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Abstract

OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes 
and class instances. In this paper, given an OWL ontology and a target class T , we address the problem of learning fuzzy concept 
inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we 
present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate 
its effectiveness by means of an experimentation with several ontologies.
© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

OWL 2 ontologies [66] are nowadays a popular means to represent structured knowledge and its formal semantics 
is based on Description Logics (DLs) [4]. The basic ingredients of DLs are concept descriptions (in First-Order Logic 
terminology, unary predicates), inheritance relationships among them and instances of them.

Although an important amount of work has been carried about DLs, the application of machine learning techniques 
to OWL 2 ontologies, viz. DL ontologies, is relatively less addressed compared to the Inductive Logic Programming
(ILP) setting (see e.g. [68,69] for more insights on ILP). We refer the reader to [51,70] for an overview.

In this work, we focus on the problem of automatically learning fuzzy concept inclusion axioms from (crisp) OWL 
2 ontologies. More specifically, given a target class T of an OWL ontology, we address the problem of learning 
fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which 
degree). An example illustrating the problem is shown next.
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Fig. 1. Excerpt of the Hotel ontology.

Example 1.1 (Running example [48,50,85]). Consider an ontology that describes the meaningful entities of a city, 
such as e.g. the Hotel ontology in our experiments (see Section 5, Table 2). An excerpt of this ontology is given in 
Fig. 1.

Now, one may fix a city, say Pisa, extract the properties of the hotels from Web sites, such as location, price, etc., 
and the hotel judgements of the users, e.g., from Trip Advisor.1 Now, using the terminology of the ontology and 
class instances gathered from the Web one may ask about what characterizes good hotels in Pisa (our target class T ) 
according to the user feedback. Then one may learn from the user feedback that, for instance, ‘an expensive hotel 
having as amenities babysitting, cradles, safety boxes and WI-FI is a good hotel to some degree d’. �

The objective is essentially the same as in e.g. [50,85], except that now we propose to rely on the Real Ad-
aBoost [64] boosting algorithm to be adapted to the (fuzzy) OWL case. Of course, like in [48,85], we continue to 
support so-called fuzzy concept descriptions and fuzzy concrete domains in the learned concept expressions [56,83,84]
such as ‘an expensive Bed and Breakfast is a good hotel’. Here, the concept expensive is a so-called fuzzy concept [88], 
i.e. a concept for which the belonging of an individual to the class is not necessarily a binary yes/no question, but rather 
a matter of degree in [0, 1]. For instance, in our example, the degree of expensiveness of a hotel may depend on the 
price of the hotel: the higher the price the more expensive is the hotel. Here, the range of the ‘attribute’ hotel price
becomes a so-called fuzzy concrete domain [84] allowing to specify fuzzy labels such as ‘high/moderate/low price’.

We recall that (discrete) AdaBoost [33,79,34] uses weak hypotheses with outputs restricted to the discrete set of 
classes that it combines via leveraging weights in a linear vote. On the other hand Real AdaBoost [64] is a gener-
alisation of it as real-valued weak hypotheses are admitted (see [64] for a comparison to approaches to real-valued 
AdaBoost).

Besides the fact that (to the best of our knowledge) the use of both (discrete) AdaBoost (with the notable excep-
tion of [31]) and its generalisation to real-valued weak hypotheses in the context OWL 2 ontologies is essentially 
unexplored, the main features of our algorithm, called FUZZY OWL-BOOST, are the following:

• it generates a set of fuzzy EL(D) inclusion axioms [14] that are the weak hypothesis, possibly including fuzzy 
concepts and fuzzy concrete domains [56,83,84]. Each axiom has a leveraging weight;

• the fuzzy concept inclusion axioms are then linearly combined into a new fuzzy concept inclusion axiom describ-
ing sufficient conditions for being an individual instance of the target class T and to which degree;

• all generated fuzzy concept inclusion axioms could then be encoded as Fuzzy OWL 2 axioms [11,12]. As a 
consequence, a Fuzzy OWL 2 reasoner, such as fuzzyDL [10,13], can then be used to automatically determine 
(and to which degree) whether an individual belongs to the target class T .2

1 http://www.tripadvisor.com.
2 Fuzzy OWL 2 and fuzzyDL need slightly to be extended to support the type of linear combination of weighted concepts we are going to use. 

The extension is straightforward.
2
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Let us remark that we rely on real-valued AdaBoost as the weak hypotheses FUZZY OWL-BOOST generates are 
indeed fuzzy concept inclusion axioms and, thus, the degree to which an instance satisfies them is a real-valued degree 
of truth in [0, 1].

In the following, we proceed as follows. In Section 2 we compare our work with closely related work appeared 
so far. In Section 3, for the sake of completeness, we recap the salient notions we will rely on in this paper. Then, in 
Section 4 we will present our algorithm FUZZY OWL-BOOST that then is evaluated for its effectiveness in Section 5. 
Section 6 concludes and points to some topics of further research.

2. Related work

Concept inclusion axiom learning in DLs stems from statistical relational learning, where classification rules are 
(possibly weighted) Horn clause theories (see e.g. [68,69]), and various methods have been proposed in the DL 
context so far (see e.g. [51,70]). The general idea consists in the exploration of the search space of potential concept 
descriptions that cover the available training examples using so-called refinement operators (see, e.g. [5,19,42–46]). 
The goal is then to learn a concept description of the underlying DL language covering (possibly) all the provided 
positive examples and (possibly) not covering any of the provided negative examples. The fuzzy case (see [47,50,85]) 
is a natural extension relying on fuzzy DLs [9,84] and fuzzy ILP (see e.g. [80]) instead.

Closely related to our work are [26,24,32,31,47,50,85]. In fact, [26,24,32] are an adaptation to the DL case of 
the well-known FOIL-algorithm, while [47,50] that stem essentially from [48,49,52–55], propose fuzzy FOIL-like al-
gorithms instead, and are inspired by fuzzy ILP variants such as [22,80,82].3 Let us note that [47,53] consider the 
weaker hypothesis representation language DL-Lite [2], while here we rely on a weighted sum of fuzzy EL(D) inclu-
sion axioms, similarly to [48,49,52,54,55,50]. Fuzzy EL(D) has also been considered in [85], which however differs 
from [47,50] by the fact that a (fuzzy) probabilistic ensemble evaluation of the fuzzy concept description candidates 
has been considered.4 Let us note that fuzzy EL(D) concept expressions are appealing as they can straightforwardly 
be translated into natural language and, thus, contribute to the explainability aspect of the induced classifier.

Discrete boosting has been considered in [31] that also shows how to derive a weak learner (called WDLF) from 
conventional learners using some sort of random downward refinement operator covering at least a positive example 
and yielding a minimal score fixed with a threshold. Besides that, we deal here with fuzziness in the hypothesis 
language and a real-valued variant of AdaBoost, the weak learner we propose here differentiates from the previous 
one by using a descent-like gradient algorithm to search for the best alternative. Notably, this also deviates from 
‘fuzzy’ rule learning AdaBoost variants, such as [21,65,67,78,87] in which the weak learner is required to generate 
the whole rules’ search space beforehand the selection of the best current alternative. Such an approach is essentially 
unfeasible in the OWL case due to the size of the search space.

[37] can learn fuzzy OWL DL concept equivalence axioms from FuzzyOWL 2 ontologies, by interfacing with the 
fuzzyDL reasoner [13]. The candidate concept expressions are provided by the underlying DL-LEARNER [41,16,17]
system. However, it has been tested only on a toy ontology so far. Last, but not least, let us mention [39] that is based 
on an ad-hoc translation of fuzzy Łukasiewicz ALC DL constructs into fuzzy Logic Programming (fuzzy LP) and 
uses a conventional ILP method to learn rules. Unfortunately, the method is not sound as it has been shown that the 
mapping from fuzzy DLs to LP is incomplete [61] and entailment in Łukasiewicz ALC is undecidable [18]. To be 
more precise, undecidability holds already for EL under the infinitely valued Łukasiewicz semantics [15].5

While it is not our aim here to provide an extensive overview about learning w.r.t. ontologies literature, there 
are also alternative methods to what we present here. So, e.g., the series of works [28,29,73,72,74,71,77,75,76] are 
inspired on Decision Trees/Random Forests, [8,25,27,30] consider Kernel Methods for inducing concept descriptions, 
while [57,59,58,60,89] consider essentially a Naive Bayes approach. Last but not least, [40] is inspired on Genetic 
Programming to induce concept expressions, while [62] is based on the Reinforcement Learning framework.

3 See, e.g. [20], for an overview on fuzzy rule learning methods.
4 Also, to the best of our knowledge, concrete datatypes were not addressed in the evaluation.
5 We recall that EL is a strict sub-logic of ALC.
3
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Fig. 2. (a) Trapezoidal function trz(a, b, c, d), (b) triangular function tri(a, b, c), (c) left shoulder function ls(a, b), and (d) right shoulder function 
rs(a, b).

3. Background

For the sake of completeness, we recap here the salient notions about fuzzy Description Logics (fuzzy DLs) we 
will rely on in this paper. The interested reader may refer to e.g. [9,84] for a more in depth description of the various 
notions introduced here.

Fuzzy Sets. To start with, we recap that a fuzzy set A over a countable crisp set X is a function A : X → [0, 1], called 
fuzzy membership function of A [88]. A crisp set A is defined by a membership function A : X → {0, 1} instead. 
The ‘standard’ fuzzy set operations conform to (A ∩ B)(x) = min(A(x), B(x)), (A ∪ B)(x) = max(A(x), B(x)) and 
Ā(x) = 1 − A(x) (Ā is the set complement of A), the cardinality of a fuzzy set is defined as

|A| =
∑
x∈X

A(x) , (1)

while the inclusion degree of A in B is defined as

ideg(A,B) = |A ∩ B|
|A| . (2)

The trapezoidal (Fig. 2 (a)), the triangular (Fig. 2 (b)), the L-function (left-shoulder function, Fig. 2 (c)), and the 
R-function (right-shoulder function, Fig. 2 (d)) are frequently used to specify membership functions of fuzzy sets.

Although fuzzy sets have a greater expressive power than classical crisp sets, their usefulness depends critically 
on the capability to construct appropriate membership functions for various given concepts in different contexts. We 
refer the interested reader to, e.g., [38]. One easy and typically satisfactory method to define the membership functions 
is to uniformly partition the range of, e.g. salary values (bounded by a minimum and maximum value), into 3, 5 or 
7 fuzzy sets using triangular (or trapezoidal) functions (see Fig. 3). Another popular approach may consist in using 
the so-called C-means fuzzy clustering algorithm (see, e.g. [7]) with 3,5 or 7 clusters, where the fuzzy membership 
functions are triangular functions built around the centroids of the clusters (see e.g. also [35,36]).

Fuzzy Description Logics. Next, we recap here the fuzzy DL ELW¬(D) extending the well-known fuzzy DL EL
[9,84] with6

• real-valued weighted concept construct (denoted by the letter W) [12,84];
• atomic negation (denoted by ¬);
• fuzzy concrete domains (denoted by D) [83].

6 For classical EL and DLs in general we refer the reader to [3,4].
4
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Fig. 3. Uniform fuzzy sets over salaries.

Fuzzy ELW¬(D) is expressive enough to capture all of the ingredients we are going to use in this work. Of course, 
DLs, fuzzy DLs, OWL 2 and fuzzy OWL 2 in particular, cover many more language constructs than we use here (see, 
e.g. [4,9,12,84]).

From a syntax point of view, we start with the notion of fuzzy concrete domain, that is a tuple D =〈�D, · D〉 with 
datatype domain �D and a mapping · D that assigns to each data value an element of �D, and to every 1-ary datatype 
predicate d (see below) a 1-ary fuzzy relation over �D. Therefore, · D maps indeed each datatype predicate d into a 
function from �D to [0, 1]. The domains we consider here are the integers, the reals and the booleans. The datatype 
predicates are defined as

d → ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d) | =v ,

where v is an integer, real or boolean value, e.g. ls(a, b) is the left-shoulder membership function (see Fig. 2) and =v

corresponds to the crisp singleton set {v}.
Now, consider pairwise disjoint alphabets I, A and R, where I is the set of individuals, A is the set of concept 

names (also called atomic concepts) and R is the set of role names. Each role is either an object property or a 
datatype property. The set of fuzzy ELW¬(D) concepts are built from concept names A using connectives and 
quantification constructs over object properties r and datatype properties s, as described by the following syntactic 
rule (n ≥ 1, αi ∈ R \ {0}):

C → 
 | ⊥ | A | ¬A | C1 � C2 | ∃r.C | | ∃s.d | α1 · A1 + . . . + αn · An .

Note that we generalise slightly the notion of weighted sum of Fuzzy OWL 2 in which αi ∈ (0, 1], ∑i αi ≤ 1 is 
assumed.

A fuzzy assertion axiom is an expression of the form 〈a : C, d〉 (called fuzzy concept assertion, – a is an instance 
of concept C to degree greater than or equal to d) or of the form 〈(a1, a2) : r, d〉 (called fuzzy role assertion, – (a1, a2)

is an instance of object property r to degree greater than or equal to d), where a, a1, a2 are individual names, C is a 
concept, r is an object property and d ∈ (0, 1].

A fuzzy General Concept Inclusion (fuzzy GCI) axiom is of the form 〈C1 � C2, d〉 (C1 is a sub-concept of C2 to 
degree greater than or equal to d), where Ci is a concept and d ∈ (0, 1]. We may also call a fuzzy GCI of the form 
〈C � A, d〉, where A is a concept name, a rule, where A is called the head and C is called the body of the rule.

For ease of presentation, in case the degree d is 1, we simply omit the degree 1 and write, e.g. a : C (resp. C1 � C2) 
in place of 〈a : C, 1〉 (resp. 〈C1 � C2, 1〉). We also write C1 = C2 as a macro for the two GCIs C1 � C2 and C2 � C1, 
indicating that the two concepts C1 and C2 are equivalent.

Fuzzy EL(D) is the language fuzzy ELW¬(D) without atomic negation and weighted sum, while crisp EL(D), or 
simply EL(D), is fuzzy EL(D) without ls, rs, tri and trz datatype predicates and the degree in axioms is restricted 
to be 1.

A (crisp) Knowledge Base (KB) K is a set of (crisp) EL(D) assertions and GCIs, while a fuzzy Knowledge Base
(fKB) K̃ is a set of fuzzy ELW¬(D) assertions and GCIs.

Remark 1. We anticipate that in our setting we are going to learn fuzzy GCIs from crisp OWL 2 data, i.e. we are 
going to learn from crisp knowledge bases only.
5
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With IK we denote the set of individuals occurring in a KB K.

Example 3.1 (Example 1.1 cont.). Related to Example 1.1, an example of GCI is

Hotel � Accommodation

(a hotel is an accommodation), while the assertions

(Hotel_010,3_Stars):hasRank
Hotel_010:Hotel � (∃hasAmenity.24h_Reception) � (∃hasPrice. =79)

describe a three star hotel (Hotel_010) that provides 24h reception as amenity and whose room price is 79 (euro). �
Concerning the semantics, let us fix a fuzzy concrete domain D =〈�D, · D〉 over integer, reals and booleans, with 

fuzzy membership functions ls, rs, tri and trz over integers and reals, and equality predicate =· over integers, reals 
and booleans.

Now, unlike classical DLs in which an interpretation I maps e.g. a concept C into a set of individuals CI ⊆ �I , 
i.e. I maps C into a function CI : �I → {0, 1} (either an individual belongs to the extension of C or does not belong 
to it), in fuzzy DLs, I maps C into a function CI : �I → [0, 1] and, thus, an individual belongs to the extension of 
C to some degree in [0, 1], i.e. CI is a fuzzy set.

Specifically, a fuzzy interpretation is a pair I = (�I , ·I) consisting of a nonempty (crisp) set �I (the domain) and 
of a fuzzy interpretation function ·I that assigns: (i) to each atomic concept A a function AI : �I → [0, 1]; (ii) to each 
object property r a function rI : �I ×�I → [0, 1]; (iii) to each datatype property s a function sI : �I ×�D → [0, 1]; 
(iv) to each individual a an element aI ∈ �I such that aI �= bI if a �= b (the so-called Unique Name Assumption); 
and (v) to each data value v an element vI ∈ �D. Now, a fuzzy interpretation function is extended to concepts via 
standard fuzzy set operations as specified below (where x ∈ �I )7:


I(x) = 1

⊥I(x) = 0

(C � D)I(x) = min(CI(x),DI(x))

(¬A)I(x) = 1 − AI(x)

(∃r.C)I(x) = sup
y∈�I

{min(rI(x, y),CI(y))}

(∃s.d)I(x) = sup
y∈�D

{min(sI(x, y),dD(y))}

(α1 · A1 + . . . + αn · An)
I(x) =

⎧⎨
⎩

1 if
∑

i αi · Ai
I(x) > 1

0 if
∑

i αi · Ai
I(x) < 0∑

i αi · Ai
I(x) else .

The satisfiability of axioms is defined by the following conditions: (i) I satisfies 〈a : C, d〉 if CI(aI) ≥ d ; (ii) I
satisfies 〈(a, b) : r, d〉 if rI(aI , bI) ≥ d ; and (iii) I satisfies 〈C � D, d〉 if for all x ∈ �I , DI(x) ≥ CI(x) · d .

Now, consider a set S of axioms. Then, (i) I is a model of S if I satisfies each axiom in S ; (ii) S is satisfiable (or 
consistent) if S has a model; (iii) S entails axiom φ, denoted S |= φ, if every model of S satisfies φ; and (iv) the best 
entailment degree of φ of the form C � D, a : C or (a, b) : r , denoted bed(S, φ), is defined as

bed(S, φ) = sup{d | S |= 〈φ,d〉} .

Example 3.2 (Example 3.1 cont.). Consider a KB K whose excerpt is described in Example 3.1. Consider the follow-
ing fuzzy GCI φ

〈Accommodation � (∃hasPrice.Fair) � GoodHotel,0.56〉 ,

7 The semantics of the weighted sum will be clearer once we address the learning problem.
6
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Fig. 4. Fuzzy sets derived from the datatype property hasPrice.

where hasPrice is a datatype property whose values are measured in euros and the price concrete domain has been 
fuzzified as illustrated in Fig. 4. The intended meaning of this axiom is roughly ‘an accommodation with a fair room 
price is to some degree a good hotel’. Also consider Hotel_010 in Example 3.1.

Now, it can be verified that

K ∪ {φ} |= 〈Hotel_010:GoodHotel,0.28〉 ,

and, more specifically that

bed(K ∪ {φ},Hotel_010:GoodHotel) = 0.28 ,

which indicates to which degree Hotel_010 is a GoodHotel. �
Finally, consider a fuzzy concept C, a fuzzy GCI C � D, a KB K, a set of individuals I and a (weight) distribution 

w over I. Then the cardinality of C w.r.t. K and I, denoted |C|IK, is defined as (cf. Eq. (1))

|C|IK =
∑
a∈I

bed(K, a:C) , (3)

while the weighted cardinality C w.r.t. K, w and I, denoted |C|w,I
K , is defined as8

|C|w,I
K =

∑
a∈I

wa · bed(K, a:C) . (4)

The crisp cardinality (denoted �C�I
K) and crisp weighted cardinality (denoted �C�w,I

K ) are defined similarly by 
replacing in Eq. (3) and (4) the term bed(K, a : C) with �bed(K, a : C)�.

Furthermore, the confidence degree (also called inclusion degree) of C � D w.r.t. K and I, denoted cf (C � D, I), 
is defined as (cf. Eq. (2))

cf (C � D, I) = |C � D|IK
|C|IK

. (5)

Similarly, the weighted confidence degree (also called weighted inclusion degree) of C � D w.r.t. K, w and I, 
denoted cf (C � D, w, I), is defined as

cf (C � D,w, I) = |C � D|w,I
K

|C|w,I
K

. (6)

4. Learning fuzzy concept inclusions via real-valued boosting

To start with, we introduce our learning problem.

8 The weight of a ∈ I w.r.t. w is denoted as wa .
7
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4.1. The learning problem

In general terms, the learning problem we are going to address is stated as follows:
Given:

• a satisfiable (crisp) KB K and its individuals IK;
• a target concept name T with an associated unknown classification function fT : IK → {1, 0}, where for each 

a ∈ IK, the possible values (labels) correspond, respectively, to K |= a : T (a is a positive example of T ) and 
K �|= a : T (a is a non-positive example of T );

• a hypothesis space of classifiers H = {h : IK → [0, 1]};
• a training set E = E+ ∪ E− (the positive and non-positive examples of T , respectively) of individual-label pairs:

E+ = {(a,1) | a ∈ IK, fT (a) = 1}
E− = {(a,0) | a ∈ IK, fT (a) = 0} .

With IE we denote the set of individuals occurring in E . We assume that for all a ∈ IE , 0 = bed(K, a : T ) =
bed(K, a : ¬T ). That is we state that K does not already know whether a is an instance of T or of ¬T . We write 
E(a) = 1 if a is a positive example (i.e., a ∈ IE+ ), E(a) = 0 if a is a non-positive example (i.e., a ∈ IE− ).

Learn: a classifier h̄ ∈H that is the result of Empirical Risk Minimisation (ERM) on E . That is,

h̄ = arg min
h∈H

R(h,E)

= EE [L(h(a),E(a))]
= 1

|E |
∑
a∈IE

L(h(a),E(a)) ,

where L is a loss function such that L(l̂, l) measures how different the prediction l̂ of a hypothesis is from the true 
outcome l and R(h, E) is the risk associated with hypothesis h over E , defined as the expectation of the loss function 
over E .

The effectiveness of the learned classifier h̄ is then assessed by determining R(h̄, E ′) on a test set E ′, disjoint from 
E .

In our learning setting, we assume that a hypothesis h ∈H is a set of fuzzy GCIs that has the form

α1 · WL1 + . . . + αn · WLn � T

Cij � WLi , with 1 ≤ i ≤ n,1 ≤ j ≤ ki ,
(7)

where each WLi is a new atomic symbol not occurring in the KB and were each Cij is a fuzzy EL(D−) concept 
expression defined as (where v is a boolean value)

C −→ 
 | A | ∃r.C | ∃s.d | C1 � C2
d → ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d) | =v .

Essentially, each αi indicates how well the ‘union’ of the Ci1, . . . , Ciki
(the Weak Learner WLi ) contributes to 

classify an individual a as being an instance of T . Specifically, if αi > 0 then WLi contributes to a’s positiveness, 
while if αi < 0 then WLi contributes to a’s non-positiveness instead.

Remark 2. Please note that we do not learn expressions of the form e.g. ∃s. =v for integer/real values v as the search 
space would be too large and they would be likely non-effective. This is the reason why we restrict the Cij in Eq. (7)
to fuzzy EL(D−) concept expressions and not fuzzy EL(D) instead.

For a ∈ IK, the classification prediction value h(a) of a w.r.t. h, T and K is defined as (for ease, we omit K and T )

h(a) = bed(K ∪ h,a:T ) .
8
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Note that, as stated above, essentially a hypothesis is a sufficient condition (expressed via the weighted sum of 
concepts) for being an individual instance of a target concept to some degree. If h(a) = 0 then we say that a is a 
non-positive instance of T , while if h(a) > 0 then a is a positive instance of T to degree h(a).

Remark 3. Clearly, the set of hypothesis by this syntax is potentially infinite due, e.g., to conjunction and the nesting 
of existential restrictions in the Cij . This set is made finite by imposing further restrictions on the generation process 
such as the maximal number of conjuncts and the maximal depth of existential nestings allowed. �
Remark 4. One may also think of further partitioning the set E− of non-positive examples into a set E¬ of negative
and a set Eu of unknown examples (and use as labelling set {−1, 0, 1}, respectively, with 1 –positive, 0 – unknown, 
−1 – negative), as done in some other approach (see e.g. [31]). That is, an individual a is a negative example of T if 
K |= a : ¬T , while a is an unknown example of T if neither K |= a : T nor K |= a : ¬T hold. In that case, usually we 
are looking for an exact definition of T , i.e. a hypothesis is of the stronger form T = C instead.9 Which one to choose 
may depend on the application domain and on the effectiveness of the approach. We do not address this case here. �

We conclude with the notions of consistent, non-reduntant, sound, complete and strongly complete hypothesis h
w.r.t. K, which are defined as follows:

Consistency. K ∪ h is a consistent;
Non-Redundancy. K �|= φ, for all φ ∈ h.
Soundness. ∀a ∈ IE− , h(a) = 0.
Completeness. ∀a ∈ IE+ , h(a) > 0.
Strong Completeness. ∀a ∈ IE+ , h(a) = 1.

We say that a hypothesis h covers (strongly covers) an example e ∈ E iff bed(K ∪ h, e) > 0 (bed(K ∪ h, e) = 1). 
Therefore, soundness states that a learned hypothesis is not allowed to cover a non-positive example, while the way 
(strong) completeness is stated guarantees that all positive examples are (strongly) covered.

In general a learned (induced) hypothesis h has to be consistent, non-reduntant and sound w.r.t. K, but not neces-
sarily complete, but, of course, these conditions can also be relaxed.

4.2. The learning algorithm FUZZY OWL-BOOST

We now present our real-valued boosting-based algorithm, which is based on a boosting schema (this section) 
applied to a fuzzy EL(D−) weak learner described in more detail in Section 4.3. Our learning method creates an 
ensemble of fuzzy GCIs (see Eq. (7)): essentially, at each iteration our boosting algorithm invokes a weak learner 
that generates a set of fuzzy EL(D−) candidate GCIs that has the form hi = {Ci1 � T , . . . , Ciki

� T }, called weak 
hypothesis, determining a change to the distribution of the weights associated with the examples. The weights of 
misclassified examples get increased so that a better classifier can be produced in the next round, indicating the harder 
examples to focus on. The weak hypotheses are then combined into a final hypothesis via a weighted sum of the weak 
hypotheses. We will rely on Real AdaBoost [63,64] as boosting algorithm, while we will use a weak learner that is 
similar to FOIL-DL [47,48,50], both of which need to be adapted to our specific setting.

Formally, consider a KB K, a training set E , a set of individuals I with IE ⊆ I ⊆ IK, and a weight distribution w
over I. With u we indicate the uniform distribution over I, i.e. ua = 1/|I| (with a ∈ I). Furthermore, consider a weak 
hypothesis hi , i.e. a set hi = {Ci1 � T , . . . , Ciki

� T } of fuzzy EL(D−) GCIs returned by the weak learner. Note 
that for a ∈ IK, bed(K ∪ hi, a : T ) ∈ [0, 1]. Next, we transform this value into a value in [−1, 1] as required by Real 
AdaBoost. So, let t : [0, 1] → [−1, 1] be the transformation function

t (x) =
{

−1 if x = 0

x else

9 We recall that a hypothesis as in Eq. (7) does not allow us to infer negative instances of T , while T = C does.
9
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and let the classification prediction value hi(a) of a w.r.t. h, T and K be defined as (again for ease, we omit K and T )

hi(a) = t (bed(K ∪ hi, a:T )) ∈ {−1} ∪ (0,1] .

We also define the examples labelling l over I in the following way: for a ∈ I

l(a) =
{

1 if (a,1) ∈ E+

−1 else .

Finally, for a weak hypothesis hi , we determine also the error of hi w.r.t. a distribution w as

ε(w) =
∑
a∈I

wa · δ(hi(a), l(a)) · hi(a) ,

where δ(x, y) ∈ {0, 1} is defined as (x ∈ {−1} ∪ (0, 1], y ∈ {−1, 1})

δ(x, y) =
{

1 if x · y < 0

0 else .

Note that δ(hi(a), l(a)) determines whether there is a disagreement between the sign of hi(a) and l(a).

Algorithm 1 Fuzzy OWL-Boost.
Input: KB K, training set E , target concept name T , number of iterations n
Output: Hypothesis h as by Eq. (7).
1: h ← ∅;
2: I ← IK;
3: w1 ← u; � Initialize the weight distribution over I
4: // Main boosting loop
5: for i = 1 to n do
6: hi ← FUZZYWEAKLEARNER(K, T , E , wi ); � Weak learner hi , i.e. set of axioms Cij � T

7: if ε(wi ) ≥ 0.5 then break; � If weak learner error is not below 0.5 then break the loop

8: h�
i

← maxa∈I |hi(a)|; � h�
i

is the maximal value of hi over I
9: μi ← 1

h�
i

∑
a∈I wi,a · l(a) · hi(a); � μi is the normalized margin of hi w.r.t. I

10: αi ← 1
2h�

i
· ln 1+μi

1−μi
; � αi is the weight of classifier hi in the ensemble

11: for all a ∈ I do � Update the weight distribution

12: wi+1,a ← wi+1,a ·
(

1−(μi ·l(a)·hi (a))/h�
i

1−μ2
i

)
;

13: h ← h ∪ {Cij � WLi | Cij � T ∈ hi , WLi new} � Update hypothesis according to Eq. (7).

14: // Build now the final classifier ensemble
15: φT ← α1 · WL1 + . . . + αn · WLn � T ;
16: h ← h ∪ {φT };
17: return h;

Then, the FUZZY OWL-BOOST algorithm calling iteratively a weak learner is shown in Algorithm 1, which we 
comment briefly next.

The algorithm is similar as Real AdaBoost, except for some context dependent parts. In Step 2 we initialise the set 
of individuals I to be considered as IK. Essentially, all individuals will be weighted. The main loop (Steps 5 - 13) is 
similar to Real AdaBoost with the particularity that Step 6 we invoke our weak learner that is assumed to return a set 
hi = {Ci1 � T , . . . , Ciki

� T } of fuzzy EL(D−) GCIs. In Step 7 we have a case that causes a break of the main loop. 
In fact, an implicit condition of boosting is that the error of a weak learner should be below 0.5. That is, the weak 
hypothesis should be better than random guess.

In Step 13 we update the hypothesis h with the weak hypothesis, while in Steps 15 - 16 we build the final classifier 
ensemble and add it to the hypothesis.
10
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4.3. The weak learner wFOIL-DL

We next describe the weak learner we employ here. Specifically, we will use a FOIL-DL [47,48,50] like weak 
learner, which however needs to be adapted to our specific setting (see Algorithm 2).

Algorithm 2 wFOIL-DL (Weak Learner).
Input: KB K, target concept name T , training set E , weight distribution w, confidence threshold θ ∈ [0, 1], non-positive coverage percentage 

η ∈ [0, 1]
Output: A weak hypothesis, i.e. a set h = {C1 � T , . . . , Ck � T } of fuzzy EL(D−) GCIs
1: h ← ∅, Pos ← E+, φ ← 
 � T ;
2: //Loop until no improvement
3: while (Pos �= ∅) and (φ �= null) do
4: φ ← LEARN-ONE-AXIOM(K, T , E, wi , Pos, θ, η); // Learn one fuzzy EL(D−) GCI of the form C � T

5: if φ ∈ h then // axiom already learned
6: φ ← null;

7: if φ �= null then
8: h ← h ∪ {φ}; // Update weak hypothesis
9: Posφ ← {〈a, 1〉 ∈ E+ | bed(K ∪ {φ}, T (a) > 0)}; // Positives covered by φ

10: Pos ← Pos \ Posφ ; // Update positives still to be covered

11: return h;

In general terms the weak learning algorithm, called wFOIL-DL, follows a so-called sequential covering learning 
approach. That is, one carries on inducing GCIs until all positive examples are covered or nothing new can be learned. 
When an axiom is induced (see Step 4 in Algorithm 2), the positive examples still to be covered are updated (Step 9 
and 10).

In order to induce an axiom (Step 4), LEARN-ONE-AXIOM is invoked (see Algorithm 3), which in general terms 
operates as follows:

1. start from concept 
;
2. apply a refinement operator to find more specific fuzzy EL(D−) concept description candidates;
3. exploit a scoring function to choose the best candidate;
4. re-apply the refinement operator until a good candidate is found;
5. iterate the whole procedure until a satisfactory coverage of the positive examples is achieved.

We briefly detail the steps of LEARN-ONE-AXIOM.

Computing fuzzy datatypes. For a numerical datatype s, we consider equal width triangular partitions of values 
Vs = {v | K |= a:∃s. =v} into a finite number of fuzzy sets (3, 5 or 7 sets), which is identical to [47,50,85] (see, 
e.g. Fig. 3). However, we additionally, allow also the use of the C-means fuzzy clustering algorithm over Vs , where 
the fuzzy membership function is a triangular function build around the centroid of a cluster. Note that C-means has 
not been considered in [47,50,85].10

The refinement operator. The refinement operator we employ is the same as in [47,48,54,85] except that now we 
add the management of boolean values as well. Essentially, the refinement operator takes as input a concept C and 
generates new, more specific concept description candidates D (i.e., K |= D � C). For the sake of completeness, we 
recap the refinement operator here. Let K be a knowledge base, AK be the set of all atomic concepts in K, RK the set 
of all object properties in K, SK the set of all numeric datatype properties in K, BK the set of all boolean datatype 
properties in K and D a set of (fuzzy) datatypes. The refinement operator ρ is shown in Table 1.

The scoring function. The scoring function we use to assign a score to each candidate hypothesis is essentially 
a weighted gain function, similar to the one employed in [47,48,54,85] and implements an information-theoretic 
criterion for selecting the best candidate at each refinement step. Specifically, given a fuzzy EL(D−) GCI φ of the 

10 Specifically, C-means has not been considered so far in fuzzy GCI learning.
11
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Table 1
Downward Refinement Operator.

ρ(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

AK ∪ {∃r.
 | r ∈ RK} ∪ {∃s.d | s ∈ SK, d ∈ D}∪
{∃s. =b, | s ∈ BK, b ∈ {true, false}} if C = 


{A′ | A′ ∈ AK,K |= A′ � A} ∪ {A � A′′ | A′′ ∈ ρ(
)} if C = A

{∃r.D′ | D′ ∈ ρ(D)} ∪ {(∃r.D) � D′′ | D′′ ∈ ρ(
)} if C = ∃r.D, r ∈ RK
{(∃s.d) � D | D ∈ ρ(
)} if C = ∃s.d, s ∈ SK, d ∈ D
{(∃s. =b) � D | D ∈ ρ(
)} if C = ∃s. =b, s ∈ BK, b ∈ {true, false}
{C1 � ... � C′

i
� ... � Cn | i = 1, ..., n,C′

i
∈ ρ(Ci)} if C = C1 � ... � Cn

form C � T chosen at the previous step, a KB K, a set of individuals I, a weight distribution w over I, a set of positive 
examples Pos still to be covered and a candidate fuzzy EL(D−) GCI φ′ of the form C′ � T , then

gain(φ′, φ,w, I,P os) = p ∗ (log2(cf (φ′,w, I,P os)) − log2(cf (φ,w, I,P os))) , (8)

where p = |C′ � C|w,IPos

K is the weighted cardinality of positive examples in Pos covered by φ that are still covered 
by φ′, and

cf (D � T ,w, I,P os) = |D|w,IPos

K
|D|w,I

K
. (9)

Please note that in Eq. (9), about the confidence degree of D � T , the numerator is calculated w.r.t. the positive 
examples still to be covered, i.e. all instances of T that are in Pos and are instances of D. In this way, LEARN-ONE-
AXIOM is somewhat guided towards positives not yet covered by the weak learner learned so far by wFOIL-DL. Note 
also that the gain is positive if the confidence degree increases.

Stop criterion. LEARN-ONE-AXIOM stops when the confidence degree is above a given threshold θ ∈ [0, 1], or no 
GCI can be found that does not cover any negative example (in E−) above a given percentage.

The LEARN-ONE-AXIOM algorithm. The LEARN-ONE-AXIOM algorithm is defined in Algorithm 3, which we 
comment briefly as next. Steps 1 - 3 are simple initialisation steps. Steps 5 - 21 are the main loop from which we may 
exit in case there is no improvement (Step 16), and the confidence degree of the so far determined GCI is above a 
given threshold or it does not cover any negative example above a given percentage (Step 18). Note that the latter case 
guarantees soundness of the weak learner if this percentage is set to 0. In Step 8 we determine all new refinements, 
which then are scored in Steps 10 - 15 in order to determine the one with the best gain. At the end of the algorithm, 
once we exit from the main loop, the best found GCI is returned (Step 22).

Remark 5. As for FOIL-DL (and pFOIL-DL), the weak learner wFOIL-DL also allows to use a backtracking mech-
anism (Step 19), which, for ease of presentation, we omit to include. The mechanism is exactly the same as for the 
pFOIL-DL-learnOneAxiom described in [85, Algorithm 3]. Essentially, a stack of top-k refinements is maintained, 
ranked in decreasing order of the confidence degree from which we pop the next best refinement (if the stack is not 
empty) in case no improvement has occurred. Cbest becomes the popped-up refinement.

5. Evaluation

We have implemented the algorithm within the FuzzyDL-Learner11 system and evaluated it over a set of (crisp) 
OWL ontologies. All the data and implementation can be downloaded from the FuzzyDL-Learner home page.

5.1. Setup

A number of OWL ontologies from different domains have been selected as illustrated in Tables 2 and 3. A succinct 
description of them is provided in Appendix A. Note that the ontologies in Table 3 are not available as OWL 2 
ontologies but only as csv format. Therefore, we have translated them from the csv format according to the procedure 

11 http://www.umbertostraccia .it /cs /software /FuzzyDL -Learner/.
12
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Algorithm 3 Learn-One-Axiom.
Input: KB K, target concept name T , training set E , weight distribution w, Pos set of positive examples still to be covered, confidence threshold 

θ ∈ [0, 1], non-positive coverage percentage η ∈ [0, 1]
Output: A fuzzy EL(D−) GCI of the form C � T

1: I ← IK;
2: C ← 
; � Start from 

3: φ ← C � T ;
4: //Loop until no improvement
5: while C �= null do
6: Cbest ← C;
7: maxgain ← 0;
8: C ← ρ(C); � Compute all refinements of C
9: // Compute the score of the refinements and select the best one

10: for all C′ ∈ C do
11: φ′ ← C′ � T ;
12: gain ← gain(φ′, φ, w, I, Pos);
13: if (gain > maxgain) and (cf (φ′, w, I, Pos) > cf (φ, w, I, Pos)) then
14: maxgain ← gain;
15: Cbest ← C′;
16: if Cbest = C then � No improvement
17: //Stop if confidence degree above threshold or no negative coverage below threshold

18: if (cf (Cbest � T , I) ≥ θ) and (
�Cbest �

IE−
K|IE−| ≤ η) then break;

19: // Manage backtrack here, if foreseen

20: C ← Cbest ;
21: φ ← C � T ;

22: return φ;

Table 2
Facts about the ontologies of the experiment.

ontology DL class. obj. prop. data. prop. ind. target T pos neg dth/cj/η

FamilyTree SROIF(D) 22 52 6 368 Uncle 46 156 1/5/0
Hotel ALCOF(D) 89 3 1 88 Good_Hotel 12 11 1/5/0
Moral ALC 46 0 0 202 ToLearn_Guilty 102 100 1/5/0
SemanticBible (NTN) SHOIN (D) 51 29 9 723 ToLearn_Woman 46 3 1/5/0
UBA SHI(D) 44 26 8 1268 Good_Researcher 22 113 1/5/0
WineOnto SHI(D) 178 15 7 138 ToLearn_DryWine 15 - 1/5/0
Pair50 ALC 3 6 0 311 ToLearn 20 29 2/5/0
Straight ALC 3 6 0 347 ToLearn 4 50 3/5/1.0

Lymphography ALC 50 0 0 148 ToLearn 81 67 1/5/1.0
Mammographic ALC(D) 20 3 2 975 ToLearn 445 516 3/5/1.0
Pyrimidine ALC(D) 2 0 27 74 ToLearn 20 20 1/5/1.0
Suramin ALC(D) 47 3 1 2979 ToLearn 7 10 3/5/1.0

shown in Appendix B. Furthermore, note that the ontologies in Table 3 are taken from the well-known UC Irvine 
Machine Learning Repository [23]. While evaluating ontology-based learning algorithms is untypical on numerical 
datatype properties,12 we believe it is interesting to do so as an important ingredient of our algorithm is the use of 
fuzzy concrete datatype properties.

For each ontology K a meaningfull target concept has been selected such that the conditions of the learning problem 
are satisfied. We report also the DL the ontology refers to, the number of concept names, object properties, datatype 
properties and individuals in the ontology. We also report the maximal nesting depth (dth.), maximal number of 
conjuncts (cj.) and maximal percentage of false positives (η) during the learning phase. The number n of iterations of

12 To the best of our knowledge, we are unaware of any evaluation of ontology-based methods on those data sets.
13
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Table 3
Datasets considered from the UCI ML Repository.

dataset instances attributes target T pos dth/cj/η

Iris 151 4 Iris-setosa 51 1/5/1.0
Iris-versicolor 50
Iris-virginica 50

Wine 178 13 1,2,3 59,71,48 1/5/1.0

Wine Quality 4898 12 GoodRedWine 18 1/5/1.0

FUZZY OWL-BOOST is set to 10.13 We did not consider backtracking. Nevertheless, all configuration parameters for 
each run are available from the downloadable data.

We will consider the following effectiveness measures (see also [85] for similar measures), which we report here 
for clarity to avoid ambiguity. Specifically, consider the classifier ensemble h returned by FUZZY OWL-BOOST and 
let us assume to have added it to the KB K. Then we consider the following fuzzy measures, were their well-known 
crisp variants [6] (in the denotation we omit the f subscript) are obtained by replacing in the equations below the 
cardinality function | · |IKK (see Eq. (3)) with the crisp cardinality function �·�IK

K .

Fuzzy True Positives: denoted T Pf , is defined as

T Pf = |T |IE+
K , (10)

Fuzzy False Positives: denoted FPf , is defined as

FPf = |T |IE−
K , (11)

Fuzzy True Non-Positive: denoted T NPf , is defined as

T NPf = |IE−| − FP , (12)

Fuzzy False Non-Positive: denoted FNPf , is defined as

FNPf = |IE+| − T P , (13)

Fuzzy Precision: denoted Pf , is defined as

Pf = T Pf

|T |IEK
, (14)

Fuzzy Recall: denoted Rf , is defined as

Rf = T Pf

|IE+| , (15)

Fuzzy F1-score: denoted F1f , is defined as

F1f = 2 · Pf · Rf

Pf + Rf

,

Mean Squared Error: denoted MSE, is defined as

MSE = 1

|IE | ·
∑
a∈IE

(h(a) − l(a))2 .

Concerning other parameter settings, we

13 We tried also for n > 10 and did not notice positive effects. In fact, at some point the weak learner is unable to learn new rules given the weight 
distribution.
14
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• varied the number of fuzzy sets (3, 5 or 7). For C-means, we fixed the hyper-parameter to the default m = 2, the 
threshold to ε = 0.05 and the number of maximum iterations to 100; and

• varied the confidence threshold θ ∈ {0.34, 0.64, 0.94, 1.0}.

Therefore, we considered a total of 12 different parameter configurations.
For each parameter configuration, a stratified k-fold cross validation design14 was adopted (specifically, k = 5) to 

determine the average of the above described performance indices. For each measure, the (macro) average value over 
the various folds has been considered. In all tests, we have that IE = IK and that there is at least one positive example in 
each fold, while the other examples of a fold have been randomly been selected. For each fold, all assertions involving 
testing examples have been removed from a given ontology, thus restricting the training phase to training examples 
only. We considered also the extreme case in which the whole set E is used for both training and testing. This case has 
been considered for those ontologies with few positive examples for which k-fold cross validation is not meaningful 
and also for the task aiming at “explaining” the target w.r.t. the given data set. This case is indicated with � in Table 4.

As baseline, we considered an improved version of FOIL-DL w.r.t. the one published in [47,48,50]. Roughly,
FOIL-DL, as wFOIL-DL, learns iteratively rules. At each iteration i, FOIL-DL learns one fuzzy EL(D−) GCI of the 
form 〈Ci � T , di〉 by invoking a similar procedure as LEARN-ONE-AXIOM, where however

• di is the confidence degree of Ci � T ; and
• the weight distribution w is roughly as follows: if a positive instance a has already been covered by the rules 

learned so far, then wa = 0 (this is the same as to say to remove the covered positive instances from the next 
iteration). The weight of the other instances is determined according to a uniform distribution.

At the end, the final hypothesis of FOIL-DL is of the form (cf. Eq. (7))

〈C1 � T ,d1〉
...

〈Cn � T ,dn〉 .

(16)

Therefore, there is a notable difference among FUZZY OWL-BOOST and FOIL-DL in (i) the way the instance distri-
bution is set up at each iteration; (ii) how the weight of each rule is determined (the αi in FUZZY OWL-BOOST versus 
the confidence di in FOIL-DL); and (iii) how the final hypothesis is build (linear combination in FUZZY OWL-
BOOST versus ‘max’ aggregation in FOIL-DL).

In the result Table 4, for a given KB K, a given algorithm (FUZZY OWL-BOOST or FOIL-DL) and a given clustering 
method (uniform u or C-means c), we report only the effectiveness measures for the configuration (θ, fs)15 with the 
highest score of

f F1F1 = F1f · F1 , (17)

i.e. a compromise (Pareto optimal solution) among fuzzy F1 and crisp F1, as, more often than not, the best fuzzy 
F1 and best crisp F1 values do not relate to the same configuration.16

Example 5.1. We provide here an example of learned rule set (in Machester OWL syntax) via FUZZY OWL-
BOOST applied to the Wine dataset (see Table 3) and target class 2 (considering the best run).

# Weak Learner WL1
(Alcohol some Alcohol_VL) and (Hue some Hue_H) and (MalidAcid some MalidAcid_VVL) SubClassOf WL1
(Ash some Ash_L) and (ColorIntensity some ColorIntensity_VVL) SubClassOf WL1
(ColorIntensity some ColorIntensity_VVL) and (Proline some Proline_L) SubClassOf WL1
(ColorIntensity some ColorIntensity_VVL) and (Proline some Proline_VVL) SubClassOf WL1
(Magnesium some Magnesium_VVL) and (NonFlavonoidsPhenols some NonFlavonoidsPhenols_VVH) and (Proanthocyanins some Proanthocyanins_F) SubClassOf WL1
(MalidAcid some MalidAcid_VVL) and (Proline some Proline_VVL) SubClassOf WL1

# Weak Learner WL2
(Alcohol some Alcohol_VVL) and (ColorIntensity some ColorIntensity_VVL) SubClassOf WL2

14 Stratification means here that each fold contains roughly the same proportions of positive and non-positive instances of the target class.
15 Recall that θ ∈ {0.34, 0.64, 0.94, 1.0}, fs ∈ {3, 5, 7}.
16 In case of a tie, we adopt the following priorities: lowest θ and then lowest number of partitions.
15
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Table 4
Results table. (For interpretation of the colours in the Table(s), the reader is referred to the web version of this article.)

(Ash some Ash_VVL) and (Flavonoids some Flavonoids_L) SubClassOf WL2
(ColorIntensity some ColorIntensity_VVL) and (Proline some Proline_VVL)) SubClassOf WL2

# Weak Learner WL3
ColorIntensity some ColorIntensity_VVL SubClassOf WL3

# Real Adaboost aggregation
1.198957672846763 * WL1 + 0.5443603644968905 * WL2 + 0.2722576176538975 * WL3 SubClassOf 2

# Fuzzy datatypes (C-Means)
Alcohol_VVL left-shoulder 11.81 12.29
Alcohol_VL triangular 11.79 12.27 12.58
Hue_H triangular 1.00 1.08 1.21
MalidAcid_VVL left-shoulder 1.27 1.67
Ash_VVL left-shoulder 1.88 2.11
Ash_L triangular 2.12 2.25 2.35
ColorIntensity_VVL left-shoulder 2.66 3.64
Proline_L triangular 532.73 657.29 811.52
Proline_VVL left-shoulder 424.58 532.73
Magnesium_VVL left-shoulder 85.39 89.97
NonFlavonoidsPhenols_VVH right-shoulder 0.50 0.56
Proanthocyanins_F triangular 1.40 1.64 1.94
Flavonoids_L triangular 1.35 1.76 2.21 �
5.2. Discussion

We now discus the results in Table 4. We report in red the percent improvement of FUZZY OWL-BOOST, relative 
to the measure fF1F1 (see Eq. (17)), over our baseline FOIL-DL.

Uniform vs. C-Means fuzzy datatype construction. To start with, without going to much into it as it is not the main 
of this work, not surprisingly C-means behaves better than the ‘uniform’ (u) approach (14 wins vs. 9).17 Moreover, 
concerning the number of fuzzy set partitions, there is no clear indication about which choice between 3 or 7 partitions 
is the better way to go. The choice seems dependent on the dataset. Apparently, if 3 partitions are not enough, then 
one may go for 7 as likely the dataset may require a more fine grained approach. Of course, the results of C-means 
may further be improved by optimising its parameters. Nevertheless, the uniform approach performed surprisingly 
well, despite its simplicity.

17 We do not count ties.
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Fig. 5. Improvement of FUZZY OWL-BOOST over FOIL-DL according to the f F1F1 (Eq. (17)) measure.

A more in depth investigation will be subject of future work in which we will consider some more options for fuzzy 
set construction and focus on its impact on the overall effectiveness.

FUZZY OWL-BOOST vs. FOIL-DL. It appears evident from the results in Table 4 (see also Fig. 5) that FUZZY OWL-
BOOST performs generally better than FOIL-DL (15 wins vs. 1), with 3 ties and 1 loss. Concerning the ties, note 
that the value of f F1F1 is 1.0 for both FUZZY OWL-BOOST and FOIL-DL and, thus, there was no margin for 
improvement for FUZZY OWL-BOOST. The only loss was for the FamilyTree dataset, though, the difference is small 
(−1.20%).

The average improvement of FUZZY OWL-BOOST over all runs is 16.69%. This is essentially due to the average 
improvement w.r.t. the fuzzy F1 measure, which is 15.16% (15 wins vs. 1, 3 ties), while the average improvement for 
the (crisp) F1 measure is marginal 1.21% (6 wins vs. 7, 6 ties).

Overall, note also that the average MSE is low (0.041) with a slightly advantage for FUZZY OWL-BOOST over
FOIL-DL (0.036 vs. 0.045). Nevertheless, there are two outlier datasets (Lymphography and Mammographic) for 
which there is quite some room for improvement of the MSE.

Last but not least, let us mention that both FUZZY OWL-BOOST and FOIL-DL do definitely not behave well on 
the WineQuality dataset, which will be the subject of further investigation.18

6. Conclusions & future work

In this work, we addressed the problem of automatically learning fuzzy concept inclusion axioms from OWL 2 
ontologies. That is, given a target class T of an OWL ontology, we address the problem of inducing a fuzzy ELW(D)

concept inclusion axioms that describe sufficient conditions for being an individual instance of T . In particular, we 
have adapted the Real AdaBoost [64] boosting algorithm to the fuzzy OWL case, by presenting the FUZZY OWL-
BOOST algorithm. The main features of our algorithm are essentially the fact that (i) it generates a set of fuzzy EL(D−)

inclusion axioms, which are the weak hypothesis, possibly including fuzzy concepts and fuzzy concrete domains; (ii)
combines them via a weighted sum; and (iii) all generated fuzzy concept inclusion axioms can be encoded as Fuzzy 
OWL 2 axioms.

We have also conducted an extensive evaluation, comparing FUZZY OWL-BOOST with FOIL-DL. Our evaluation 
shows that FUZZY OWL-BOOST is generally better than FOIL-DL in terms of f F1F1 effectiveness (+16.69% av-

18 However, a run on this dataset requires ca. one week of computation on our hardware (Linux OS, with 16 GB RAM and Intel Core i9-9900K 
CPU @ 3.60 GHz).
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erage) over the tested datasets, and that the improvement mainly concerns the fuzzy F1 measure, while effectiveness 
remains essentially similar for (crisp) F1. Also, the C-means clustering method prevails over the uniform clustering 
method to build the fuzzy data types. Let us also note that both FUZZY OWL-BOOST (as well as FOIL-DL) generates 
easy human interpretable hypotheses (see e.g. Example 5.1).

Last but not least, let us mention that in a previous version of this work, we also considered the use of the LEARN-
ONE-AXIOM algorithm only (see Algorithm 3) as weak learner in place of wFOIL-DL and the softmax function to 
normalise the weights αi in the weighted sum construct. However, the results were not really encouraging (i.e. slightly 
worse) w.r.t. FOIL-DL.

Concerning future work, besides investigating about other learning methods, we envisage various aspects worth 
to be investigated in more detail: (i) we would like to make an in depth investigation about the impact of clustering 
methods for building fuzzy datatypes on the overall effectiveness by considering various alternatives as well, as pro-
posed recently in a Fuzzy Sets and Systems special issue on fuzzy clustering [1]. Moreover, we would like to cover 
more OWL datatypes than those considered here so far (numerical and boolean) such as strings, dates, etc. possibly 
in combination with some sub-atomic classical machine learning methods (see, e.g. [81]); (ii) another aspect may 
concern the investigation of the impact of choosing various fuzzy semantics during the learning phase; (iii) last but 
not least, we would like to investigate the computational aspect: so far, for some ontologies, a learning run may take 
even a week (on the resource at our disposal19). We would like to investigate both parallelisation methods as well as 
to investigate about the impact, in terms of effectiveness, of efficient, logically sound, but not necessarily complete, 
reasoning algorithms, such as structural DL algorithms.
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Appendix A. Brief description of the datasets

A.1. OWL ontologies description

Find below a brief description about the OWL ontologies in Table 2 used in our experiments. Some ontology 
descriptions can also found in [86].20

FamilyTree. This is a simple family relationships ontology and associated instances. The description is of the family 
of Robert Stevens and the intention is to use the minimal of asserted relationships and the maximum of 
inference. To do this, role chains, nominals and properties hierarchies have been used. The target is to identify 
sufficient conditions for being an uncle.

Hotel. This ontology describes the meaningful entities of a city. Instances are hotels located in the town Pisa and 
ratings have been gathered from Trip Advisor.21 The target is to identify sufficient conditions for being a 
good hotel, which has been identified as a hotel having a rating above 4.

Moral. This ontology is about meaningful entities involved in the description of guiltiness within a moral theory of 
blame scenario. The target is to learn sufficient conditions to be guilty.

19 See footnote 18.
20 See also, https://github.com /SmartDataAnalytics /SML -Bench.
21 http://www.tripadvisor.com.
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SemanticBible (NTN). New Testament Names (NTN) is an ontology describing each named thing in the New Tes-
tament, about 600 names in all. Each named thing (an entity) is categorized according to its class, including 
God, Jesus, individual men and women, groups of people, and locations. These entities are related to each 
other by properties that interconnect the entities into a web of information.22 The target is to learn sufficient 
conditions to be a woman.

UBA. This is a well-known university ontology for benchmark tests describing meaningfull entities within a uni-
versity (e.g. universities, departments and the activities that occur at them).23 The target here is to determine 
sufficient conditions to be a good researcher.

WineOnto. This is an ontology about Italian, French and German red and white wines involving the description of, 
among others, their chemical properties. The target here is to determine sufficient conditions to be a dry wine.

Pair50. This ontology is about a poker game and the target is to determine whether a player has a pair at hand.
Straight. This ontology is about a poker game, as the one for Pair50, but the target is now to determine whether one 

has a straight at hand.
Lymphography. This ontology is about lymphography patient data and the target is the prediction of a diagnosis 

class based on the lymphography patient data [86].
Mammographic. This ontology is about mammography screening data and the target is the prediction of breast 

cancer severity based on the screening data [86].
Pyrimidine. This ontology is about pyrimidine data, the target is the prediction of the inhibition activity of pyrim-

idines and the DHFR enzyme [86].
Suramin. This ontology is about the description of chemical compounds and the target is to find a predictive descrip-

tion of suramin analogues for cancer treatment.

A.2. UCI ML data sets

The data sets in Table 3 have been taken from the well-known UC Irvine Machine Learning Repository [23]. A 
brief description of the selected data is given below.

Iris. The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. The 
attributes are: sepal length in cm, sepal width in cm, petal length in cm and petal width in cm. The target 
classes are: Iris Setosa, Iris Versicolour and Iris Virginica.

Wine. These data are the results of a chemical analysis of wines grown in the same region in Italy but derived 
from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the 
three types of wines. The attributes are alcohol, malic acid, ash, alcalinity of ash, magnesium, total phenols, 
flavonoids, nonflavonoid phenols, proanthocyanins, colour intensity, hue, OD280/OD315 of diluted wines 
and proline. The target classes are the three wines 1, 2 and 3.

Wine Quality. The data set is related to red and white variants of the Portuguese “Vinho Verde” wine. The attributes 
are: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, 
density, pH, sulphates, alcohol and quality (score between 0 and 10). The target class is GoodRedWine, which 
is defined as red wines having quality score above 7.

Appendix B. UCI ML conversion algorithm

We considered the well-known UC Irvine Machine Learning Repository [23] from which selected some popular 
datasets with numerical attributes as shown in Table 3. As anticipated, as the datasets in Table 3 are not available 
as OWL 2 ontologies, we have translated them from a csv format into an OWL 2 ontology in a simple way that we 
describe next. The method is quite general and can be applied to any other dataset with similar specifications and a 
dedicated procedure is available within our implemented learner for future evaluations.

22 http://semanticbible .com /ntn /ntn -overview.html.
23 http://swat .cse .lehigh .edu /projects /lubm/.
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Consider a dataset D with (functional) attributes s1, . . . , sn of type t1, . . . , tn. Each data record r is of the form 
〈v1, . . . , vn, T 〉, where vi is the value of attribute si of type ti , while T is the target class name for record r . For 
instance, for the iris dataset we have attributes

sepal_length,sepal_width,petal_length,petal_width

of type

double,double,double,double

and the first record r is

〈5.1,3.5,1.4,0.2,Iris− setosa〉 .

The knowledge base KD built to describe the data is as follows. Let TD be the set of all target class names T occurring 
in D. The set of GCIs in KD is

T � class (T ∈ TD)

class � ∃si .ti (i = 1...n) .
(B.1)

Additionally, each data property si has been declared as functional.
The set of assertions in KD is built in the following way. For each record r of the form 〈v1, . . . , vn, T 〉, we create 

a new individual ar and add the axioms

ar :
ar : ∃si . =vi

(i = 1...n)
(B.2)

to KD . For instance, for the iris dataset described above, that has three target classes Iris− setosa,
Iris− versicolor and Iris− virginica, the KB contains the axioms

Iris− setosa� class
Iris− versicolor� class
Iris− virginica� class
class� ∃sepal_length.double
class� ∃sepal_width.double
class� ∃sepal_length.double
class� ∃sepal_width.double
a1 : Iris− setosa
a1 : ∃sepal_length. =5.1
a1 : ∃sepal_width. =3.5
a1 : ∃petal_length. =1.4
a1 : ∃sepal_width. =0.2 .

It is easily verified that the KB KD constructed for each dataset D (i) belongs to the DL EL(D) extended with 
functional properties; (ii) the number of classes is |TD| + 1; and there are n functional datatype properties.
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