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It is generally accepted that knowledge based systems would be smarter if they could
manage uncertainty and/or imprecision. In this paper we extend Description Logics, well-
known logics for managing structured knowledge, allowing to express that a sentence is
not just true or false, but true to some degree, which is taken from a certainty lattice.
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1. Introduction

In the last decade a substantial amount of work has been carried out in the context of
Description Logics' (DLs)?. DLs are a logical reconstruction of the so-called frame-
based knowledge representation languages, with the aim of providing a simple well-
established Tarski-style declarative semantics to capture the meaning of the most
popular features of structured representation of knowledge. A main point is that
DLs are considered as to be attractive logics in knowledge based applications as they
are a good compromise between expressive power and computational complexity.

Despite their growing popularity, relatively little work has been carried out in
extending them to the management of uncertain and imprecise information®. This
is a well-known and important issue whenever the real world information to be
represented is of imperfect nature.

In DLs, the problem has attracted the attention of some researchers and some
frameworks have been proposed, which differ in the underlying notion of uncertainty
and imprecision: e.g. probability theory®®8921 possibility theory”, metric spaces!?,
many-valued!®16:17:22 and fuzzy theory®6:13:19,23,24,25,26,27,29,30

In this paper we extend DLs allowing to express that a sentence is not just true
or false like in classical DLs, but certain to some degree, which is taken from a
certainty lattice. The certainty degree dictates to what extend (how certain it is
that) a sentence is true. The adopted approach is more general than the fuzzy logic

aDescription Logics have also been referred to as Terminological Logics, Concept Logics, KL-
ONE-like languages. The web page of the description logic community is found at address
http://dl.kr.org/dl.

bComparing with other formalisms -notably logic programming (see, e.q.10:11).
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based approach?®, as it subsumes it (just take the lattice over the real unit interval
[0,1] with order <) and four-valued DLs as!”22, but is orthogonal to almost all
other approaches. A feature of the lattice approach is that it gives us the possibility
to address both quantitative reasoning (by relying e.g. on [0, 1] or subsets of ratio-
nal numbers like {0, n—il, .. —Z—:—f, 1}, for natural number n), as well as qualitative
uncertainty reasoning (by relying e.g. on {false, likelyfalse, unknown, likelytrue,
true}, in increasing order). From a computational point of view, it is still possible
to develop a tableau calculus in the style of almost all DLs and, under reasonable
conditions, the computational complexity does not change, which is especially im-
portant as usually, reasoning under uncertainty is more involved than the classical
case (see, e.g.18).

We proceed as follows. In the next section, we recall some fundamental notions
about DLs. In Section 3 we describe our DL extension to manage uncertain sen-
tences, while in Section 4, we address the computational aspect of reasoning in it.

Finally, Section 6 concludes the paper.

2. A Quick Look to ALC

The specific DL we extend is ALC, a significant representative of DLs!.

Consider three alphabets of symbols, primitive concepts (denoted A), primitive
roles (denoted R) and individuals (denoted a and b)°. A concept (denoted C or D)
of the language ALC is build out from primitive concepts A, the top concept T, the
bottom concept L and according the following syntax rule:

C,D — C N D| (concept conjunction)
C U D] (concept disjunction)
-C| (concept negation)
VR.C| (universal quantification)
3R.C (existential quantification).

An interpretation T is a pair T = (AZ,.T) consisting of a non empty set A
(called the domain) and of an interpretation function I mapping different indi-
viduals into different elements of AZ (called unique name assumption), primitive
concepts into subsets of AT and primitive roles into subsets of AT x AZ. The inter-
pretation of complex concepts is defined as usual:

T =7

17 =0

(cnD)? =cTnD?

(cuD)? =cTuD?

(-0)f =af\c?

(VR.C): ={de AT :vd' (d,d') ¢ RE or d’ € CF}
(3R.C)Y ={deA?:3d.(d,d)e RY and d’ € CT} .

Two concepts C and D are equivalent (denoted C = D) when CT = D7 for all
interpretations Z (e.g. 3R.C = -VR.=C). An assertion (denoted «) is an expression

¢Metavariables may have a subscript or a superscript.
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a:C, with informal meaning “a is an instance of C”, or an expression (a, b): R, with
informal meaning “(a,b) is an instance of R”. A primitive assertion is either an
assertion of the form a:A4, where A is a primitive concept, or an assertion of the
form (a,b):R. An interpretation Z satisfies a:C (resp. (a,b):R) iff aZ € C7T (resp.
(a%,b%) € RT). Let A and C be a primitive concept and a concept, respectively.
A terminological aziom (denoted 7) is either a concept specialization or a concept
definition. A concept specialization is an expression of the form A<C, while a concept
definition is an expression of the form A:= C. An interpretation I satisfies A<C
iff AT C CZ, while T satisfies A:= C iff AT = CT. A finite set K of assertions
and terminological axioms is a Knowledge Base (KB). With K4 we denote the set
of assertions in K, whereas with K7 we denote the set of terminological axioms
in K, also called a terminology. A KB K is purely assertional if K7 = 0. Further,
we assume that a terminology Krp is such that no concept A appears more than
once on the left hand side of a terminological axiom 7 € Kt and that no cyclic
definitions are present in K79. An interpretation I satisfies (is a model of) a KB
K iff 7 satisfies each element in K. A KB K entails an assertion o (denoted K = «)
iff every model of K also satisfies ce. The problem of determining whether K = o is
called entailment problem, while the problem of determining whether K is satisfiable
is called satisfiability problem. It is well known (see,e.g.!) that in ALC:

K k= (a,b):R iff (a,b):R € K W
K |= a:C iff K U {a:—C}unsatisfiable .

There exists a well known technique based on constraint propagation solving
the satisfiability problem®. Furthermore, we can restrict our attention to purely
assertional KBs, by expanding K to K’ and substituting every primitive concept
occurring in K, which is defined in K’, with its defining term in K’. Informally, the
expansion of a KB K is as follows!*: replace each concept specialization A<:C € Kp
with A:= C M A* (A* is a new primitive concept); then expand the right-hand
side of every concept definition by replacing a primitive concept with its definition
until there remain only undefined concepts in the second arguments of concept
definitions; and finally, replace in K 4 all primitive concepts with their definitions.
The transformation has the nice property that K |= o« iff K | o, where o' is
obtained by replacing every primitive concept occurring in «, which is defined in
K7, with its defining term in K7.. This allows us to restrict our attention to purely
assertional KBs only (but, the expansion process can be exponentiall4).

3. The logic £-ALC

Let £ = (7,=) be a certainty lattice (a complete lattice), where 7T is a set of
certainty values and < is a partial order over 7. Let ® and & be the meet and
join operators induced by =, respectively. Let f and t be the least and greatest
element in 7, respectively. We also assume that there is a function from 7 to 7,
called negation function (denoted —) that is anti-monotone w.r.t. < and satisfies

dWe say that A directly uses primitive concept B in K7, if there is 7 € K7 such that A is on the
left hand side of 7 and B occurs in the right hand side of 7. Let uses be the transitive closure of
the relation directly uses in K7. K7 is cyclic iff there is A such that A uses A in K.
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- = o,V € T. The main idea is that an assertion a:C, rather being interpreted

as either true or false, will be mapped into a certainty value c in 7. The intended

meaning is that c indicates to which extend (how certain it is that) ‘a is a C".
Typical certainty lattices are (given a set of real values T, consider L7 = (T, <))

Classical 0-1: L1} corresponds to the classical truth-space, where 0 stands for
‘false’, while 1 stands for ‘true’;

Fuzzy: L(o,1), which relies on the unit real interval, is quite frequently used as
certainty lattice. In Lo 1), o = 1 — « is quite typical;

Four-valued: Another frequent certainty lattice is Belnap’s FOUR?, where T is
{f,t,u,i} with f < u <t and f < i < t. Here, u stands for ‘unknown’,
whereas i stands for inconsistency. We denote the lattice as £g. Addition-
ally, besides - f = t, we have —u = u and —i = 3;

Many-valued: £ = ({0, ﬁ, ... —z—:—f, 1}, <), n positive integer. A special case is
Ly, where T is {f,1f,lt,t} with f < If <t <t. Here, lf stands for ‘likely
false’, whereas It stands for ‘likely true’. Besides —f = t, we have —lf = l¢;

Belief-Doubt: A further popular lattice allows us to reason about belief and doubt.
Indeed, the idea is to take any lattice £, and to consider the cartesian
product £ x L. For any pair (b,d) € L x L, b indicates the degree of belief a
reasoning agent has about a sentence s, while d indicates the degree of doubt
the agent has about s. The order on £x L is determined by (b,d) < (¢',d’) iff
b < b and d’ <d, i.e. belief goes up, while doubt goes down. The minimal
element is (f,t) (no belief, maximal doubt), while the maximal element
is (t, f) (maximal belief, no doubt). Negation is given by —(b,d) = (d,b)
(exchange belief with doubt). We indicate this lattice with L.

For a certainty lattice £ = (7T, <), an L-interpretation is now a pair Z = (AZ, .F),
where A7 is, as for the classical case, the domain, whereas -Z is an interpretation
function mapping

e individuals as for the classical case, i.e. a # b7, if a # b;
e a concept C into a function CZ: AT — T;
e arole R into a function RZ: AT x AT — T.

For ease with interpretation we mean always an L-interpretation, for some cer-
tainty lattice £. As anticipated above, if d € AT is an object of the domain A%
then CZ(d) gives us the degree of certainty of being the object d an instance of
the concept C under the interpretation Z. Similarly for roles. The interpretation
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function -Z has to satisfy the following equations: for all d € AZ,

TX(d) =t

1%(d) =/

(cn D)X (d) = C%(d) ® D¥(d)

(cu D)% (d) = C%(d) ® D¥(d)

-0)f @) =-C%(d)

(VR.C)E(d) = ®uear{~R%(d,d') ® CT(d)}
@RO)(d) =@year{RE(d,d)® CT(d)} .

Note that the semantics of 3R.C is the result of viewing R.C' as the open first
order formula Jy.R(z,y) A C(y) (where C is the translation of C into first-order
logic) and 3 is viewed as a disjunction over the elements of the domain. Similarly,
the semantics of VR.C is related to Vy.=R(z,y) V C(y), where V is viewed as a
conjunction over the elements of the domain. The definition of concept equivalence
is like for ALC. As for classical ALC, dual relationships between concepts hold:
eg. T=-1,(CND)=~(-CU=D) and (VR.C) = ~(3R.-C).

An L-assertion (denoted ) is an expression (@ = ¢) or {a <X '), where « is
an ALC assertion and c¢,c’ € 7. From a semantics point of view, an L-assertion
(o < ¢) constrains the certainty-value of a to be less or equal to ¢ (similarly for
>). An interpretation Z satisfies (a:C > c) (resp. ((a,b):R = ¢)) iff C%(a?) = ¢
(resp. R%(aZ,b%) > c). Similarly for <. Two L-assertions 1, and 1, are equivalent
(denoted 9; = 1),) iff they are satisfied by the same set of interpretations. Notice
that (a:=C > ¢) = (a:C < —¢). A primitive L-assertion is a L-assertion involving
a primitive assertion only. One might wonder why we do not allow expressions of
the form (a > ¢) or the form (& < ¢). The reason relies on the observation that
it is quite hard to imagine situations in which we are able to assert such strict
>, < relations. However, from a technical point of view it is easy to manage these
constraints as well. For ease of presentation, we leave them out.

Concerning terminological axioms, an interpretation Z satisfies A<C iff Vd €
AT, AZ(d) =< C%(d), while T satisfies A: = C iff Vd € AT, AT(d) = C%(d). In L-ALC,
a knowledge base is a finite set of L-assertions and terminological axioms. With X 4
we denote the set of L-assertions in ¥, with Y7 we denote the set of terminological
axioms in ¥ (the terminology), if ¥ = () then X is purely assertional, and we
assume that a terminology Xr is such that no concept A appears more than once
on the left hand side of a terminological axiom in Y7 and that no cyclic definitions
are present in ¥7. An interpretation Z satisfies (is a model of ) a knowledge base
Y iff 7 satisfies each element of ¥. A KB ¥ L-entails an L-assertion 1 (denoted
Y Ec o) iff every model of ¥ also satisfies 1. Finally, given a KB X and an
assertion «, it is of interest to compute a’s best lower and upper certainty-value
bounds. To this aim, the greatest lower bound of a w.r.t. ¥ (denoted glb(Z, a)) is
@D{c: X =, (@ = c)}, while the least upper bound of o with respect to ¥ (denoted
lub(X,a)) is @{c: X =z (a =)} (BP = f,®0 = t). Determining the lub and
the glb is called the Best Certainty- Value Bound (BCVB) problem. Note that from
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Y (a:C =) iff 3 £ (amC = =c), lub(X,a:C) = —glb(Z, a:~C) can be shown.
The same reduction to glb does not hold for lub(%, (a,b):R) as (a, b):=R is not an
expression of our language®.

L-ALC is a sound extension of ALC. In fact, assume that in ¥ no ((a,b):R < ¢)
occurs. We leave these L-assertions out, as role negation is not present in ALC. Con-
sider the following transformation #(-) from L-assertions to assertions: (o = ¢) — «,
#(a:C < ¢) — a:=C, and §¥ = {1 : ¢ € £} U L7. It can be shown that

Proposition 1. Let ¥ be a KB in which no ((a,b):R =< ¢) occurs and consider
(a>=c). If =L (a=c) then iY = a.

The converse does not hold in general and depends on L, e.g. in Lo,1)-ALC, for
all ¢ > f {(a:A = 0.1), (a:=mAUB > 1)} K¢ (a:A = ¢), whereas {a:4,a:mAUB} =
a:A. A simple ‘converse’ is the following. Let K be an ALC KB: we define K =
{{a = 1) : @ € K} U Kr. Then,

Proposition 2. If K = a then K |=¢ (o = ¢) for some c € L.

4. Decision algorithms in £-ALC

Deciding satisfiability of a KB requires a calculus. Without loss of generality we
consider purely assertional KBs only. We first develop a calculus in the style of the
constraint propagation method, as this method is usually proposed in the context
of DLs!. We then present a transformation of £-ALC under linear ordered lattices
into ALC and, thus, classical DLs reasoners may be applied in this special case.

4.1. Tableau-like calculus

Essentially, we generalize the calculus presented in?® for Lo,1), to any certainty
lattice £. We first address the entailment problem and then the BCVB problem.
To guarantee soundness and completeness of the calculus, we make the following
restrictions. We assume that in the certainty lattice £ = (7, <) the set of certainty
values 7 is finite. From a practical point of view this is a limitation we can live
with, especially taking into account that computers have finite resources, and thus,
only a finite set of certainty values can be represented. In particular, this includes
also the case of the the rational numbers in [0,1] N Q under a given fixed precision
p a computer can work with. We also point out an error in our early version?®, in
which we do not rely on this assumption. Without this assumption, the results in%®

do not hold in general.

An L-constraint (denoted 1) is inductively defined as follows: (i) an L-assertion
is an L-constraint; (i) if ¥ and 1’ are L-constraints, then so are =, A ¢’ and
PV’ (e.g. (a1 < 1) V(o = ¢3)). A literal is a primitive £-assertion or its boolean
negation. Without loss of generality, we assume that L-constraints are always in

°Of course, lub(Z, (a, b):R) = —glb(%, (a,b):~R) holds, where (~R)* (d,d’) = ~RZ(d, d").
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Table 1. Conjugated pairs.

| I (o # ¢) [ (@x) |
(a=|[~3Bc".c" =cAd" ¥ ) ctd

(a A o)|[-Fc" . Aend" ¥ N)H(F"." Aend <)

Negation Normal Form (NNF), where a boolean negation appears in the head of an
L-assertion only. The definition of satisfiability (of a set) of L-constraints is easy:
e.g. I satisfies 1 iff I does not satisfy v, while I satisfies ¥ V o' iff I does satisfy
either ¢ or ¢. It follows that (compare to Eq. 1)

L Er (=) iff XU {~(a > c)} not satisflable

Y Er (e =X e iff LU {~(a < c)} not satisfiable . (2)

Note that in case £ is a total order, then we have the equivalences between
~{a = ¢) and (& < ¢), and between —{a < ¢} and (& > ¢). For instance, this prop-
erty is used in the calculus developed for fuzzy ALC?5. In general, these equivalences
do not hold (e.g., in Lp, =(a > u) is equivalent to (o < ¢) and not to (o < u)).
For ease, sometimes we write (& % ¢) in place of —={a > ¢) and (@ A ¢) in place of
-{a < ¢).

Our calculus, determining whether a finite set S of L-constraints is satisfiable
or not, is based on a set of constraint propagation rules transforming a set .S into
“simpler” satisfiability preserving sets S; until either all S; contain an inconsistency,
called clash (indicating that from all the S; no model of S can be build), or some S; is
completed and clash-free, that is, no rule can further be applied to S; and S; contains
no clash (indicating that from .S; a model of S can be built). A set of L-constraints S
contains a clash (inconsistency) iff it contains a set of literals {{(o; 7; ¢;)}jes (With
r; € {=, X, %, A}) such that the set of constraints {(z; r; ¢;)};es has no solution
for the variables z; in the lattice L. Of course, if a; = a; then z; = z; and if if &
is either a: L or a:T then z is replaced with f and ¢, respectively. For instance, S
contains a clash if it contains either (a: L > ¢) (where ¢ > f), or {(a:T < ¢) (where
c<t),or{a:l Ac),or(a:T ¥ c),or (¥ f),or (a A1), or S contains a conjugated
pair of L-constraints. Each entry in Table 1 says us under which condition the row-
column pair of L-constraints is a conjugated pair.

For instance, in £, (a:A = i) and (a:A < u) is a conjugated pair as ¢ A u. While
in total ordered lattices checking inconsistency is easy, this may not be the case for
arbitrary lattices. Given an L-constraint v, with ¢¥° we indicate a conjugate of ¢
(if there exists one). A conjugate of an L-constraint may be not unique, as there
could be infinitely many. For instance, in Ljg 1)-ALC, any (a:A < c) withc < ¢’ isa
conjugate of (a:A = ¢).

fA solution for z; is a certainty value c;. such that all constraints in {{c} r; ¢;)} e are satisfied,

i.e. for all j € J, c;. 5 ¢; holds in L.



8 U. Straccia

There are obvious tableau rules for the boolean connectives A and V.

For each connective M, L1, —,V, 3 there is a rule for each relation >, <, % and A.

In what follows, for any ¢ € 7, with Dg(c) we indicate the set Dg(c) =
min{(ci,c2) € T X T:c1 @ ¢y = ¢} where the order over pairs is (¢, c2) =< (c3,¢4)
iff ¢ < c3 and ¢y < ¢4. The purpose of Dg(c) is to identify meaningful candidates
¢ and ¢y, making e.g. a disjunction of the form (a:AU B > ¢) true, whenever we
reduce (a:AU B > ¢) to {{a:A > ¢1) A{a:B = ¢3)}. The choice is non-deterministic
and there could |D.(c)| many choices, and |D.(c)| depends on ¢ and L.

Note that (ci,c2) € Dg(c) iff (cg,c1) € Dg(c) and [De(c)] = 2 as
{(c, ), (f,0)} € Decle), eg. in Lyoay, Deyoyy(1) = {(1,0),(0,1)} indicating
that e.g. (a:tAU B > ¢) can be branched into either {(a:A = 1)} or {(a:B > 1)}.
Note also that in Lp, we have D, (t) = {(¢, f),(f,t), (u,1),(¢,u)} and, thus,
e.g. (a:AUB > ¢) can be branched into four alternatives. If £ has finite 7, then
for any ¢ € 7, Dc(c) is finite as well. If £ is a total order, like £4 or Ly 1), then
Dr(c) = {(c, f),(f,¢)}, for any ¢ € T. |D.(c)| may also be infinite. For instance,
consider the following lattice £’ = (7, %), where T = {f,t}U{z;:¢ =0,1,2,...} and
f=Xzi<tand z; A z; forall i # j. Then D/ (t) = {(t, f), (f,t)} U {(zs,;): 4 # 5}
and |Dg:(¢)| is infinite.

We call a certainty lattice £ safe iff (¢) for any ¢ € T, D(c) is finite; and (%)
the decision problem whether a set of constraints is inconsistent is decidable.

Our decision procedure is guaranteed to terminate, whenever we restrict lattices
to be safe. This is not a severe limitation as it is hard to imagine an application
involving unsafe lattices like £’ above. Note that, more generally, it is easily verified
that a lattice £ having a finite set of incomparable certainty values is save, where
two elements ¢, ¢’ € 7 are incomparable iff neither ¢ < ¢’ nor ¢ < c.

We present rules for M,U,—,V, 3, and > and % only. The rules for <, A can be
derived from > and ¥, respectively. Indeed, the rules for (a:C < ¢), (a:CU D <X ¢),
(a:CND =<c), (a:3IR.C = ¢) and (a:YR.C =< ¢) can be derived from the equivalent
expressions (a:~C > —¢), (a:=C M —D > —c), (a:~C U =D > =c¢), (a:VR.-C = —c)
and (a:3R.—C > —c), respectively. Similarly for Z (e.g. we have the following equiv-
alence: (a:C £ ¢) = ~(a:C =2 ¢) = ~(a:~C = —¢) = (a:~C ¥ —c)).

The rules below rely on the following properties over a lattice £ = (7, X): for
any c,ci,c2 €7, (i) c1®ce > ciff g =candep = ¢ (i) 1 Q@ex # ciff e1 # ¢
orcy ¥ ¢ (i) ey ®eg = ciff ¢ = ¢ and ep = ¢, for (¢/,c") € Dg(c); and (iv)
c1 ®cg # ciff not (¢ @ cg = ¢) iff for all (¢, c”) € Di(c), either ¢; # ¢ or cp ¥ .

In the rules we assume that a new constraint is added to a constraint set S if
it is not subsumed in S (a constraint (o > ¢) is subsumed by a constraint {« > ¢’)
iff ¢/ > c -similarly for the other relations ¥, <, and #). We also avoid adding
constraints of the form (o = f) and (a < t).

(1) § —=n, SU{(a:C=c)A(a:D = c)},if ¢ = (a:CND > c) €S and the (M) rule has
not yet been applied to ¢ € §

(2) S —ny SU{{a:C #c)V{(aD ¥}, if 9= (a:CT D ¥ c) € S and the (My) rule has
not yet been applied to ¢ € S
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(8) S —u, SU{Y'},if = (a:C1UC, = c) € S, the (Uy) rule has not yet been applied
to €S and ¢ = V(er,e)eDe(e) (@:C1 = c1) A {a:C2 = c2)

(4) 8 —uy SU{Y } if = (a:C1 UCy % ¢) € S, the (Uy) rule has not yet been applied
toy € S and %' = A(¢; c;)epe(e) (601 ¥ c1) V (a:C2 ¥ c2)

(5) 8§ —v, SU{Y}, if {{aVRC=¢c),¥} C S, ¥ = ((a,b):R = ~c), the (Vx)
rule has not yet been applied in S to the pair ({(a:VR.C =c),%) and ¢’ =
V(ere2)eDc(@\{(e.)} (@ b):R X et} A (b:C xz ea)

(6) S —v, SU {¥'}, if ¥ = (a:VR.C ¥ ¢), € S, the (Vy) rule has not yet been applied to
Y€ S and ¢ = /\(cl,q)eDc(c) {(a,b):R £ =c1) V (b:C ¥ c2), for a new constant b

(7) § =3 SU{{(a,b):R = c) A(b:C = ¢)}, if Y = (a:IR.C = ¢) € S, b new constant and
the (35 ) rule has not yet been applied to ¢ € S

(8) 8§ —3, SU {¢'}, if {(a:3R.C = c),9°} C S, 1 = {(a,b):R ¥ c), the (Iy) rule has not
yet been applied in S to the pair ({(a:3R.C = c),v) and ¥’ = (b:C ¥ ca)).

Some of the above rules deserve some explanation. The (L) rule is a general-
ization of the classical disjunction rule. The main difference is that, depending on
the lattice £, there may be more than the usual two branches (likely as many as
|Dg(c)]). For instance, in Lp, a constraint (a:C; UC5 =t) € S may give rise to
four branches, each containing (a:C; > t), (a:C3 = t), (a:Cy = i) A (a:Cy > u) and
(a:C1 = u) A (w:Cy > 1), respectively. Note that if £ is a total order then there are
at most two branches. The (Ly) rule is derived from the (Ly) rule. The V. is a
specialization of the (L) rule as well and is a generalization of the classical rule
for V. Indeed, according to the semantics of £-ALC, (a:VR.C = ¢) may be viewed
as a disjunction and with decomposition rule

e S —vi SU{{(a,b):R X =¢1),(b:C = o)}
if (a:VR.C = ¢) € S, b occurs in S and (c1,¢3) € De(c)

But, observing that (¢, f) € Dg(c), we obtain a constraint set S containing
Y = {(a,b):R < —c) (e.g., in the classical Ly ¢}, with ¢ = t, we have ((a,b):R < f) €
S). This constraint can only be clashed if S contains a conjugate to ¥ (e.g., in
the classical case ((a,b):R > t) must be in S). This motivates the Vs rule as a
refinement of the above V{ rule. Note that the (Vy) rule can be worked out by a
similar argumentation, by relying on the (Uy) rule, and is left to the reader.

A constraint set S is complete if no rule is applicable to it. A complete set Sy
obtained from a set S; by applying the above rules is called a completion of S;.
Note that more than one completion can be obtained. It can be verified that for
save certainty lattices, the above calculus has the termination property, i.e. any
completion of a finite set of £-constraints S can be obtained after a finite number
of rule applications.

Example 1. Consider £, ¥ = {{(a:3R.C = ) (aVRD>t>} and ¢ =
(a:3R.(CN D) =t). Let’s show that X }: ¥ by proving that § = X U
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{=(a:3R.(CN D) = t)} is unsatisfiable. We have the following sequences.

(1) (a:3R.C = t) Hypothesis:S
(2) (a:VR.D = t)
(3) (a:3R.(CN D) #t)
(4) ((a,b):R = 1), (b:C = ¢) (3»): (1)
(5) (b:D = tyv (V-):(2), (4)
({(a,b):R = u) A (b:D = 3))V
({(a,b):R < i) A (b:D = u))

(6) (:CM D ¥ t) (F¢):(3),(4)
(7) (:C 1)V (b:D i t) (My): (6)
(8) (b:C#t) (V):(7)](10) (b:D % t) (V):(7)
(9) clash (4),(8) Q1 [Q2] Q3

where the sequences ); are defined as follows: for ; we have
(11) (D = 1) (V): (5)

(12) clash (10), (11)

for Q9 we have

(13) ((a,b):R < u) A (b:D = i) (V):(5)
(14) ((a,0):R X ), (b:D = 3) (A):(13)
(15) clash (4),(14)
while for Q3 we have

(16) ((a,b):R =< 4) A (b:D = u) (V): ()
(17) ((a,b):R < 4), (b:D = u) (A): (13)
(18) clash 4),(17)

Soundness and completeness of the calculus can be shown.

Proposition 3. For a safe certainty lattice L, a finite set of L-constraints S is
satisfiable iff there ezists a clash free completion of S.

Proof. [Sketch] Given the termination property, it is not difficult to show by case
analysis on rule applications, that the above rules are sound, i.e. if S is satis-
fiable then there is a satisfiable completion S’ of S and, thus, S’ contains no
clash. For instance, let us show that the (U ) rule is sound. Assume that I sat-
isfles (a:C1UC2 = ¢) € S. Let us show that there is (c1,¢2) € Dg(c) such that
7T satisfies both (a:Cy > ¢;) and (a:Cy > ¢2). By assumption, (Cy U C’z)z(az) = ¢,
i.e. C1%(a%) ® Cy% (aT) = c. Therefore, (C1%(aT), Co% (o)) € {(c1,c2):c1 D ca = c}.
As a consequence, there is (¢, ¢2) € Dg(c) such that ¢; < Clz(al), cy = CQI(’LUI),
i.e. T satisfies both (a:C} = ¢;) and (a:Cs = ¢3).
Similarly, for (a:JR.C = ¢) € S we use the fact that for finite lattices, if e.g.

B3RO (d) = P {R*(d,d)@C*(d)} = c
d'eAT
then there is d’ € AT such that RZ(d,d’) = ¢ and C%(d’) > ¢, which motivates rule
7. The case for VR.C is similar.
Vice-versa, completeness, i.e. if there is a completion S’ of S containing no clash
then S is satisfiable, can be shown by building an interpretation Z from S’ satisfying
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S. As S C &', T satisfies S. Roughly, given a clash-free completion S’ of S, for any
primitive assertion o, we collect its lower and upper bound restrictions in S’: N;[o]
={c:{a=c)e S}, and Na[a] = {c: (et c) € 8’} N3[a] = {c: (a Zc) €5},
and Na[a] = {c: (@ Z¢) € §'}. Since &’ is clash-free, for any primitive assertion
a, using N;[a], we can find an appropriate c[a] € 7 such that the interpretation Z,
(:) with domain A7 being the set of individuals appearing in S, (i) aZ = a for all
a € AT and (iii) A%(a?) = c[a:A4], R¥(a%,b?) = c[(a,b):R], satisfies both S’ and S.
For instance, suppose {(a:A ¥ ¢), (a:A £ ¢/)} C S’ and there is no other constraint
in 8’ involving a:A. As S’ is clash-free, these two constraints are consistent, 4.e. there
is a solution for z to the set of constraints {(z # ¢), (z Z ¢/)} and, thus, there is ¢
such that ¢” ¥ c and ¢’ £ ¢’. Hence, in this case it suffices to chose clw:A] =¢”. O

From a computational complexity point of view, under certain circumstances,
which depend on the particular certainty lattice £, the satisfiability problem is in
the same complexity class (PSPACE-complete?®) as for ALC. Indeed, let us indicate
with |£| the dimension of representing £ and with |S| the dimension of a constraint
set S. With combined complezity we intend the complexity w.r.t. |£|+|S|. We have
to ensure that (i) £ is safe; (i7) for any set of L-constraints S and certainty value
¢, |De(c)| is polynomially bounded w.r.t. combined complexity; and (iii) deciding
whether a set of L-constraints S contains a clash can be done in polynomial space
w.I.t. combined complexity. Condition (%) is required to guarantee termination, con-
dition (ii) is needed to avoid that e.g. in the (Ly) too many conjuncts are generated,
while condition (ii7) is needed to guarantee that not too much computational re-
sources are required to decide whether a constraint set is clash-free or not. We call
such lattices ps-safe (all lattices we have seen, except L', are ps-safe).

Proposition 4. The satisfiability is PSPACE-complete w.r.t. combined complexity
of a ps-safe lattice.

Proof. [Sketch] We have seen that termination of the above algorithm is guar-
anteed. PSPACE-hardness follows directly from the PSPACE-completeness of the
satisfiability problem in ALC and from Proposition 2. As for ALC, our algorithm,
as it is, requires exponential space due a well know problem: indeed any completion
of § = {(x:C = c)}, where C = (3R.A11) M (3R.A12) NVR.((3R.A21) M (FR.A22) T

..VR.(3R.An1) M (3R.An2))...) contains at least 2" + 1 variables. Like in?°, we
need to introduce so-called trace rules: e.g. the correspondent trace rule of the (35 )
rule is

S —r3, SU {{(a,b):R > ¢}, (b:C = )}
if (a:3R.C = ¢) € S, b new individual and no ((a,b’):R’ > ¢/) is in the current
constraint set.

The trace rules relative to the rules (3x), (V<) and (Vy) are similar. Assigning
priority to all other rules, it can be shown that (¢) a set of constraints S is satisfiable
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iff no trace S’ of S contains a clash; and (i:) the size of a trace S’ of S is bounded
polynomially by |S| + |£|, and, thus, the satisfiability problem is in PSPACE. 0O

The above result says us that no additional computational cost has to be paid
for the major expressive power (if £ is ps-safe, of course).

Concerning the BCVB problem, we may have a similar algorithm as for fuzzy
ALC?5. In it, it has been shown that in L1, 9lb(Z, @) € NZ and lub(Z,a) €
1 — NZ, where N = {0,05,1}U{c: (a>c) €L} U{l—c: (a<c) € L} and
1— NZ = {1 —c:c € N*}. Therefore, after determining N* (complexity O(|Z|),
INZ| < |Z|) and ordering N* (complexity O(|N%|log |N¥|)), we can compute the
glb by means of O(log |N%|) entailment tests.

It is easily verified that the above method works for any total ordered lattice
as well (we have to consider the certainty values appearing in the knowledge base
only). In general, this is not true, as e.g. a disjunction (a:C; UC3 = c) € S may
require to take into account the values in D.(c) as well. It is still an open problem
whether we can find, for any safe lattice £ and a £L-KB ¥, a set of certainty values
NZ such that |[NZ| is polynomially bounded by || + |£] and glb(Z, @) € N*.

Anyway, for any ps-safe lattice £ = (T, <) we still may apply a simple iterative
approximation algorithm for determining the glb:

(1) let 7o =T and &= f.
(2) For j =0,1,2,...

(a) take a value ¢ € T;; if there is no such value then set glb(3, a): = € and exit;

(b) if ¥ |, (= c) then set &:=cand Tj41 =7\ ({¢: ¢ # €} U{c}), otherwise
T =T\ {c:¢ = c);

(c) go to step (2a)

Of course, the speed of convergence depends on the ‘goodness’ of the chosen
value c in step (2a). Then algorithm for the lub is similar.

5. Transformation to classical DLs

In?7 it has been shown that reasoning in fuzzy ALC can be reduced to reasoning in
classical DLs and, thus, already existing reasoners can be applied directly. We show
that if the lattice is a linear order, then the same transformation process can be
applied in our context as well.

For our purpose, we need to extend ALC to the DL ALCH, which is ALC where
terminological axioms are of the general form C C D (C,D concepts) and role
axioms of the form R C R’ are allowed. Now, let us assume that £ = (7,<)) is a
linear order. The idea is the following. Expressions of the form, e.g., (a:A > c) are
translated into classical assertions of the form a:Ay ., where Ay is a new primitive
concept. Informally, the concept Ay, represents the set of individuals, which are
instance of A with degree > c. The argument for a:A<. is similar. Of course, we
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have to consider also the appropriate relationships among the introduced concepts.
For instance, if ¢ > ¢/ we need the terminological axiom Ay, C Asc.

Consider a £L-ALC KB ¥ (w.l.o.g. we can assume it to be purely assertional).
Define X* = {f,t} U {z?: (a>=c) € B} U{-ec:(a Xc) € ¥}, from which we define
N% = XEU{-c:c € X*}.If there is ¢ € T such that —& = ¢, then we add ¢ to X=.
We may assume that N* = {cl,...,c]Nz|} and¢; < ciy1,for1 <i < ]NE|—1. Note
that ¢; = f and ¢y=| = t. For each ¢ € NZ, for each relation <€ {>, >, <, <},
for each primitive concept A and role R occurring in X, consider a new primitive
concept Ay and new role Ry, and R, ., but we do not consider A<y, A, and
R, ; (which are not needed). Of course, we have to reflect the £ order on the new
concepts. This can easily be done by introducing axioms of the form

A>_-ci+1 C Asq, Ay, E Atci
A-<c,~ c Ajcj Ajci c A'<Ci+1
Ape,MAxe; € L AreiMAxe T L ®)
TC Aye, UAxq TC A, UAx,, .

The terminological axioms relating the newly introduced roles are quite similar
to the above axioms:

thi+1 C R>Ci R>—Ci c R>_-ci . (4)

We proceed now with the mapping of the £-assertions in into crisp ALCH assertions.
We define two mappings o and p, defined as follows. Let ¢ be a L-assertion. Then ¢ maps
a L-assertion into a classical ALCH assertion, using p, as follows. In the following, we
assume that ¢ € T and <€ {-, >, <, <}.

(1) = {a:p(C,lxl c) if p = (a:C >xc)
(a,b):p(R,><¢) if p = {(a,b):Rxic) .

The mapping p encodes the idea we have previously presented and is inductively defined
on the structure of concepts and roles. For roles, we have simply p(R,< ¢) = Rpqc. So,
for instance the L-assertion ((a,b):R > ¢) is mapped into the ALCH assertion (a,b):Ry .
For concepts, we have the following inductive definitions (we give just some examples, the
other cases are similar):

o for T, e.g. p(T,2¢)=Lifec<1
e the case L is similar to the case T
o fort primitive concept A, p(A,> ¢) = Apqc

e for concept conjunction CMD, p(CND, > ¢) = p(C, = ¢)Mp(D, = ¢), p(CND, =< c) =
p(C,z c)Up(D, = c)

o the case of concept disjunction C LI D is dual to conjunction

e for concept negation —C, p(—C, > ¢) = p(C, = —c¢)

o for existential quantification IR.C, p(3R.C,=c) = 3Fp(R,= c).p(C,=c) and
p(3R.C,= c) =Vp(R,> ¢).p(C,= ¢)
e for universal quantification VR.C, p(VR.C,=c¢) = Vp(R,> —c).p(C,> c) and

p(VR.C,=< c) = 3p(R, = —¢).p(C, = ¢).
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The whole transformation process is polynomial in the size of ¥ and satisfiability
preserving.

Proposition 5. A linear order L-ALC KB is satisfiable iff its transformation into a crisp
ALCH KB is satisfiable.

Therefore, the entailment problem in linear order £-ALC can be reduced to ALCH.
Finally, concerning the BTVB problem, we can apply a similar algorithm as for the non
crisp case, except we use an oracle for classical entailment and the set of certainty values
is not the whole £, but just N=.

6. Conclusion

We have presented a DL framework based on certainty lattices. Our main feature is that
a sentence is not just true or false like in classical DLs, but certain to some degree, where
the certainty value is taken from a certainty lattice. Syntax, semantics and a sound and
complete tableau algorithm for reasoning in it has been presented. The complexity results
shows that the additional expressive power has no impact from a computational complex-
ity point of view, under plausible assumptions over a certainty lattice. This is especially
important as the nice trade-off between computational complexity and expressive power
of DLs contributes to their popularity. We have also shown that in case of linearly ordered
lattices, a translation into classical DLs can be given.

While a calculus has been provided in this paper, it still remains an open issue whether
to implement a reasoner from scratch or to take advantage of already existing DL reasoners,
like RACER or FACT, i.e. to provide a translation of £-ALC into a DL for more cases, or
to rely on a many-valued first order reasoner, like 3TAP®.
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