super} \; (R_1) \ldots \; \mathtt{super} \; (R_n))$	$R \sqsubseteq R_i$	$ ext{HasDaughter} \sqsubseteq ext{hasChild}$
${\tt domain}(C_1) \dots {\tt domain}(C_n)$	$(\geq 1 R) \sqsubseteq C_i$	$(\geq 1 \; \mathtt{hasChild}) \sqsubseteq \mathtt{Human}$
$\texttt{range}(C_1) \dots \texttt{range}(C_n)$	$\top \sqsubseteq \forall R.D_i$	$ op \sqsubseteq orall exttt{hasChild.Human}$
$[\mathtt{inverseof}(R_0)]$	$R = R_0^-$	${\tt hasChild} = {\tt hasParent}^-$
[symmetric]	$R = R^-$	$\mathtt{similar} = \mathtt{similar}^-$
[functional]	$\top \sqsubseteq (\leq 1 \ R)$	$ op \sqsubseteq (\leq 1 \; \mathtt{hasMother})$
[Inversefunctional]	$\top \sqsubseteq (\leq 1 R^-)$	
[Transitive]	Tr(R)	$Tr({ t ancestor})$
${\tt SubPropertyOf}(R_1R_2)$	$R_1 \sqsubseteq R_2$	
$\texttt{EquivalentProperties}(R_1 \dots R_n)$	$R_1 = \ldots = R_n$	$\mathtt{cost} = \mathtt{price}$

Abstract Syntax	DL Syntax	Example
DatatypeProperty $(U$ super $(U_1)\dots$ super $(U_n))$	$U \sqsubseteq U_i$	
${\tt domain}(C_1) \dots {\tt domain}(C_n)$	$(\geq 1\ U) \sqsubseteq C_i$	$(\geq 1 \; \mathtt{hasAge}) \sqsubseteq \mathtt{Human}$
$\mathtt{range}(D_1) \ldots \mathtt{range}(D_n)$	$\top \sqsubseteq \forall U.D_i$	$ op \sqsubseteq orall ext{hasAge.posInteger}$
[functional]	$\top \sqsubseteq (\leq 1\ U)$	$ op \sqsubseteq (\leq 1 \; \mathtt{hasAge})$
${\tt SubPropertyOf}(U_1U_2)$	$U_1 \sqsubseteq U_2$	$ ext{hasName} \sqsubseteq ext{hasFirstName}$
EquivalentProperties $(U_1 \dots U_n)$	$U_1 = \ldots = U_n$	
Individuals		
$\mathtt{Individual}(o \ \mathtt{type} \ (C_1) \ldots \ \mathtt{type} \ (C_n))$	o : C_i	tim:Human
$\mathtt{value}(R_1o_1) \ldots \mathtt{value}(R_no_n)$	$(o,o_i){:}R_i$	$(\mathtt{tim}, \mathtt{mary}) : \mathtt{hasChild}$
$\mathtt{value}(U_1v_1)$ \dots $\mathtt{value}(U_nv_n)$	$(o,v_1){:}U_i$	(tim, 14):hasAge
${\tt SameIndividual}(o_1 \ldots o_n)$	$o_1 = \ldots = o_n$	${ t president_Bush} = { t G.W.Bush}$
${\tt DifferentIndividuals}(o_1 \dots o_n)$	$o_i \neq o_j, i \neq j$	$\mathtt{john} \neq \mathtt{peter}$

XML representation of OWL statements

E.g., Person $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor):

```
</owl:Class>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          <owl>Class>
                            </owl:intersectionOf>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     <owl:intersectionOf rdf:parseType=" collection">
                                                                                                                                                                                                                                                                                                                                                                                                                                        <owl:Class rdf:about="#Person"/>
                                                                                                                                                                                                                                                                                                                                                                                                           <owl:Restriction>
                                                           </owl:Restriction>
                                                                                          </owl:allValuesFrom>
                                                                                                                                                                                                                                                                                                                                           <owl:allValuesFrom>
                                                                                                                                                                                                                                                                                                                                                                    <owl:onProperty rdf:resource="#hasChild"/>
                                                                                                                         </owl:unionOf>
                                                                                                                                                                                                                                                                                                           <owl:unionOf rdf:parseType=" collection">
                                                                                                                                                                                                                                                                               <owl:Class rdf:about="#Doctor"/>
                                                                                                                                                                                                                                                     <owl:Restriction>
                                                                                                                                                       </owl:Restriction>
                                                                                                                                                                                                                    <owl:onProperty rdf:resource="#hasChild"/>
                                                                                                                                                                                   <owl:someValuesFrom rdf:resource="#Doctor"/>
```

Concrete domains in OWL

- OWL supports concrete domains: integers, strings, ...
- Clean separation between object classes and concrete domains
- Disjoint interpretation domain: $d^{\mathcal{I}} \subseteq \Delta_D$, and $\Delta_D \cap \Delta^{\mathcal{I}} = \emptyset$
- Disjoint concrete properties: $U^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta_D$, e.g., (tim, 14):hasAge, (sf, "SoftComputing"):hasAcronym
- Philosophical reasons:
- Concrete domains structured by built-in predicates
- Practical reasons:
- Ontology language remains simple and compact
- Semantic integrity of ontology language not compromised
- Implementability not compromised can use hybrid reasoner
- Only need sound and complete decision procedure for $d_1^{\mathcal{I}} \cap \ldots \cap d_n^{\mathcal{I}}$, where d_i is a (posssibly negated) datatype
- In the DL literature, these are called Concrete Domains
- Notation: (D). E.g., $\mathcal{ALC}(D)$ is $\mathcal{ALC} + \text{concrete domains}$, OWL DL = $\mathcal{SHOIN}(D)$

Reasoning with OWL DL

Reasoning

- What can we do with it?
- Design and maintenance of ontologies
- * Particularly important with large ontologies/multiple authors ($\geq 2^{1}0$ defined * Check class consistency and compute class hierarchy

concepts)

- Integration of ontologies
- * Assert inter-ontology relationships
- Reasoner computes integrated class hierarchy/consistency
- Querying class and instance data w.r.t. ontologies
- Determine if set of facts are consistent w.r.t. ontologies
- Determine if individuals are instances of ontology classes
- Retrieve individuals/tuples satisfying a query expression
- Check if one class subsumes (is more general than) another w.r.t. ontology
- How do we do it?
- Use DLs reasoner (OWL DL = SHOIN(D))

Basic Inference Problems

Consistency: Check if knowledge is meaningful

- Is \mathcal{K} consistent? \mapsto There exists some model \mathcal{I} of \mathcal{K}
- Is C consistent? $\mapsto C^{\mathcal{I}} \neq \emptyset$ for some some model \mathcal{I} of \mathcal{K}

Subsumption: structure knowledge, compute taxonomy

• $\mathcal{K} \models C \sqsubseteq D$? $\mapsto C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{K}

Equivalence: check if two classes denote same set of instances

• $\mathcal{K} \models C = D$? $\mapsto C^{\mathcal{I}} = D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{K}

Instantiation: check if individual a instance of class C

• $\mathcal{K} \models a:C$? $\mapsto a^{\mathcal{I}} \in C^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{K}

Retrieval: retrieve set of individuals that instantiate C

• Compute the set $\{a : \mathcal{K} \models a : C\}$

Problems are all reducible to consistency, e.g.

- $\mathcal{K} \models C \sqsubseteq D \text{ iff } \langle \mathcal{T}, \mathcal{A} \cup \{a: C \sqcap \neg D\} \rangle \text{ not consistent}$
- $\mathcal{K} \models a:C \text{ iff } \langle \mathcal{T}, \mathcal{A} \cup \{a:\neg C\} \rangle \text{ not consistent}$

Reasoning in DLs: Basics

- Tableaux algorithm deciding concept consistency
- Try to build a tree-like model $\mathcal I$ of the input concept C
- Decompose C syntactically
- Apply tableau expansion rules
- Infer constraints on elements of model
- Tableau rules correspond to constructors in logic (\sqcap, \sqcup, \ldots)
- Some rules are nondeterministic (e.g., \sqcup , \leq)
- In practice, this means search
- Stop when no more rules applicable or clash occurs
- Clash is an obvious contradiction, e.g., A(x), $\neg A(x)$
- Cycle check (blocking) may be needed for termination
- C satisfiable iff rules can be applied such that a fully expanded clash free tree is constructed

Tableaux checking consistency of an \mathcal{ALC} concept

- Works on a tree (semantics through viewing tree as an ABox)
- Nodes represent elements of $\Delta^{\mathcal{I}}$, labelled with sub-concepts of C
- Edges represent role-successorships between elements of $\Delta^{\mathcal{I}}$
- laws and Works on concepts in negation normal form: push negation inside using de Morgan'

$$\neg(\exists R.C) \quad \mapsto \quad \forall R.\neg C$$
$$\neg(\forall R.C) \quad \mapsto \quad \exists R.\neg C$$

- It is initialised with a tree consisting of a single (root) node x_0 with $\mathcal{L}(x_0) = \{C\}$
- A tree T contains a clash if, for a node x in T, $\{A, \neg A\} \subseteq \mathcal{L}(x)$
- (no more rules apply) tree Returns "C is consistent" if rules can be applied s.t. they yield a clash-free, complete

\mathcal{ALC} Tableau rules

$y ullet \{ \ldots, C \}$		$y \bullet \{\ldots\}$
$\mid R\downarrow \mid$		$R\downarrow$
$x \bullet \{\exists R.C, \ldots\}$	$\overset{A}{\longleftrightarrow}$	$x \bullet \{ \forall R.C, \ldots \}$
$y \bullet \{C\}$		
$R\downarrow$		
$x \bullet \{\exists R.C, \ldots\}$	<u></u>	$x \bullet \{\exists R.C, \ldots\}$
for $C \in \{C_1, C_2\}$		
$x \bullet \{C_1 \sqcup C_2, \textcolor{red}{C}, \ldots\}$	<u></u>	$x \bullet \{C_1 \sqcup C_2, \ldots\}$
\longrightarrow_{\sqcap} $x \bullet \{C_1 \sqcap C_2, C_1, C_2, \ldots\}$	→	$x \bullet \{C_1 \sqcap C_2, \ldots\}$
	•	

Soundness and Completeness

Theorem 1

- 1. The tableau algorithm is a PSPACE (using depth-first search) decision procedure for consistency (and subsumption) of \mathcal{ALC} concepts
- 2. ALC has the tree-model property

The tableau can be modified to a PSPACE decision procedure for

- e.g. \mathcal{ALCN} and \mathcal{ALCI}
- demand) TBox with acyclic concept definitions using lazy unfolding (unfolding on
- Note: \mathcal{ALC} with general inclusion axioms, $C \subseteq D$, jumps to EXPTIME

Extensions: general inclusion axioms

- TBoxes with general inclusion axioms $C \sqsubseteq D$
- Each node must be labeled with $\neg C \sqcup D$ (recall, $C \sqsubseteq D \equiv_{FOL} \forall x. \neg t(C, x) \lor t(D, x)$
- However, termination not guaranteed

Given, a:A and $A \subseteq \exists R.A$ then

- $a \bullet \{A, \neg A \sqcup \exists R.A\}$
- $a \bullet \{A, \neg A \sqcup \exists R.A, \exists R.A\}$

 $R \downarrow$

 $y_1 \bullet \{A, \neg A \sqcup \exists R.A, \exists R.A\}$

 $\mathcal{R}_{igoplus}$

 $y_2 \bullet \{A, \neg A \sqcup \exists R.A, \exists R.A\}$

. .

Note: y_1, y_2 share same properties

Blocking

- When creating new node, check ancestors for equal (superset) label
- If such a node is found, new node is blocked

Given, a:A and $A \subseteq \exists R.A$ then

$$a \bullet \{A, \neg A \sqcup \exists R.A, \exists R.A\}$$

 $y_1 \bullet \{A, \neg A \sqcup \exists R.A, \exists R.A\}$ Node is blocked

Note:

- Blocking may not work with more complex DLs (e.g., using \mathcal{R}^-)
- With number restrictions (\mathcal{N}) , some satisfiable concepts have only non-finite models: e.g., testing $\neg C$ with $\mathcal{T} = \{ \top \sqsubseteq \exists R.C, \top \sqsubseteq (\leq 1 \ R^-) \}$
- Sophisticated methods has been developed to detect ∞ repetition of substructures

Focus of DL Research

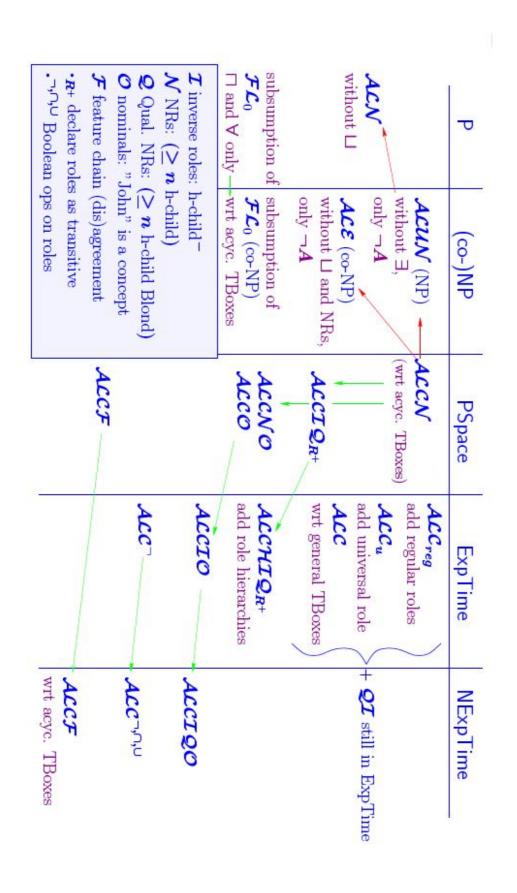
- decidability/complexity of reasoning
- requires restricted description language
- system and complexity results available for various combinations of constructors

- application relevant concepts must be definable
- some applications domains require very expressive DLs
- efficient algorithms in practice for very expressive DLs

Reasoning feasible

Expressivity sufficient

Some Complexity Results



Fuzzy Description Logics

"Calla is a very large, long white flower on thick stalks"

Objective

- To extend classical DLs towards the representation of and reasoning with vague concepts
- Application: Semantic Web
- Development of practical reasoning algorithms
- System implementations

Example (fuzzy DL-Lite, Current work)

Hotel \sqsubseteq \exists hasLocation

 $\begin{array}{cccc} \mathsf{Conference} & \sqsubseteq & \exists \mathsf{hasLocation} \\ & & \mathsf{Hotel} & \sqsubseteq & \neg \mathsf{Conference} \end{array}$

 $\texttt{Location}^{\mathcal{I}} \quad \subseteq \quad \texttt{GISCoordinates}$

 $\mathtt{distance}^{\mathcal{I}}$: $\mathtt{GISCoord} imes \mathtt{GISCoord} o \mathbb{N}$

 $distance(x, y) = \dots$

 $\mathtt{close}^{\mathcal{I}} \quad : \quad \mathbb{N} \to [0,1]$

 $close(x) = \max(0, 1 - \frac{x}{1000})$

hasLocation hasLocation distance hl1 cl1 300 hl1 cl2 500 hl2 cl1 750 hl2 cl2 750 hl2 cl2 750			
Location hasLocation cl1 cl2 cl1 cl1 cl2 cl2		•	•
Location hasLocation cl1 cl2 cl1	750	c12	h12
Location hasLocation cl1 cl2	750	cl1	h12
Location hasLocation cl1	500	c12	hl1
hasLocation	300	cl1	hl1
	distance	${\tt hasLocation}$	${\tt hasLocation}$

		•••	
c12	c2	h12	h2
cl1	c1	hl1	h1
hasLocation	ConferenceID	${\tt hasLocation}$	HotelID

	7	1	т.
	h2	h1	HotelID
•	0.25	0.7	closeness degree

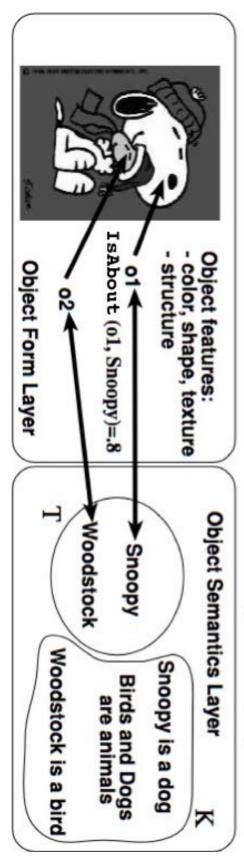
"Find hotel close to conference c1": Query(c1, h) \leftarrow

 $\verb|Hotel|(h), \verb|hasLocation|(h,hl), \verb|Conference|(c1), \verb|hasLocation|(c1,cl), \verb|distance|(hl,cl,d), \verb|close|(d)|$

Example (Logic-based information retrieval model)

media dependent properties

media independent properties



Bird ⊑ Animal

 $\mathsf{Dog} \sqsubseteq \mathsf{Animal}$

snoopy : Dog

woodstock : Bird

		• • •
0.7	woodstock	20
0.8	snoopy	01
isAbout degree	Object ID	${\tt ImageRegion}$

 $Query = { t ImageRegion} \ \sqcap \ \exists { t isAbout.Animal}$

 $\mathtt{Query}(ir) \leftarrow \mathtt{ImageRegion}(ir), \mathtt{isAbout}(ir, x), \mathtt{Animal}(x)$

Example (Graded Entailment)

audi_tt

 g_{m}

ferrari_enzo

ferrari_enzo	mg	audi_tt	Car
<u>></u> 350	≤ 170	243	speed

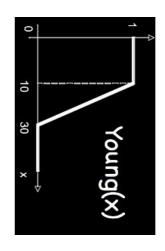
 $\mathtt{SportsCar} \quad = \quad \mathtt{Car} \, \sqcap \, \exists \mathtt{hasSpeed.very}(\mathtt{High})$

 $C \models \langle \texttt{ferrari_enzo:SportsCar}, 1 \rangle$

 $\mathcal{K} \models \langle \texttt{audi_tt:SportsCar}, 0.92 \rangle$

 $\mathcal{K} \models \langle \texttt{audi_tt:} \neg \texttt{SportsCar}, 0.72 \rangle$

Example (Graded Subsumption)



Minor = P

Person $\sqcap \exists \mathtt{hasAge.} \leq_{18}$

YoungPerson =

= Person∏∃hasAge.Young

 $\mathcal{K} \models \langle \texttt{Minor} \sqsubseteq \texttt{YoungPerson}, 0.2 \rangle$

Note: without explicit membership function of Young, inference cannot be

Basic principles of Fuzzy DLs

- In classical DLs, a concept C is interpreted by an interpretation \mathcal{I} as a set of individuals
- In fuzzy DLs, a concept C is interpreted by \mathcal{I} as a fuzzy set of individuals
- Each individual is instance of a concept to a degree in [0, 1]
- Each pair of individuals is instance of a role to a degree in [0,1]

Fuzzy ALC concepts

Interpretation:
$$C^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to [0,1]$$
 $t = \text{t-norm}$
 $S = \text{s-norm}$
 $R^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to [0,1]$ $n = \text{negation}$

||

implication

				Concepts:			$C,D \longrightarrow$		
$\forall R.C$	$\exists R.C \mid$	$\neg C$	$C \sqcup D \mid$	$C \sqcap D \mid$	$A \mid$	⊢	\longrightarrow \top	Syntax	
$(\forall R.C)^{\mathcal{I}}(u)$	$(\exists R.C)^{\mathcal{I}}(x)$	$(\neg C)^{\mathcal{I}}(x)$	$(C_1 \sqcup C_2)^{\mathcal{I}}(x)$	$(C_1 \sqcap C_2)^{\mathcal{I}}(x)$	$A^{\mathcal{I}}(x)$	$\perp^{\mathcal{I}}(x)$	$\left(x\right)_{\mathcal{I}}\bot$	Semantics	
	П				igwidth				
$\inf_{y \in \Delta \mathcal{I}} i(R^{\mathcal{I}}(x, y), C^{\mathcal{I}}(y))$	$\sup\nolimits_{y\in\Delta^{\mathcal{I}}}t(R^{\mathcal{I}}(x,y),C^{\mathcal{I}}(y))$	$n(C^{\mathcal{I}}(x))$	$s(C_1^{\mathcal{I}}(x), C_2^{\mathcal{I}}(x))$	$t(C_1^{\mathcal{I}}(x), C_2^{\mathcal{I}}(x))$	[0, 1]	0	1		

Assertions: $\langle a:C,n\rangle, \mathcal{I} \models \langle a:C,n\rangle$ iff $C^{-}(a^{-}) \geq n$ (similarly for roles)

individual a is instance of concept C at least to degree $n, n \in [0, 1] \cap \mathbb{Q}$

Inclusion axioms: $C \sqsubseteq D$,

 $\mathcal{I} \models C \sqsubseteq D \text{ iff } \forall x \in \Delta^{\mathcal{I}}.C^{\mathcal{I}}(x) \leq D^{\mathcal{I}}(x), \text{ (alternative, } \forall x \in \Delta^{\mathcal{I}}.i(C^{\mathcal{I}}(x),D^{\mathcal{I}}(x)) = 1)$

Basic Inference Problems

Consistency: Check if knowledge is meaningful

• Is K consistent?

Subsumption: structure knowledge, compute taxonomy

• $\mathcal{K} \models C \sqsubseteq D$?

Equivalence: check if two fuzzy concepts are the same

• $\mathcal{K} \models C = D$?

Graded instantiation: Check if individual a instance of class C to degree at least n

• $\mathcal{K} \models \langle a:C,n \rangle$?

BTVB: Best Truth Value Bound problem

• $glb(\mathcal{K}, a:C) = \sup\{n \mid \mathcal{K} \models \langle a:C, n \rangle\}$?

Retrieval: Rank set of individuals that instantiate C w.r.t. best truth value bound

• Rank the set $\mathcal{R}(\mathcal{K}, C) = \{ \langle a, glb(\mathcal{K}, a:C) \rangle \}$

Some Notes on ...

- Value restrictions:
- In classical DLs, $\forall R.C \equiv \neg \exists R. \neg C$
- The same is not true, in general, in fuzzy DLs (depends on the ∀hasParent.Human ≠ ¬∃hasParent.¬Human ?? operators' semantics, not true in Gödel logic).
- Models:
- In classical DLs $\top \sqsubseteq \neg(\forall R.A) \sqcap (\neg \exists R.\neg A)$ has no classical model
- In Gödel logic it has no finite model, but has an infinite model
- The choice of the appropriate semantics of the logical connectives is
- Should have reasonable logical properties
- Certainly it must have efficient algorithms solving basic inference problems

Towards fuzzy OWL Lite and OWL DL

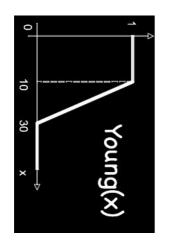
- Recall that OWL Lite and OWL DL relate to SHIF(D) and SHOIN(D), respectively
- We need to extend the semantics of fuzzy \mathcal{ALC} to fuzzy $\mathcal{SHOIN}(\mathtt{D}) = \mathcal{ALCR}_{+}\mathcal{HOINR}(\mathtt{D})$
- Additionally, we add modifiers (e.g., very)
- Additionally, we add concrete fuzzy concepts (e.g., Young)

Concrete fuzzy concepts

- E.g., Small, Young, High, etc. with explicit membership function
- Use the idea of concrete domains:

$$- \ \mathtt{D} = \langle \Delta_\mathtt{D}, \Phi_\mathtt{D} \rangle$$

- $-\Delta_{D}$ is an interpretation domain
- $\Phi_{\rm D}$ is the set of concrete fuzzy domain predicates d with a predefined arity n and fixed interpretation $d^{\mathtt{D}}:\Delta^{n}_{\mathtt{D}}\to [0,1]$
- For instance,



= Pe

Person $\sqcap \exists hasAge. \leq_{18}$

YoungPerson =

Person ∏∃hasAge.Young

Modifiers

- Very, moreOrLess, slightly, etc.
- Apply to fuzzy sets to change their membership function

$$- \operatorname{very}(x) = x^2$$

- slightly
$$(x) = \sqrt{x}$$

For instance,

 $SportsCar = Car \sqcap \exists speed.very(High)$

Number Restrictions

- May be a problem computationally
- The semantics of the concept $(\geq n \ S)$

$$(\geq n R)^{\mathcal{I}}(x) = \sup_{\{y_1,\dots,y_n\}\subseteq\Delta^{\mathcal{I}}} \bigwedge_{i=1}^n R^{\mathcal{I}}(x,y_i)$$

Is the result of viewing $(\geq n R)$ as the open first order formula

$$\exists y_1, \dots, y_n : \bigwedge_{i=1}^n R(x, y_i) \land \bigwedge_{1 \le i < j \le n} y_i \ne y_j$$
.

The semantics of the concept $(\leq n R)$

$$(\leq n \ R)^{\mathcal{I}}(x) = \neg(\geq n+1 \ R)^{\mathcal{I}}(x)$$

Note: $(\geq 1 R) \equiv \exists R. \top$

Reasoning

- For full fuzzy SHOIN(D) or SHIF(D): does not exists yet!!
- Exists for fuzzy $\mathcal{ALC}(D)$ + modifiers + fuzzy concrete concepts (under Lukasiewicz semantics, also under "Zadeh semantics")
- Usual fuzzy tableaux calculus does not work anymore (problems with modifiers and concrete fuzzy concepts)
- Usual fuzzy tableaux calculus does not solve the BTVB problem
- New algorithm uses bounded Mixed Integer Programming oracle, as for Many Valued Logics
- Recall: the general MILP problem is to find

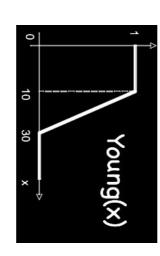
$$\bar{\mathbf{x}} \in \mathbb{Q}^k, \bar{\mathbf{y}} \in \mathbb{Z}^m$$

$$f(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = \min\{f(\mathbf{x}, \mathbf{y}) : A\mathbf{x} + B\mathbf{y} \ge \mathbf{h}\}$$

$$A, B \text{ integer matrixes}$$

Requirements

- Works for usual fuzzy DL semantics (Zadeh semantics) and Lukasiewicz logic
- Modifiers are definable as linear in-equations over \mathbb{Q}, \mathbb{Z} (e.g., linear hedges)
- Fuzzy concrete concepts are definable as linear in-equations over \mathbb{Q}, \mathbb{Z} (e.g., crisp, triangular, trapezoidal, left shoulder and right shoulder membership functions)



 $ext{linor} \hspace{2mm} = \hspace{2mm} ext{Person} \hspace{2mm} \sqcap \hspace{2mm} \exists ext{hasAge.} \leq_{18}$

 $ext{YoungPerson} = ext{Person} \sqcap \exists ext{hasAge.Young}$

Young = ls(10, 30)

Then

 $glb(\mathcal{K}, a:C)$ || $\min\{x \mid \mathcal{K} \cup \{\langle a:C \leq x \rangle \text{ satisfiable}\}\$

 $glb(\mathcal{K}, C \sqsubseteq D)$ $\min\{x \mid \mathcal{K} \cup \{\langle a:C \sqcap \neg D \geq 1 - x \rangle \text{ satisfiable}\}\$

Apply tableaux calculus, then use bounded Mixed Integer Programming oracle

\mathcal{ALC} Tableau rules (excerpt)

	,	
$x \bullet \{\langle C_1 \sqcap C_2, \geq, l \rangle, \ldots \}$	$\longrightarrow]$	$x \bullet \{\langle C_1 \sqcap C_2, \geq, l \rangle, \langle C_1, \geq, l \rangle, \langle C_2, \geq, l \rangle, \ldots \}$
$x \bullet \{\langle C_1 \sqcup C_2, \geq, l \rangle, \ldots \}$	$\longrightarrow $	$x \bullet \{\langle C_1 \sqcup C_2, \geq, l \rangle, \langle C_1, \geq, x_1 \rangle, \langle C_2, \geq, x_2 \rangle,$
		$x_1 + x_2 = l, x_1 \le y, x_2 \le 1 - y,$
		$x_i \in [0,1], y \in \{0,1\}, \ldots\}$
$x \bullet \{\langle \exists R.C, \geq, l \rangle, \ldots \}$	<u>Ш</u>	$x \bullet \{\langle \exists R.C, \geq, l \rangle, \ldots \}$
		$\langle R, \geq, l \rangle \downarrow$
		$y \bullet \{\langle C, \geq, l \rangle\}$
$x \bullet \{ \langle \forall R.C, \geq, l_1 \rangle, \ldots \}$	\forall	$x \bullet \{ \langle \forall R.C, \geq, l_1 \rangle, \ldots \}$
$\langle R, \geq, l_2 \rangle \downarrow$		$\langle R, \geq, l_2 \rangle \downarrow$
$y ullet \{ \ldots \}$		$y \bullet \{\dots, \langle C, \geq, x \rangle$
		$x + y \ge l_1, x \le y, l_1 + l_2 \le 2 - y,$
		$x \in [0,1], y \in \{0,1\}\}$
•••		
$x \bullet \{A \sqsubseteq C, \langle A, \geq, l \rangle, \ldots \}$	$\longrightarrow \sqsubseteq_1$	$x \bullet \{A \sqsubseteq C, \langle C, \geq, l \rangle, \ldots\}$
$x \bullet \{C \sqsubseteq A, \langle A, \leq, l \rangle, \ldots \}$	$\longrightarrow \sqsubseteq_2$	$x \bullet \{C \sqsubseteq A, \langle C, \leq, l \rangle, \ldots\}$

Example

$$\mathcal{K} = \begin{cases} A \sqcap B \sqsubseteq C \\ \langle a : A \ge 0.3 \rangle \\ \langle a : B \ge 0.4 \rangle \end{cases}$$

Suppose

Query :=

 $glb(\mathcal{K}, a:C) = \min\{x \mid \mathcal{K} \cup \{\langle a:C \leq x \rangle \text{ satisfiable}\}$

$$\langle a:B \geq 0.4 \rangle$$

Step 1.	Tree $a \bullet \{\langle A, \geq, 0.3 \rangle, \langle B, \geq, 0.4 \rangle, \langle C, \leq, x \rangle\}$
2.	$\cup \{\langle A \sqcap B, \leq, x \rangle\}$
<u></u> 3.	$\cup \{\langle A, \leq, x_1 \rangle, \langle B, \leq, x_2 \rangle\}$
	$\cup \{x = x_1 + x_2 - 1, 1 - y \le x_1, y \le x_2\}$
4.	find $\min\{x \mid \langle a:A \geq 0.3 \rangle, \langle a:B \geq 0.4 \rangle,$
	$\langle a:C \leq x \rangle, \langle a:A \leq x_1 \rangle, \langle a:B \leq x_2 \rangle,$
	$x = x_1 + x_2 - 1, 1 - y \le x_1, y \le x_2,$
	$x_i \in [0, 1], y \in \{0, 1\}\}$
СП	MILP oracle: $\mathbf{x} = 0.3$

Implementation issues

- Several options exists:
- Try to map fuzzy DLs to classical DLs
- Try to map fuzzy DLs to some fuzzy/annotated logic programming framework
- Build an ad-hoc theorem prover for fuzzy DLs, using e.g., MILP
- A theorem prover for fuzzy \mathcal{ALC} + linear hedges + concrete fuzzy concepts, using MILP, has been implemented
- Looking for volunteers to catch-up to the expressive power of fuzzy OWL Lite or fuzzy OWL DL (EXPTIME, NEXPTIME class)

Conclusions

- Classical DLs are the core of state of the art ontology description languages, as OWL DL and OWL Lite
- Efficient implementations exists, which take advantage of research on DLs decision algorithms and computational complexity analysis
- Fuzzy DLs aim at enhancing the expressive power of DLs towards the representation of vague concepts
- Research is still in it's infancy

Future Work

- To get rid with the subtleties of both Description Logics and Fuzzy Logics, experts from both areas are needed
- Research directions:
- Computational complexity of the fuzzy DLs family
- Design of efficient reasoning algorithms
- Combining fuzzy DLs with Logic Programming
- Language extensions: e.g. fuzzy quantifiers

 $\texttt{TopCustomer} = \texttt{Customer} \sqcap (\texttt{Usually}) \texttt{buys}. \texttt{ExpensiveItem}$ $\texttt{ExpensiveItem} = \texttt{Item} \sqcap \exists \texttt{price.High}$

Developing a system

: