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In the field of non-monotonic logics, the notion of Rational Closure (RC) is acknowledged as a 
notable approach. In recent years, RC has gained popularity in the context of Description Logics 
(DLs), the logic underpinning the standard semantic Web Ontology Language OWL 2, whose main 
ingredients are classes, the relationship among classes and roles, which are used to describe the 
properties of classes.

In this work, we show instead how to integrate RC within the triple language RDFS (Resource 
Description Framework Schema), which together with OWL 2 is a major standard semantic web 
ontology language.

To do so, we start from 𝜌df, a minimal, but significant RDFS fragment that covers the 
essential features of RDFS, and then extend it to 𝜌df ⊥, allowing to state that two entities are 
incompatible/disjoint with each other. Eventually, we propose defeasible 𝜌df ⊥ via a typical RC 
construction allowing to state default class/property inclusions.

Furthermore, to overcome the main weaknesses of RC in our context, i.e., the “drowning problem” 
(viz. the “inheritance blocking problem”), we further extend our construction by leveraging 
Defeasible Inheritance Networks (DIN) defining a new non-monotonic inference relation that 
combines the advantages of both (RC and DIN). To the best of our knowledge this is the first time 
of such an attempt.

In summary, the main features of our approach are: (i) the defeasible 𝜌df ⊥ we propose here 
remains syntactically a triple language by extending it with new predicate symbols with specific 
semantics; (ii) the logic is defined in such a way that any RDFS reasoner/store may handle 
the new predicates as ordinary terms if it does not want to take account of the extra non-

monotonic capabilities; (iii) the defeasible entailment decision procedure is built on top of 
the 𝜌df ⊥ entailment decision procedure, which in turn is an extension of the one for 𝜌df via 
some additional inference rules favouring a potential implementation; (iv) the computational 
complexity of deciding entailment in 𝜌df and 𝜌df ⊥ are the same; and (v) defeasible entailment 
can be decided via a polynomial number of calls to an oracle deciding ground triple entailment 
in 𝜌df ⊥ and, in particular, deciding defeasible entailment can be done in polynomial time.
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1. Introduction

Description Logics (DLs) [4] under Rational Closure (RC) [35] is a well-known framework for non-monotonic reasoning in DLs, 
which has gained rising attention in the last decade [7,10,12–16,22,25,26,41,43].

We recall that a typical problem that can be addressed using non-monotonic formalisms is reasoning with ontologies in which 
some classes are exceptional w.r.t. some properties of their super classes, as illustrated with the following example.

Example 1.1. Consider the following facts.

(1) Young people are usually happy.

(2) Young people are usually students.

(3) Drug users are usually unhappy.

(4) Drug users use drugs.

(5) Drugs are chemical substances.

(6) Drug users are usually young.

(7) Controlled drug users are usually happy.

We may consider then reasonable to conclude:

(8) Young drug users are usually unhappy.

(9) Controlled young drug users are usually happy.

(10) Drug users are usually students. □

While DLs provide the logical foundation of formal ontologies of the semantic Web Ontology Language (OWL) family1 and 
endowing them with non-monotonic features is still a main issue, as documented by the past 20 years of technical develop-

ment [8,19,20,24,38], addressing non-monotonicity in the context of the triple language RDFS (Resource Description Framework 
Schema),2 which together with OWL 2 is a major standard semantic web ontology language, has attracted in comparison little atten-

tion so far. Moreover, almost all approaches we are aware of consider a so-called rule-layer on top of RDFS; see e.g., [2,3,19,31] and 
Section 6.

In this paper, we will show instead how to integrate RC directly within the triple language RDFS. To do so, we start from 
𝜌df [27,39], a minimal, but significant RDFS fragment that covers the essential features of RDFS, and then extend it to 𝜌df⊥, allowing 
to state that two entities are incompatible/disjoint with each other. So, for instance, by referring to Example 1.1, we may represent 
that happy beings (ℎ) and unhappy beings (𝑢) are incompatible with each other via the 𝜌df⊥ triple (ℎ, ⊥𝖼, 𝑢) (see also Example 3.2

later on), where ⊥𝖼 is a new predicate added to the 𝜌df vocabulary to model an incompatibility relation. Roughly, you may think of 
being a triple (𝑐, ⊥𝖼, 𝑑) as a 𝜌df⊥ counterpart of a disjointness axiom in OWL (viz. DLs) of the form 𝙳𝚒𝚜𝚓𝚘𝚒𝚗𝚝𝙲𝚕𝚊𝚜𝚜𝚎𝚜(𝐶, 𝐷) (in DL 
syntax, 𝐶 ⊓𝐷 ⊑ ⊥).

Remark 1.1. Note that, I’m ‘unhappy’ tells exactly what you are, while I’m ‘not happy’ only tells what you are not, and, thus, I’m 
‘unhappy’ does not mean the same as I’m ‘not happy’. Nevertheless, both are incompatible with the state of being ‘happy’. Of course, 
the incompatibility/disjointness relation is weaker than the negation/complementing relation in the sense that the latter implies 
the former, but not vice-versa. We introduce the notion of incompatibility/disjointness as the ‘weakest’ relation we are aware of to 
address defeasible non-monotonic reasoning, that requires a notion of conflict between pieces of information.3 This, however, does 
not prevent our approach to be extended with stronger notions as well, such as involving forms of ‘negation’ (see, e.g., [2,3,19,31]). 
However, these have been come so far at the price of an increase of the computational complexity (see Section 6). We will not 
address such extensions here and leave them for future work. We also refer the reader to [16] for a similar argument related to the 
use of ⊥ to express disjointness among DL classes to implement a computationally tractable RC for the DL ⊥.

Now, based on 𝜌df⊥, we will then propose defeasible 𝜌df⊥ via a typical RC construction, allowing to state, e.g., “young people (𝑦) 
are usually happy” via the defeasible triple ⟨𝑦, 𝗌𝖼, ℎ⟩, alongside classical triples such as (𝑑𝑢, 𝑢𝑠𝑒, 𝑑) (“drug users (𝑑𝑢) use drugs (𝑑)”) 
and (𝑑, 𝗌𝖼, 𝑐) (“drugs are chemical substances (𝑐)”).4

However, despite RC having nice behavioural properties [35], the main weaknesses of RC in our context is the so-called “drowning 
problem” (also known as the “inheritance blocking problem”), which essentially states that if some defeasible property of a class 𝐶
contradicts any defeasible property of a superclass 𝐷 of 𝐶 , then 𝐶 inherits none of the defeasible properties of 𝐷, including those that 
are consistent with the properties of 𝐶 . So, for example, again by referring to Example 1.1, since drug users are atypical young people 

1 https://www .w3 .org /TR /owl2 -profiles/.
2 http://www .w3 .org /TR /rdf -schema/.
3 Informally, defeasible rules allow for the presence of exceptional cases, that have properties in conflict with respect to the typical situation (e.g., in Example 1.1

we say that drug users are usually unhappy (3), but controlled drug users, despite being drug users, are usually happy (7)).
2

4 We recall that according to 𝜌df, 𝗌𝖼 stands for “is subclass of”.

https://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/rdf-schema/
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(they are unhappy, while young people are usually happy), RC wouldn’t allow us to associate with drug users any typical property of 
young people, for example, to conclude ⟨𝑑𝑢, 𝗌𝖼, 𝑠⟩ (“drug users (𝑑𝑢) are usually students (𝑠)”). To overcome the “drowning problem”, 
we further extend our construction by leveraging Defeasible Inheritance Networks (DIN) [30] defining a new non-monotonic inference 
relation combining the advantages of both (RC and DIN) and, thus, e.g., allowing us eventually to conclude (10) in Example 1.1.

In summary, the main features of our approach are:

• defeasible 𝜌df⊥ remains syntactically a triple language and is a simple extension of the 𝜌df vocabulary by introducing some new 
predicate symbols with specific semantics;

• any RDFS reasoner/store and SPARQL5 query answering tool may handle the new types of triples as ordinary ones if it does not 
want to take account of the extra non-monotonic capabilities;

• the defeasible entailment decision procedure is built on top of the 𝜌df⊥ entailment decision procedure, which in turn is an 
extension of the one for 𝜌df via some additional inference rules favouring a potential implementation; and

• the computational complexity of deciding entailment in 𝜌df and 𝜌df⊥ are the same; and

• defeasible entailment can be decided via a polynomial number of calls to an oracle deciding ground triple entailment in 𝜌df⊥. 
In particular, deciding defeasible entailment can be done in polynomial time.

In the following, we will proceed as follows. In the next section, we will introduce 𝜌df⊥, by defining its syntax, semantics and entail-

ment decision procedure. In Section 3 we extend 𝜌df⊥ towards defeasible 𝜌df⊥ via an RC construction, defining syntax, semantics, 
entailment decision procedure and address its computational complexity. In Section 4, we encapsulate DINs into our framework, de-

fine the entailment decision procedure and address its computational complexity. All the previous sections address the case of ground 
graphs only. The non-ground case is addressed in Section 5. Eventually, Section 6 addresses related work and Section 7 concludes 
with a brief summary of our contribution and highlights future work. Some poofs of lemmas and theorems are in the appendixes.

2. 𝝆df⊥ graphs

RC is a popular non-monotonic approach in conditional reasoning: given a set of defeasible conditionals 𝛼 ⇝ 𝛽 (if 𝛼 holds, then 
presumably 𝛽 holds), we use them like classical monotonic conditionals until we have a conflict in our information, that triggers the 
non-monotonic reasoning machinery. Example 1.1 shows such a case: we have a conflict between classical reasoning, suggesting that 
drug users, being young, should be happy, and an exceptional more specific information, stating that drug users are unhappy. Faced 
with such a conflict, the non-monotonic engine solves it giving, in this case, precedence to the more specific information (“drug users 
are unhappy”). However, in order to implement this kind of defeasible reasoning in the RDFS framework, we need to introduce some 
notion of informational incompatibility, such as “someone can not be happy and unhappy at the same time”. Such incompatibilities 
cannot be represented in 𝜌df: to do so, we extend the 𝜌df language to 𝜌df⊥ allowing to express such forms of conflicts (but, see 
also Remark 1.1). We are going to briefly introduce the 𝜌df formalism, in order to introduce the 𝜌df⊥ language. We are going to 
characterise 𝜌df⊥ by appropriately extending the 𝜌df semantics and the 𝜌df deductive system.

2.1. Syntax

To start with, we rely on a fragment of RDFS, called minimal 𝜌df [39, Def. 15], that covers all main features of RDFS, is essentially 
the formal logic behind RDFS and, in fact, suffices to illustrate the main concepts and algorithms we will consider in this work and 
ease the presentation. Specifically, minimal 𝜌df has the following vocabulary (reserved keywords/predicates) whose meaning will be 
clear within few paragraphs:

𝜌df = {𝗌𝗉, 𝗌𝖼, 𝗍𝗒𝗉𝖾,𝖽𝗈𝗆, 𝗋𝖺𝗇𝗀𝖾} . (1)

Moreover, we recall that minimal 𝜌df does not consider so-called blank nodes (see, e.g., [29,39] for more on this theme) and, thus, 
in what follows, triples and graphs will be ground. We will come back to deal with non-ground graphs in Section 5 later on. Also, to 
avoid unnecessary redundancy, we will just drop the term ‘minimal’ in what follows.

So, consider pairwise disjoint alphabets 𝐔 and 𝐋 denoting, respectively, URI references and literals. With 𝐔𝐋 we will denote 
the union of these sets. Moreover, a vocabulary is a subset of 𝐔𝐋. Specifically, we assume that 𝐔 contains the 𝜌df vocabulary (see 
Equation (1)). A literal may be a plain literal (e.g., a string) or a typed literal (e.g., a boolean value).6 We call the elements in 𝐔𝐋 terms. 
Terms are denoted with lower case letters 𝑎, 𝑏, … with optional super/lower script.

A triple is of the form 𝜏 = (𝑠, 𝑝, 𝑜) ∈𝐔𝐋×𝐔 ×𝐔𝐋,7 where 𝑠, 𝑜 ∉ 𝜌df. We call 𝑠 the subject, 𝑝 the predicate, and 𝑜 the object. A graph 𝐺

is a set of triples, the universe of 𝐺, denoted 𝚞𝚗𝚒(𝐺), is the set of terms in 𝐔𝐋 that occur in the triples of 𝐺.

We recall that informally (𝑖) (𝑝, 𝗌𝗉, 𝑞) means that property 𝑝 is a subproperty of property 𝑞; (𝑖𝑖) (𝑐, 𝗌𝖼, 𝑑) means that class 𝑐 is a 
subclass of class 𝑑; (𝑖𝑖𝑖) (𝑎, 𝗍𝗒𝗉𝖾, 𝑏) means that 𝑎 is of type 𝑏; (𝑖𝑣) (𝑝, 𝖽𝗈𝗆, 𝑐) means that the domain of property 𝑝 is 𝑐; and (𝑣) (𝑝, 𝗋𝖺𝗇𝗀𝖾, 𝑐)
means that the range of property 𝑝 is 𝑐.

5 https://www .w3 .org /TR /sparql11 -query/.
6 http://www .w3 .org /TR /rdf -primer/.
3

7 As in [39], we allow literals for 𝑠.

https://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf-primer/
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Fig. 1. The drug ontology graph. Rectangular/diamond nodes are properties/relations. Vocabulary properties are in bold. A triple has the pattern ⋆ →□⋄ → ∙, where 
∙ is an oval node, □⋄ a rectangular or diamond node, and ⋆ is either an oval or rectangular node. Neither ⋆ nor ∙ can involve vocabulary properties. Blue triples are 
classical 𝜌df triples, red triples are disjointness triples, while green ones are defeasible.

Example 2.1 (Running example). The following graph is an excerpt of a drug ontology (see also Fig. 1 for a pictorial representation, 
neglecting for the moment the non-blue elements).

𝐺 = { (morphine, 𝗍𝗒𝗉𝖾,opioid), (heroin, 𝗍𝗒𝗉𝖾,opioid), (opioid, 𝗌𝖼,drug),

(drug, 𝗌𝖼, chemicalSubstance), (usesDrug,𝖽𝗈𝗆,drugUser), (usesDrug, 𝗋𝖺𝗇𝗀𝖾,drug),

(tom,usesDrug,heroin), (hasDrugIndependence,𝖽𝗈𝗆,person),

(hasDrugIndependence, 𝗋𝖺𝗇𝗀𝖾,drug), (hasOpioidAddiction, 𝗌𝗉,hasDrugAddiction),

(hasDrugAddiction, 𝗌𝗉,usesDrug), (happyPerson, 𝗌𝖼,person), (unhappyPerson, 𝗌𝖼,person),

(hasOpioidAddiction, 𝗋𝖺𝗇𝗀𝖾,opioid), (drugUser, 𝗌𝖼,person), (uses,𝖽𝗈𝗆,person),

(controlledDrugUser, 𝗌𝖼,drugUser), (student, 𝗌𝖼,person), (youngPerson, 𝗌𝖼,person),

(youngDrugUser, 𝗌𝖼,drugUser), (youngDrugUser, 𝗌𝖼, youngPerson),

(usesDrugControlled, 𝗌𝗉,usesDrug), (usesDrugControlled,𝖽𝗈𝗆, controlledDrugUser)} □

Remark 2.1. Let us recap that 𝜌df has been introduced in [39] to cover the salient features of RDFS from an inference point of view. 
In [39, Table A.1] the whole RDFS vocabulary is enumerated.8 There you may find, e.g., the keyword rdfs:Class, to indicate that 
a given term is a class. Besides, in full RDFS one has also to consider many axioms such as (𝚜𝚌, 𝖽𝗈𝗆, 𝖼𝗅𝖺𝗌𝗌) indicating that “the first 
argument of the property 𝚜𝚌 is a class” (see [39, Table A.2]).9 We believe that, as in [39], such ingredients are of limited importance 
from a theoretical point of view. Extending our framework to whole RDFS is somewhat straightforward and tedious and, thus, we 
will not address it here.

We extend the vocabulary of 𝜌df with a new pair of predicates, ⊥𝖼 and ⊥𝗉, representing incompatible information:

• (𝑐, ⊥𝖼, 𝑑) indicates that the classes 𝑐 and 𝑑 are disjoint; analogously,

• (𝑝, ⊥𝗉, 𝑞) indicates that the properties 𝑝 and 𝑞 are disjoint.

8 See also http://www .w3 .org /TR /rdf -schema/.
4

9 Instead, we will have no axioms in our setting, see also [39, Corollary 14].

http://www.w3.org/TR/rdf-schema/
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We call 𝜌df⊥ the vocabulary obtained from 𝜌df by adding ⊥𝖼 and ⊥𝗉, that is,

𝜌df⊥ = {𝗌𝗉,𝚜𝚌, 𝗍𝗒𝗉𝖾,𝖽𝗈𝗆, 𝗋𝖺𝗇𝗀𝖾,⊥𝖼,⊥𝗉} . (2)

Like for 𝜌df, we assume that 𝐔 contains the 𝜌df⊥ vocabulary and that all triples (𝑠, 𝑝, 𝑜) ∈𝐔𝐋 ×𝐔 ×𝐔𝐋 are such that 𝑠, 𝑜 ∉ 𝜌df⊥.

Remark 2.2. Please, note that we allow the 𝜌df⊥ predicates to occur only as second elements of the triples, that is, we allow triples 
(𝑝, 𝗌𝗉, 𝑞), but not triples such as e.g., (𝗌𝗉, 𝑝, 𝑜) or (⊥𝗉, 𝑝, 𝑜), which is in line with the notion of minimal 𝜌df triple [39, Def. 15].

Example 2.2 (Example 2.1 cont.). By referring to Example 2.1, the graph

𝐺𝑠𝑡𝑟 =𝐺 ∪ { (unhappyPerson,⊥𝖼,happyPerson),

(hasDrugAddiction,⊥𝗉,hasDrugIndependence) }

is a 𝜌df⊥ graph. □

2.2. Semantics

Our semantics for 𝜌df⊥ extends the one for 𝜌df [39] in the following way.

An interpretation  over a vocabulary 𝑉 is a tuple  = ⟨Δ𝖱, Δ𝖯, Δ𝖢, Δ𝖫, 𝔓�⋅�, ℭ�⋅�, ⋅⟩, where Δ𝖱, Δ𝖯, Δ𝖢, Δ𝖫 are the interpretation 
domains of , which are finite non-empty sets, and 𝔓�⋅�, ℭ�⋅�, ⋅ are the interpretation functions of . In particular:

1. Δ𝖱 are the resources (the domain or universe of );

2. Δ𝖯 are property names (not necessarily disjoint from Δ𝖱);

3. Δ𝖢 ⊆Δ𝖱 are the classes;

4. Δ𝖫 ⊆Δ𝖱 are the literal values and contains 𝐋 ∩ 𝑉 ;

5. 𝔓�⋅� is a function 𝔓�⋅�∶ Δ𝖯 → 2Δ𝖱×Δ𝖱 ;

6. ℭ�⋅� is a function ℭ�⋅�∶ Δ𝖢 → 2Δ𝖱 ;

7. ⋅ maps each 𝑡 ∈𝐔𝐋 ∩ 𝑉 into a value 𝑡 ∈Δ𝖱 ∪Δ𝖯, and such that ⋅ is the identity for plain literals and assigns an element in Δ𝖱

to each element in 𝐋.

As next, we are going to build our semantics starting from the so-called reflexive-relaxed 𝜌df semantics [39], in which the predicates 
𝗌𝖼 and 𝗌𝗉 are not assumed to be reflexive in accordance to the notion of minimal graph [39, Def. 15]. Our additional semantic 
constraints w.r.t. [39, Def. 15] are those of condition Disjointness I onwards.10

Definition 2.1 (Satisfaction). An interpretation  is a model of a graph 𝐺, denoted  ⊩𝜌df⊥ 𝐺, if and only if  is an interpretation 
over the vocabulary 𝜌df⊥ ∪ 𝚞𝚗𝚒(𝐺) that satisfies the following conditions:

Simple:

1. for each (𝑠, 𝑝, 𝑜) ∈𝐺, 𝑝 ∈Δ𝖯 and (𝑠 , 𝑜 ) ∈𝔓�𝑝�;

Subproperty:

1. 𝔓�𝗌𝗉� is transitive over Δ𝖯;

2. if (𝑝, 𝑞) ∈𝔓�𝗌𝗉� then 𝑝, 𝑞 ∈Δ𝖯 and 𝔓�𝑝� ⊆𝔓�𝑞�;

Subclass:

1. 𝔓�𝗌𝖼� is transitive over Δ𝖢;

2. if (𝑐, 𝑑) ∈𝔓�𝗌𝖼� then 𝑐, 𝑑 ∈Δ𝖢 and ℭ�𝑐� ⊆ℭ�𝑑�;

Typing I:

1. 𝑥 ∈ℭ�𝑐� if and only if (𝑥, 𝑐) ∈𝔓�𝗍𝗒𝗉𝖾�;

2. if (𝑝, 𝑐) ∈𝔓�𝖽𝗈𝗆� and (𝑥, 𝑦) ∈𝔓�𝑝� then 𝑥 ∈ℭ�𝑐�;

3. if (𝑝, 𝑐) ∈𝔓�𝗋𝖺𝗇𝗀𝖾� and (𝑥, 𝑦) ∈𝔓�𝑝� then 𝑦 ∈ℭ�𝑐�;

Typing II:

1. For each 𝖾 ∈ 𝜌df⊥, 𝖾 ∈Δ𝖯;

2. if (𝑝, 𝑐) ∈𝔓�𝖽𝗈𝗆� then 𝑝 ∈Δ𝖯 and 𝑐 ∈Δ𝖢;

3. if (𝑝, 𝑐) ∈𝔓�𝗋𝖺𝗇𝗀𝖾� then 𝑝 ∈Δ𝖯 and 𝑐 ∈Δ𝖢;

4. if (𝑥, 𝑐) ∈𝔓�𝗍𝗒𝗉𝖾� then 𝑐 ∈Δ𝖢;

Disjointness I:

1. if (𝑐, 𝑑) ∈𝔓�⊥𝖼
� then 𝑐, 𝑑 ∈Δ𝖢;

2. 𝔓�⊥𝖼
� is symmetric, sc-transitive and c-exhaustive over Δ𝖢 (see below);
5

10 An interesting property of reflexive-relaxed 𝜌df is that the proof system is axiom-free [39, Corollary 14].
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3. if (𝑝, 𝑞) ∈𝔓�⊥𝗉
� then 𝑝, 𝑞 ∈Δ𝖯;

4. 𝔓�⊥𝗉
� is symmetric, sp-transitive and p-exhaustive over Δ𝖯 (see below);

Disjointness II:

1. If (𝑝, 𝑐) ∈𝔓�𝖽𝗈𝗆�, (𝑞, 𝑑) ∈𝔓�𝖽𝗈𝗆�, and (𝑐, 𝑑) ∈𝔓�⊥𝖼
�, then (𝑝, 𝑞) ∈𝔓�⊥𝗉

�;

2. If (𝑝, 𝑐) ∈𝔓�𝗋𝖺𝗇𝗀𝖾�, (𝑞, 𝑑) ∈𝔓�𝗋𝖺𝗇𝗀𝖾�, and (𝑐, 𝑑) ∈𝔓�⊥𝖼
�, then (𝑝, 𝑞) ∈𝔓�⊥𝗉

�;

Symmetry:

1. If (𝑐, 𝑑) ∈𝔓�⊥𝖼
�, then (𝑑, 𝑐) ∈𝔓�⊥𝖼

�;

2. If (𝑝, 𝑞) ∈𝔓�⊥𝗉
�, then (𝑞, 𝑝) ∈𝔓�⊥𝗉

�;

sc-Transitivity:

1. If (𝑐, 𝑑) ∈𝔓�⊥𝖼
� and (𝑒, 𝑐) ∈𝔓�𝚜𝚌�, then (𝑒, 𝑑) ∈𝔓�⊥𝖼

�;

sp-Transitivity:

1. If (𝑝, 𝑞) ∈𝔓�⊥𝗉
� and (𝑟, 𝑝) ∈𝔓�𝚜𝚙�, then (𝑟, 𝑞) ∈𝔓�⊥𝗉

�;

c-Exhaustive:

1. If (𝑐, 𝑐) ∈𝔓�⊥𝖼
� and 𝑑 ∈Δ𝖢 then (𝑐, 𝑑) ∈𝔓�⊥𝖼

�;

p-Exhaustive:

1. If (𝑝, 𝑝) ∈𝔓�⊥𝗉
� and 𝑞 ∈Δ𝖯 then (𝑝, 𝑞) ∈𝔓�⊥𝗉

�.

A graph 𝐺 is satisfiable if it has a model  (denoted  ⊩𝜌df⊥ 𝐺).

Remark 2.3. Note that the presence of e.g., (𝑎, 𝗍𝗒𝗉𝖾, 𝑏), (𝑎, 𝗍𝗒𝗉𝖾, 𝑐) and (𝑏, ⊥𝖼, 𝑐) in a graph does not preclude its satisfiability. In fact, 
a graph is always satisfiable (see Corollary 2.5 later on) avoiding, thus, the possibility of unsatisfiability and the ex falso quodlibet

principle. This is in line with the 𝜌df semantics [39].

On top of the notion of satisfaction we define a notion of entailment between graphs.

Definition 2.2 (Entailment ⊨𝜌df⊥ ). Given two graphs 𝐺 and 𝐻 , we say that 𝐺 entails 𝐻 , denoted 𝐺 ⊨𝜌df⊥ 𝐻 , if and only if every model 
of 𝐺 is also a model of 𝐻 .11

Example 2.3 (Example 2.2 cont.). Consider Example 2.2. It can be verified that, e.g., the following hold:

𝐺𝑠𝑡𝑟 ⊧ (tom, 𝗍𝗒𝗉𝖾,person)

𝐺𝑠𝑡𝑟 ⊧ (hasDrugIndependence,⊥𝗉,hasOpioidAddiction) . □

2.3. Deductive system

In what follows, we provide a sound and complete deductive system for our language. Our system extends the classical minimal 𝜌df

system as by Muñoz and others [39, Proposition 17]. The rules for 𝜌df correspond to rules (1) - (4) below. The system is arranged in 
groups of rules that capture the semantic conditions of models. In every rule, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝑋, and 𝑌 are meta-variables representing 
elements in 𝐔𝐋. An instantiation of a rule is obtained by replacing those meta-variables with actual terms. The rules are as follows:

1. Simple:

𝐺

𝐺′ for 𝐺′ ⊆𝐺

2. Subproperty:

(𝑎) (𝐴,𝗌𝗉,𝐵),(𝐵,𝗌𝗉,𝐶)
(𝐴,𝗌𝗉,𝐶) (𝑏) (𝐷,𝗌𝗉,𝐸),(𝑋,𝐷,𝑌 )

(𝑋,𝐸,𝑌 )

3. Subclass:

(𝑎) (𝐴,𝗌𝖼,𝐵),(𝐵,𝗌𝖼,𝐶)
(𝐴,𝗌𝖼,𝐶) (𝑏) (𝐴,𝗌𝖼,𝐵),(𝑋,𝗍𝗒𝗉𝖾,𝐴)

(𝑋,𝗍𝗒𝗉𝖾,𝐵)

4. Typing:

(𝑎) (𝐷,𝖽𝗈𝗆,𝐵),(𝑋,𝐷,𝑌 )
(𝑋,𝗍𝗒𝗉𝖾,𝐵) (𝑏) (𝐷,𝗋𝖺𝗇𝗀𝖾,𝐵),(𝑋,𝐷,𝑌 )

(𝑌 ,𝗍𝗒𝗉𝖾,𝐵)

5. Conceptual Disjointness:

(𝑎) (𝐴,⊥𝖼 ,𝐵)
(𝐵,⊥𝖼 ,𝐴)

(𝑏) (𝐴,⊥𝖼 ,𝐵),(𝐶,𝗌𝖼,𝐴)
(𝐶,⊥𝖼 ,𝐵)

(𝑐) (𝐴,⊥𝖼 ,𝐴)
(𝐴,⊥𝖼 ,𝐵)

6. Predicate Disjointness:

(𝑎) (𝐴,⊥𝗉 ,𝐵)
(𝐵,⊥𝗉 ,𝐴)

(𝑏) (𝐴,⊥𝗉 ,𝐵),(𝐶,𝗌𝗉,𝐴)
(𝐶,⊥𝗉 ,𝐵)

(𝑐) (𝐴,⊥𝗉 ,𝐴)
(𝐴,⊥𝗉 ,𝐵)
6

11 For ease of presentation, if a graph is a singleton, we will omit the curly braces.
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7. Crossed Disjointness:

(𝑎) (𝐴,𝖽𝗈𝗆,𝐶),(𝐵,𝖽𝗈𝗆,𝐷),(𝐶,⊥𝖼 ,𝐷)
(𝐴,⊥𝗉 ,𝐵)

(𝑏) (𝐴,𝗋𝖺𝗇𝗀𝖾,𝐶),(𝐵,𝗋𝖺𝗇𝗀𝖾,𝐷),(𝐶,⊥𝖼 ,𝐷)
(𝐴,⊥𝗉 ,𝐵)

As anticipated, please note that the rules that extend minimal 𝜌df to 𝜌df⊥ are rules (5) - (7).

Now, using these rules we define a derivation relation in a similar way as in [39].

Definition 2.3 (Derivation ⊢𝜌df⊥ ). Let 𝐺 and 𝐻 be 𝜌df⊥-graphs. 𝐺 ⊢𝜌df⊥ 𝐻 iff there exists a sequence of graphs 𝑃1, 𝑃2, … , 𝑃𝑘 with 
𝑃1 =𝐺 and 𝑃𝑘 =𝐻 and for each 𝑗 (2 ⩽ 𝑗 ⩽ 𝑘) one of the following cases holds:

• 𝑃𝑗 ⊆ 𝑃𝑗−1 (rule (1));

• there is an instantiation 𝑅∕𝑅′ of one of the rules (2)-(7), such that 𝑅 ⊆ 𝑃𝑗−1 and 𝑃𝑗 = 𝑃𝑗−1 ∪𝑅′.

Such a sequence of graphs is called a proof of 𝐺 ⊢𝜌df⊥ 𝐻 . Whenever 𝐺 ⊢𝜌df⊥ 𝐻 , we say that the graph 𝐻 is derived from the graph 
𝐺. Each pair (𝑃𝑗−1, 𝑃𝑗 ), 1 ⩽ 𝑗 ⩽ 𝑘 is called a step of the proof which is labelled by the respective instantiation 𝑅∕𝑅′ of the rule applied 
at the step.

Example 2.4 (Example 2.3 cont.). Consider the entailments in Example 2.3. The following are the proofs of them.

Case 𝐺𝑠𝑡𝑟⊢𝜌df⊥ (tom, 𝗍𝗒𝗉𝖾,person).

(usesDrug,𝖽𝗈𝗆,drugUser) (tom,usesDrug,heroin)
(4a)

(tom, 𝗍𝗒𝗉𝖾,drugUser) (drugUser, 𝗌𝖼,person)
(3b) (tom, 𝗍𝗒𝗉𝖾,person)

Case 𝐺𝑠𝑡𝑟⊢𝜌df⊥ (hasDrugIndependence,⊥𝗉,hasOpioidAddiction).

(hasOpioidAddiction, 𝗌𝗉,hasAddiction) (hasAddiction,⊥𝗉,hasDrugIndependence)
(6b) (hasOpioidAddiction,⊥𝗉,hasDrugIndependence)

(5a)
(hasDrugIndependence,⊥𝗉,hasOpioidAddiction)

□

We are going now to prove the following soundness and completeness theorem (recall that proofs can be found in the appendixes).

Theorem 2.1 (Soundness & completeness). Let 𝐺 and 𝐻 be 𝜌df⊥-graphs.

𝐺 ⊢𝜌df⊥ 𝐻 iff 𝐺 ⊨𝜌df⊥ 𝐻 .

We divide the proof into lemmas. The following one is needed for soundness.

Lemma 2.2. Let 𝐺 and 𝐻 be 𝜌df⊥-graphs, let 𝐺 be satisfiable, and let one of the following statements hold:

• 𝐻 ⊆𝐺;

• there is an instantiation 𝑅∕𝑅′ of one of the rules (2)-(7), such that 𝑅 ⊆𝐺 and 𝐻 =𝐺 ∪𝑅′.

Then, 𝐺 ⊨𝜌df⊥ 𝐻 .

The following lemma defines the construction of the canonical model for 𝜌df⊥ graphs. Let 𝖢𝗅(𝐺) be the closure of 𝐺 under the 
application of rules (2) − (7).

Lemma 2.3. Given a 𝜌df⊥-graph 𝐺, define an interpretation 𝐺 as a tuple

𝐺 = ⟨Δ𝖱,Δ𝖯,Δ𝖢,Δ𝖫,𝔓�⋅�,ℭ�⋅�, ⋅𝐺 ⟩
such that:

1. Δ𝖱 ∶= 𝚞𝚗𝚒(𝐺) ∪ 𝜌df⊥;

2. Δ𝖯 ∶= {𝑝 ∈ 𝚞𝚗𝚒(𝐺) ∣ (𝑠, 𝑝, 𝑜) ∈ 𝖢𝗅(𝐺)} ∪ 𝜌df⊥ ∪ {𝑝 ∈ 𝚞𝚗𝚒(𝐺) ∣ either (𝑝, 𝗌𝗉, 𝑞), (𝑞, 𝗌𝗉, 𝑝), (𝑝, 𝚍𝚘𝚖, 𝑐), (𝑝, 𝗋𝖺𝗇𝗀𝖾, 𝑑), (𝑝, ⊥𝗉, 𝑞) or (𝑞, ⊥𝗉, 𝑝) ∈
7

𝖢𝗅(𝐺)};
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3. Δ𝖢 ∶= {𝑐 ∈ 𝚞𝚗𝚒(𝐺) ∣ (𝑥, 𝗍𝗒𝗉𝖾, 𝑐) ∈ 𝖢𝗅(𝐺)} ∪ {𝑐 ∈ 𝚞𝚗𝚒(𝐺) ∣ either (𝑐, 𝗌𝖼, 𝑑), (𝑑, 𝗌𝖼, 𝑐), (𝑝, 𝚍𝚘𝚖, 𝑐), (𝑝, 𝗋𝖺𝗇𝗀𝖾, 𝑐), (𝑐, ⊥𝖼, 𝑑) or (𝑑, ⊥𝖼, 𝑐) ∈ 𝖢𝗅(𝐺)};

4. Δ𝖫 ∶= 𝚞𝚗𝚒(𝐺) ∩𝐋;

5. 𝔓�⋅� is an extension function 𝔓�⋅�∶ Δ𝖯 → 2Δ𝖱×Δ𝖱 s.t. 𝔓�𝑝� ∶= {(𝑠, 𝑜) ∣ (𝑠, 𝑝, 𝑜) ∈ 𝖢𝗅(𝐺)};

6. ℭ�⋅� is an extension function ℭ�⋅�∶ Δ𝖢 → 2Δ𝖱 s.t. ℭ�𝑐� ∶= {𝑥 ∈ 𝚞𝚗𝚒(𝐺) ∣ (𝑥, 𝗍𝗒𝗉𝖾, 𝑐) ∈ 𝖢𝗅(𝐺)};

7. ⋅𝐺 is an identity function over Δ𝖱.

Then, for every 𝜌df⊥-graph 𝐺, 𝐺 ⊩𝜌df⊥ 𝐺.

Now, we have:

Lemma 2.4. Let 𝐺 and 𝐻 be 𝜌df⊥-graphs. If 𝐺 ⊨𝜌df⊥ 𝐻 then 𝐻 ⊆ 𝖢𝗅(𝐺).

Finally, we can prove the main theorem of this section.

Proof of Theorem 2.1. The proof mirrors the proof of Theorem 8 in [39]. From Lemma 2.4, 𝐺 ⊨𝜌df⊥ 𝐻 implies that 𝐻 can be ob-

tained from 𝖢𝗅(𝐺) using rule (1). Thus, since 𝐺 ⊢𝜌df⊥ 𝖢𝗅(𝐺), it follows that 𝐺 ⊢𝜌df⊥ 𝐻 . Therefore Theorem 2.1 follows from Lemmas 2.2

and 2.4. □

Please note that, like in classical 𝜌df, 𝜌df⊥-graphs are always satisfiable.

Corollary 2.5. A 𝜌df ⊥-graph 𝐺 is always satisfiable.

Proof. This is an immediate consequence of Lemma 2.3. □

Example 2.5. Consider the simple graph 𝐺 = {(𝑎, 𝗍𝗒𝗉𝖾, 𝑐), (𝑎, 𝗍𝗒𝗉𝖾, 𝑑), (𝑐, ⊥𝖼, 𝑑)}. The interpretation 𝐺 is defined as follows:

• Δ𝖱 = {𝑎, 𝑐, 𝑑} ∪ 𝜌df⊥;

• Δ𝖯 = {𝗍𝗒𝗉𝖾, ⊥𝖼}; Δ𝖢 = {𝑐, 𝑑}; Δ𝖫 = ∅;

• 𝔓�𝗍𝗒𝗉𝖾� = {⟨𝑎, 𝑐⟩, ⟨𝑎, 𝑑⟩}; 𝔓�⊥𝖼� = {⟨𝑐, 𝑑⟩, ⟨𝑑, 𝑐⟩};

• ℭ�𝑐� = {𝑎}; ℭ�𝑑� = {𝑎};

• 𝑥𝐺 = 𝑥, for every 𝑥 ∈Δ𝖱. □

2.4. Some interesting derived inference rules

In what follows, we illustrate the derivation of some interesting rules of inference. To start with, note that the triples (𝑑, ⊥𝖼, 𝑑)
and (𝑞, ⊥𝗉, 𝑞) are particularly significant: indeed, the intended meaning of e.g., (𝑑, ⊥𝖼, 𝑑) is that ‘concept/class 𝑑 is empty’.

Some derived inference rules that will turn out to be useful are the following:

Empty Subclass:

(𝐴, 𝗌𝖼,𝐵) (𝐴, 𝗌𝖼, 𝐶) (𝐵,⊥𝖼, 𝐶)
(EmptySC)

(𝐴,⊥𝖼,𝐴)

Here is the derivation:

(𝐴, 𝗌𝖼,𝐵) (𝐵,⊥𝖼, 𝐶)
(5b) (𝐴,⊥𝖼, 𝐶)

(5a)
(𝐶,⊥𝖼,𝐴) (𝐴, 𝗌𝖼, 𝐶)

(5b)(𝐴,⊥𝖼,𝐴)

A special case of rule (EmptySC) is obtained by imposing 𝐵 = 𝐶 , shows that if a class is empty, also all its subclasses are empty.

(𝐴, 𝗌𝖼,𝐵) (𝐵,⊥𝖼,𝐵)
(EmptySC’)

(𝐴,⊥𝖼,𝐴)

Empty Subpredicate:

(𝐴, 𝗌𝗉,𝐵) (𝐴, 𝗌𝗉, 𝐶) (𝐵,⊥𝗉, 𝐶)
8

(EmptySP)
(𝐴,⊥𝗉,𝐴)
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Here is the derivation:

(𝐴, 𝗌𝗉,𝐵) (𝐵,⊥𝗉, 𝐶)
(6b) (𝐴,⊥𝗉, 𝐶)

(6a)
(𝐶,⊥𝗉,𝐴) (𝐴, 𝗌𝗉, 𝐶)

(6b)(𝐴,⊥𝗉,𝐴)

As for (EmptySC), by imposing 𝐵 = 𝐶 we obtain a special case of the rule (EmptySP) showing that if a property is empty, so are 
all its subproperties.

(𝐴, 𝗌𝗉,𝐵) (𝐵,⊥𝗉,𝐵)
(EmptySP’)

(𝐴,⊥𝗉,𝐴)

Conflicting Domain:

(𝐴,𝖽𝗈𝗆, 𝐶) (𝐴,𝖽𝗈𝗆,𝑋) (𝐶,⊥𝖼,𝑋)
(7a’)

(𝐴,⊥𝗉,𝐴)

This is a special case of the rule (7a) in which 𝐵 =𝐴.

Conflicting Range:

(𝐴, 𝗋𝖺𝗇𝗀𝖾, 𝐶) (𝐴, 𝗋𝖺𝗇𝗀𝖾,𝑋) (𝐶,⊥𝖼,𝑋)
(7b’)(𝐴,⊥𝗉,𝐴)

Similarly as above, this is a special case of the rule (7b) in which 𝐵 =𝐴.

3. Defeasible 𝝆df⊥

We now introduce the possibility of modelling defeasible information in the RDFS framework.

3.1. Syntax

We will consider defeasibility w.r.t. the predicates 𝗌𝖼 and 𝗌𝗉 only, and introduce the notion of defeasible triple defined next.

Definition 3.1 (Defeasible triple). A defeasible triple is of the form

𝛿 = ⟨𝑠, 𝑝, 𝑜⟩ ∈𝐔𝐋 × {𝗌𝖼, 𝗌𝗉} ×𝐔𝐋 ,

where 𝑠, 𝑜 ∉ 𝜌df⊥.

The intended meaning of e.g., ⟨𝑐, 𝗌𝖼, 𝑑⟩ is “Typically, an instance of 𝑐 is also an instance of 𝑏”. So, for instance, by referring 
to Example 1.1, the defeasible statement (3) can be represented as the defeasible triple ⟨drugUser, 𝗌𝖼, unhappyPerson⟩. Analogously, ⟨𝑝, 𝗌𝗉, 𝑞⟩ is read as “Typically, a pair related by 𝑝 is also related by 𝑞”. So, for instance, by referring to Fig. 1, the defeasible triple ⟨usesDrug, 𝗌𝗉, hasDrugAddiction⟩ aims at representing the fact that “typically, if someone uses some drug then it may become addicted 
to that drug”.

A defeasible graph is a set 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 , where 𝐺𝑠𝑡𝑟 is a 𝜌df⊥-graph and 𝐺𝑑𝑒𝑓 is a set of defeasible triples.

Example 3.1 (Running example cont.). The following set 𝐺𝑑𝑒𝑓 is a set of defeasible triples (cf. green triples within Fig. 1)

𝐺𝑑𝑒𝑓 = { ⟨drugUser, 𝗌𝖼,unhappyPerson⟩, ⟨drugUser, 𝗌𝖼, youngPerson⟩,
⟨youngPerson, 𝗌𝖼, student⟩, ⟨controlledDrugUser, 𝗌𝖼,happyPerson⟩,
⟨youngPerson, 𝗌𝖼,happyPerson⟩, ⟨usesDrug, 𝗌𝗉,hasDrugAddiction⟩,
⟨usesDrugControlled, 𝗌𝗉,hasDrugIndependence⟩} .

Therefore, the whole graph in Fig. 1 corresponds to the defeasible graph

𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 ,
9

where 𝐺𝑠𝑡𝑟 is defined in Example 2.2. □
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Given two defeasible graphs 𝐺 and 𝐺′, 𝐺 is a sub-graph of 𝐺′ iff 𝐺 ⊆𝐺′. In the following, we use the notation �⋅, ⋅, ⋅� to indicate 
either (⋅, ⋅, ⋅) or ⟨⋅, ⋅, ⋅⟩ (that is, �⋅, ⋅, ⋅� ∈ {(⋅, ⋅, ⋅), ⟨⋅, ⋅, ⋅⟩}).

Remark 3.1. Note that in practice a defeasible triple ⟨𝑐, 𝗌𝖼, 𝑑⟩ may be represented as (𝑐, 𝗌𝖼𝑡, 𝑑), where 𝗌𝖼𝑡 is a new symbol indicating 
defeasible class inclusion. Similarly, ⟨𝑝, 𝗌𝗉, 𝑞⟩ may be represented as (𝑝, 𝗌𝗉𝑡, 𝑞), where 𝗌𝗉𝑡 is a new symbol indicating defeasible property 
inclusion. Therefore, both defeasible triples could have been represented in the RDF language with vocabulary 𝜌df⊥ ∪{𝗌𝖼𝑡, 𝗌𝗉𝑡}. While 
certainly this is an option for a practical implementation, for ease of presentation, we prefer to stick to the former notation.

Given a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 , its strict counterpart is the graph

𝐺𝑠 ∶=𝐺𝑠𝑡𝑟 ∪ {(𝑠, 𝑝, 𝑜) ∣ ⟨𝑠, 𝑝, 𝑜⟩ ∈𝐺𝑑𝑒𝑓 } . (3)

Generally speaking, given a defeasible graph 𝐺, we need to define how to reason with it. As mentioned above, in presumptive 
reasoning it is considered rational to reason classically with defeasible information in case no conflicts arise; on the other hand, if 
we have to deal with conflictual information we need to introduce some form of defeasible reasoning to resolve such conflicts.

To do so, first of all, we need to define the notion of conflict in our framework.

Definition 3.2 (conflict). Let 𝐺 be a defeasible graph. 𝐺 has a conflict if, for some term 𝑡, either 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) or 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)
holds.

Informally, we consider that there is a conflict in a defeasible graph if, treating the defeasible triples as classical triples, we have 
that some term 𝑡 must be interpreted as being ‘empty’.12

To give a sense of the rationale behind this definition, let’s see how it behaves w.r.t. our running example.

Example 3.2 (Running example cont.). Consider the defeasible graph 𝐺 defined in Example 3.1. Let us prove that 𝐺 has a conflict. To 
do so, note that the strict counterpart of 𝐺 is

𝐺𝑠 =𝐺𝑠𝑡𝑟 ∪ {(drugUser, 𝗌𝖼,unhappyPerson), (drugUser, 𝗌𝖼, youngPerson),

(youngPerson, 𝗌𝖼, student), (controlledDrugUser, 𝗌𝖼,happyPerson),

(youngPerson, 𝗌𝖼,happyPerson), (usesDrug, 𝗌𝗉,hasDrugAddiction),

(usesDrugControlled, 𝗌𝗉,hasDrugIndependence)} .

Now, let us prove that 𝐺𝑠 ⊢𝜌df⊥ (drugUser, ⊥𝖼, drugUser), i.e., from a “strict” point of view, a drugUser cannot exist. For ease of 
presentation, we will use the following abbreviations:

unhappyPerson ↦ 𝑢ℎ𝑃

happyPerson ↦ ℎ𝑃

drugUser ↦ 𝑑𝑈

youngPerson ↦ 𝑦𝑃 .

Now, by rule (5𝑎) applied to (𝑢ℎ𝑃 , ⊥𝖼, ℎ𝑃 ) we immediately have 𝐺𝑠 ⊢𝜌df⊥ (ℎ𝑃 , ⊥𝖼, 𝑢ℎ𝑃 ). Therefore, we have the following proof of 
𝐺𝑠 ⊢𝜌df⊥ (𝑑𝑈, ⊥𝖼, 𝑑𝑈 ):

(𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ) (𝑦𝑃 , 𝗌𝖼, ℎ𝑃 )
(3a)

(𝑑𝑈, 𝗌𝖼, ℎ𝑃 ) (𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ) (ℎ𝑃 ,⊥𝖼, 𝑢ℎ𝑃 )
(EmptySC)

(𝑑𝑈,⊥𝖼, 𝑑𝑈 )

As a consequence, 𝐺 has a conflict. Note that in a similar way we may prove that

𝐺𝑠 ⊢𝜌df⊥ (usesDrugControlled,⊥𝗉,usesDrugControlled) . □

3.2. Semantics

An interpretation for a defeasible graph 𝐺 is composed by a set of 𝜌df⊥ interpretations, ranked accordingly to how much they 
conform to our expectations.

12 Note that the concept of conflict that we define here is related to the notion of incoherence in OWL formalism [44]: an OWL ontology is incoherent if a concept 
10

introduced in the vocabulary turns out to be empty.
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Table 1

A ranked interpretation  = (ℳ, 𝑟), as described 
in Example 3.3. ℳ is the set of all the 𝜌df⊥-

interpretations for the given vocabulary. �(𝑏, ⊥𝖼, 𝑏) ∪
(𝑠, 𝗌𝖼, 𝑏)� indicates all the 𝜌df ⊥-interpretations in ℳ
that satisfy both (𝑏, ⊥𝖼 , 𝑏) and (𝑠, 𝗌𝖼, 𝑏), �(𝑏, 𝗌𝖼, 𝑓 ) ∪
(𝑠, 𝗌𝖼, 𝑏)� all the 𝜌df ⊥-interpretations that satisfy both 
(𝑏, 𝗌𝖼, 𝑓 ) and (𝑠, 𝗌𝖼, 𝑏), and so on.

rank ∞ ℳ𝐹 ⧵ (rank 0 ∪ rank 1 ∪ rank 2)

rank 2 �(𝑠, 𝗌𝖼, 𝑏)�⧵ (rank 0 ∪ rank 1)

rank 1 �(𝑏, 𝗌𝖼, 𝑓 ) ∪ (𝑠, 𝗌𝖼, 𝑏)�⧵ rank 0
rank 0 �(𝑏,⊥𝖼 , 𝑏) ∪ (𝑠, 𝗌𝖼, 𝑏)�

Definition 3.3 (Ranked 𝜌df⊥ interpretations). A ranked interpretation is a pair  = (ℳ, 𝑟), where ℳ is the set of all 𝜌df⊥ interpretations 
defined on a fixed set of domains Δ𝑅, Δ𝑃 , Δ𝐶 , Δ𝐿, and 𝑟 is a ranking function over ℳ13

𝑟 ∶ℳ ↦ℕ ∪ {∞}

satisfying a convexity property:

• there is an interpretation  ∈ℳ s.t. 𝑟() = 0;

• for each 𝑖 > 0, if there is an interpretation  ∈ℳ s.t. 𝑟() = 𝑖, then there is an interpretation ′ ∈ℳ s.t. 𝑟(′) = (𝑖 − 1).

Informally, the intuition behind ranking interpretations is that, given two 𝜌df⊥ interpretations , ′ ∈ℳ, 𝑟() < 𝑟(′) indicates 
that the interpretation  is more in line with our expectations than the interpretation ′. Given  = (ℳ, 𝑟), let ℳℕ be the set of 
elements in ℳ with rank lower that ∞, that is,

ℳℕ = { ∈ℳ ∣ 𝑟() ∈ℕ} .

Informally, in  the 𝜌df⊥-interpretations with rank infinity are simply considered impossible, and the satisfaction relation, which we 
will define next, is determined referring only to the 𝜌df ⊥-interpretations in ℳℕ.

Example 3.3. Consider a vocabulary that allows to talk about birds (𝑏), sparrows (𝑠), and their flying abilities (𝑓 ). Table 1 represents 
a ranked interpretation  = (ℳ, 𝑟) in which rank 0 is populated with the 𝜌df⊥-interpretations that satisfy (𝑏, ⊥𝖼, 𝑏) and (𝑠, 𝗌𝖼, 𝑏); rank 1
with the 𝜌df⊥-interpretations that satisfy (𝑏, 𝗌𝖼, 𝑓 ) and (𝑠, 𝗌𝖼, 𝑏) and that are not already in rank 0; rank 2 with the 𝜌df⊥-interpretations 
that satisfy (𝑠, 𝗌𝖼, 𝑏) and that are not already in the lower ranks, 0 and 1; finally, rank ∞ is populated by the 𝜌df⊥-interpretations that 
do not satisfy (𝑠, 𝗌𝖼, 𝑏).

Hence,  represents the following expectations. In all the conceivable situations (that is, in ℳℕ, from rank 0 to rank 2), sparrows 
are birds, since (𝑠, 𝗌𝖼, 𝑏) is satisfied. In the most expected situations, that is, rank 0, birds do not actually exist ((𝑏, ⊥𝖼, 𝑏) holds). Then, in 
rank 1, there are the situations in which birds exist, and they fly, since (𝑏, 𝗌𝖼, 𝑓 ) is satisfied. Rank 2 represents the situations in which 
birds exist, but they do not necessarily fly ((𝑏, 𝗌𝖼, 𝑓 ) is not satisfied); such situations are conceivable, but less expected. Eventually we 
have the situations that are considered impossible, represented by rank ∞, in which sparrows are not necessarily birds ((𝑠, 𝗌𝖼, 𝑏) does 
not hold).

Given a ranked interpretation  = (ℳ, 𝑟) and a term 𝑡, let 𝖼_min(𝑡, ) be the set of the most expected interpretations in ℳ in 
which 𝑡 (interpreted as class) is not empty, that is,

𝖼_min(𝑡,) = { ∈ℳℕ ∣  ⊮𝜌df⊥ (𝑡,⊥𝖼, 𝑡) and there is no ′ ∈ℳℕ s.t.

′ ⊮𝜌df⊥ (𝑡,⊥𝖼, 𝑡) and 𝑟(′) < 𝑟()} .

Analogously, for a term 𝑡 interpreted as predicate, we define

𝗉_min(𝑡,) = { ∈ℳℕ ∣  ⊮𝜌df⊥ (𝑡,⊥𝗉, 𝑡) and there is no ′ ∈ℳℕ s.t.

′ ⊮𝜌df⊥ (𝑡,⊥𝗉, 𝑡) and 𝑟(′) < 𝑟()} .

Definition 3.4 (Ranked satisfaction). For every triple (𝑠, 𝑝, 𝑜), a ranked interpretation  = (ℳ, 𝑟) satisfies (𝑠, 𝑝, 𝑜) if (𝑠, 𝑝, 𝑜) is satisfied 
by every 𝜌df⊥-interpretation in ℳ, that is,

⊩𝜌df⊥ (𝑠, 𝑝, 𝑜) iff  ⊩𝜌df⊥ (𝑠, 𝑝, 𝑜) for every  ∈ℳℕ .
11

13 We will assume that 0 ∈ℕ.
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For every defeasible triple of the form ⟨𝑠, 𝑝, 𝑜⟩, the notion of a ranked interpretation  = (ℳ, 𝑟) satisfying ⟨𝑠, 𝑝, 𝑜⟩, denoted  ⊩𝜌df⊥⟨𝑠, 𝑝, 𝑜⟩, is defined as follows:

⊩𝜌df⊥ ⟨𝑐, 𝗌𝖼, 𝑑⟩ iff  ⊩𝜌df⊥ (𝑐, 𝗌𝖼, 𝑑) for every  ∈ 𝖼_min(𝑐,)

⊩𝜌df⊥ ⟨𝑝, 𝗌𝗉, 𝑞⟩ iff  ⊩𝜌df⊥ (𝑝, 𝗌𝗉, 𝑞) for every  ∈ 𝗉_min(𝑝,) .

Given a defeasible 𝜌df⊥-graph 𝐺 = 𝐺𝑠𝑡𝑟 ∪ 𝐺𝑑𝑒𝑓 , a ranked interpretation  = (ℳ, 𝑟) is a model of 𝐺 (denoted  ⊩𝜌df⊥ 𝐺) if  ⊩𝜌df⊥
�𝑠, 𝑝, 𝑜� for every �𝑠, 𝑝, 𝑜� ∈𝐺.

The intuition behind this definition is that the triple ⟨𝑐, 𝗌𝖼, 𝑠⟩ holds in a ranked interpretation if (𝑐, 𝗌𝖼, 𝑠) holds in the most expected 
𝜌df⊥-interpretations in which 𝑐 is not an empty class. The intuition follows a similar line of the original propositional construction 
[35], and its DL reformulations [10,12,26].

Example 3.4. Consider the ranked interpretation  = (ℳ, 𝑟) in Example 3.3. ℳℕ corresponds to all the 𝜌df⊥-interpretations in ranks 
from 0 to 2. Hence we have

⊩𝜌df⊥ (𝑠, 𝗌𝖼, 𝑏),

since all the 𝜌df⊥-interpretations in ℳℕ satisfy (𝑠, 𝗌𝖼, 𝑏). That is, according to  sparrows are a subclass of birds. Moreover, we also 
have

⊩𝜌df⊥ ⟨𝑏, 𝗌𝖼, 𝑓 ⟩.
That is, typical birds fly. To see this, we have to look at the most expected 𝜌df⊥-interpretations in which birds exist, that is, 𝖼_min(𝑏, ). 
Now, 𝖼_min(𝑏, ) corresponds to the 𝜌df⊥-interpretations in rank 1, since in rank 0 all the interpretations satisfy (𝑏, ⊥𝖼, 𝑏). As all the 
𝜌df⊥-interpretations in rank 1 satisfy (𝑏, 𝗌𝖼, 𝑓 ), we have that  satisfies ⟨𝑏, 𝗌𝖼, 𝑓 ⟩.

As in the propositional and DL constructions, once we have defined the notion of ranked interpretation to model defeasible 
information, the problem is to decide which kind of entailment relation, that is, what kind of defeasible reasoning, we would like 
to model. Despite it is recognised that there are multiple available options according to the kind of properties we want to satisfy 
[14,15,26,33–35,40], it is generally recognised that RC [35] is the fundamental construction in the area, and most of the other 
proposed systems can be built as refinements of it. We recall that RC models the so-called Presumption of Typicality [34, p. 4], that is 
the reasoning principle imposing that, if we are not informed about any exceptional property, we presume that we are dealing with 
a typical situation. The essential behaviour characterising the presumption of typicality is that a subclass that does not show any 
exceptional property inherits all the typical properties of the superclass. From a semantical point of view the definition of RC can 
be obtained via various equivalent definitions [28,35]: here we opt for the characterisation of RC using the minimal ranked model 
[9,40] and, in particular, we consider the characterisation given in [26], which, once adjusted accordingly, we believe appropriate 
for our defeasible RDF framework.

In the following, given a defeasible graph 𝐺 = 𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 and its strict counterpart 𝐺𝑠 (see Equation (3)), let the interpretation 
𝐺𝑠

𝐺𝑠 ∶= ⟨Δ𝖱,Δ𝖯,Δ𝖢,Δ𝖫,𝔓�⋅�,ℭ�⋅�, ⋅𝐺𝑠 ⟩ (4)

be defined from 𝐺𝑠 as in Lemma 2.3, and consider the domains Δ𝖱, Δ𝖯, Δ𝖢, Δ𝖫 in it. With ℳ𝐺 we denote the set of all 𝜌df⊥-

interpretations defined over such domains, and we indicate a ranked interpretation built over ℳ𝐺 as 𝐺 = (ℳ𝐺, 𝑟). If clear from the 
context, we may omit the superscript 𝐺 in 𝐺 = (ℳ𝐺, 𝑟).14

Now, given a defeasible graph 𝐺, let ℑ𝐺 be the set of the ranked interpretations 𝐺 and let ℜ𝐺 be the elements of ℑ𝐺 that are 
also models for 𝐺, that is,

ℜ𝐺 ∶= { ∈ℑ𝐺 ∣⊩𝜌df⊥ 𝐺} . (5)

Note that ℜ𝐺 is not empty, since for any defeasible graph 𝐺 it is easy to define a trivial ranked model: using the construction in 
Lemma 2.3 we define the 𝜌df⊥-interpretation 𝐺𝑠 , that is a model of 𝐺𝑠, the strict counterpart of 𝐺 (see above); consider the ranked 
interpretation 𝑡𝑟 = (ℳ𝐺, 𝑟), where 𝑟(𝐺𝑠 ) = 0 and 𝑟() = ∞ for any other  ∈ ℳ𝐺 . It is easy to check that 𝑡𝑟 is a model of the 
defeasible graph 𝐺.

Moreover, since the domains in Equation (4) are finite, ℳ𝐺 is finite as well. Additionally, as a ranked interpretation 𝐺 = (ℳ𝐺, 𝑟)
built over ℳ𝐺 has to satisfy the convexity property (see Definition 3.3), the ranking function 𝑟 is bounded by |ℳ𝐺|.15 Therefore, ℑ𝐺

is finite and, thus, so is ℜ𝐺 .

Please note that by construction , ′ ∈ℜ𝐺 differ only w.r.t. the involved ranking functions 𝑟, 𝑟′, respectively, which induces the 
following order over the ranked models in ℜ𝐺 .

14 Please note that the domains of all interpretations occurring in 𝐺 are defined as in Equation (4).
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15 That is, the maximal rank of any interpretation in ℳ𝐺 cannot exceed |ℳ𝐺|.
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Definition 3.5 (Presumption ordering ⪯). Let  = (ℳ, 𝑟), ′ = (ℳ, 𝑟′), and , ′ ∈ℜ𝐺 . We define

1.  ⪯′ iff for every  ∈ℳ, 𝑟() ⩽ 𝑟′().
2.  ≺′ iff  ⪯′ and ′ .

3. min⪯(ℜ𝐺) ∶= { ∈ℜ𝐺 ∣ there is no ′ ∈ℜ𝐺 s.t. ′ ≺𝑅}.

The set min⪯(ℜ𝐺) contains the ranked models of 𝐺 in which the 𝜌df⊥-interpretations are “pushed down” as much as possible in 
the ranking, that is, they are considered as typical as possible.

We next show that actually there is a unique minimal ranked model for a defeasible graph.

Proposition 3.1. For every defeasible graph 𝐺, | min⪯(ℜ𝐺)| = 1.

In the following, the unique ⪯-minimal ranked model in ℜ𝐺 is called the minimal 𝐺-model and is denoted with min𝐺 , 
i.e., min⪯(ℜ𝐺) = {min𝐺}.

Hence, Definition 3.5 and Proposition 3.1 together tell us that the only minimal 𝐺-model min𝐺 of a graph 𝐺 is the ranked model 
of 𝐺 in which every 𝜌df⊥-interpretation is positioned in the lowest possible rank, modulo the satisfaction of the graph 𝐺. That is, it 
is the model of 𝐺 in which we consider every 𝜌df⊥-interpretation as much typical as possible (that is, in the lowest possible rank), 
given the information at our disposal (the graph 𝐺).

Definition 3.6 (Minimal entailment). Given a defeasible graph 𝐺 and the corresponding minimal 𝐺-model min𝐺 of 𝐺. A defeasible 
graph 𝐺 minimally entails a triple �𝑠, 𝑝, 𝑜�, denoted 𝐺 ⊧min �𝑠, 𝑝, 𝑜�, iff min𝐺 ⊩𝜌df⊥ �𝑠, 𝑝, 𝑜�.

Using the minimal ranking in min𝐺 we can also define the height of a term, indicating at which level of exceptionality a term 𝑡
is not necessarily empty, as a class or as a predicate. This corresponds to the minimal rank, that is, the rank in min𝐺 , in which we 
encounter a 𝜌df⊥-interpretation that does not satisfy (𝑡, ⊥𝖼, 𝑡), or, respectively, (𝑡, ⊥𝗉, 𝑡).

Definition 3.7 (Height). Let 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a defeasible graph, with min𝐺 = {ℳ, 𝑟} being its minimal model, and let 𝑡 be a term 
in 𝐺. The c-height of 𝑡, indicated as ℎ𝖼

𝐺
(𝑡), corresponds to the lowest rank 𝑟() of some  ∈ℳ s.t.  ⊮𝜌df⊥ (𝑡, ⊥𝖼, 𝑡), that is,

ℎ𝖼
𝐺
(𝑡) =

{
∞, if  ⊩𝜌df⊥ (𝑡,⊥𝖼, 𝑡) for every  ∈ℳℕ
min{𝑟() ∣  ∈ℳ and  ⊮𝜌df⊥ (𝑡,⊥𝖼, 𝑡)}, otherwise.

Analogously, the p-height of 𝑡, indicated as ℎ𝗉
𝐺
(𝑡), corresponds to the lowest rank 𝑟() of some  ∈ℳ s.t.  ⊮𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)

ℎ
𝗉
𝐺
(𝑡) =

{
∞, if  ⊩𝜌df⊥ (𝑡,⊥𝗉, 𝑡) for every  ∈ℳℕ
min{𝑟() ∣  ∈ℳ and  ⊮𝜌df⊥ (𝑡,⊥𝗉, 𝑡)}, otherwise.

Also, we define the height ℎ() of a ranked interpretation  as the highest finite rank of the 𝜌df⊥-interpretations in it. That is, let 
 = (ℳ, 𝑟) be a ranked model, then

ℎ()∶=max{𝑟() ∣  ∈ℳℕ} .

The c-height of a class 𝑐 indicates how exceptional the objects in it are w.r.t. a graph 𝐺. We consider the minimal model ℜ𝐺 of 
the graph 𝐺, in which every 𝜌df⊥-interpretation is associated to the lowest possible rank. If there is some interpretation  in rank 
0 such that  ⊮𝜌df⊥ (𝑐, ⊥𝖼, 𝑐), then it is reasonable to expect a situation in which 𝑐 is a non-empty class. In such a case ℎ𝗉

𝐺
(𝑐) = 0, 

that indicates that 𝑐 is a class that is compatible with all our expectations (represented by the defeasible part of the graph 𝐺). If, 
instead, the first 𝜌df⊥-interpretations not satisfying (𝑐, ⊥𝖼, 𝑐) appear higher in the ranks, then the class 𝑐 is exceptional, that is, it can 
be populated only by objects that do not fully satisfy our expectations. The higher the height, the more exceptional the population 
of 𝑐 must be w.r.t. the expectations formalised by the graph 𝐺. Analogously for the p-height of a predicate 𝑝. The following example 
uses the classical simple penguin scenario to show that the c-height of the class of penguins is higher than the c-height of the class of 
birds, since penguins are exceptional non-flying birds.

Example 3.5 (Penguin example). Consider the typical penguin example from the non-monotonic reasoning literature. That is, we have 
a set 𝐹 𝑠𝑡𝑟 of classical triples and the set 𝐹𝑑𝑒𝑓 containing defeasible triples:

𝐹 𝑠𝑡𝑟 = {(𝑝, 𝗌𝖼, 𝑏), (𝑠, 𝗌𝖼, 𝑏), (𝑝, 𝗌𝖼, 𝑒), (𝑒,⊥𝖼, 𝑓 )} and 𝐹𝑑𝑒𝑓 = {⟨𝑏, 𝗌𝖼, 𝑓 ⟩} ,
where 𝑝, 𝑏, 𝑓, 𝑒, 𝑠 stand for penguins, birds, flying creatures, non-flying creatures, sparrow, respectively. Together they define the graph 
𝐹 :

𝐹 = 𝐹 𝑠𝑡𝑟 ∪ 𝐹𝑑𝑒𝑓 = {(𝑝, 𝗌𝖼, 𝑏), (𝑠, 𝗌𝖼, 𝑏), (𝑝, 𝗌𝖼, 𝑒), (𝑒,⊥𝖼, 𝑓 ), ⟨𝑏, 𝗌𝖼, 𝑓 ⟩} .
13

Its strict counterpart is
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Table 2

The minimal model of graph 𝐹 from Ex-

ample 3.5. �𝐹 𝑠� indicates all the 𝜌df ⊥-

interpretations in ℳ𝐹 that satisfy the 
graph 𝐹 𝑠 , �𝐹 𝑠𝑡𝑟 ∪ (𝑏, ⊥𝖼 , 𝑏)� all the 𝜌df⊥-

interpretations in ℳ𝐹 that satisfy the graph 
𝐹 𝑠𝑡𝑟 ∪ (𝑏, ⊥𝖼 , 𝑏), and so on.

rank ∞ ℳ𝐹 ⧵ (rank 0 ∪ rank 1)

rank 1 �𝐹 𝑠𝑡𝑟�⧵ rank 0
rank 0 �𝐹 𝑠� ∪ �𝐹 𝑠𝑡𝑟 ∪ (𝑏,⊥𝖼 , 𝑏)�

𝐹 𝑠 = {(𝑝, 𝗌𝖼, 𝑏), (𝑠, 𝗌𝖼, 𝑏), (𝑝, 𝗌𝖼, 𝑒), (𝑒,⊥𝖼, 𝑓 ), (𝑏, 𝗌𝖼, 𝑓 )} .

Given 𝐹 𝑠, we define the domains used for the models in ℜ𝐹 following the construction in Lemma 2.3. The minimal model min𝐹 ∈ℜ𝐹

will be a model of height 1: all the 𝜌df⊥-interpretations that satisfy 𝐹 𝑠 will have rank 0, all the 𝜌df⊥-interpretations that satisfy 
𝐹 𝑠𝑡𝑟 ∪ {(𝑏, ⊥𝖼, 𝑏)} will have rank 0, all the 𝜌df⊥-interpretations that satisfy 𝐹 𝑠𝑡𝑟 but neither (𝑏, 𝗌𝖼, 𝑓 ) nor (𝑏, ⊥𝖼, 𝑏) will have rank 1, and 
all the 𝜌df⊥-interpretations that do not satisfy 𝐹 𝑠𝑡𝑟 will have infinite rank. The model is shown in Table 2.

It is easily verified that 𝐹 𝑠 implies (𝑝, ⊥𝖼, 𝑝). Also, it is easy to check that 𝐹 𝑠 does not imply (𝑏, ⊥𝖼, 𝑏) and does not imply (𝑠, ⊥𝖼, 𝑠), 
since we are informed that penguins do not fly, but we are not informed that sparrows do not fly (there is no (𝑠, 𝗌𝖼, 𝑒) in our graph); 
also, 𝐹 𝑠𝑡𝑟 does not imply (𝑝, ⊥𝖼, 𝑝), since 𝐹 𝑠𝑡𝑟 does not contain (𝑏, 𝗌𝖼, 𝑓 ) anymore. The resulting configuration of min𝐹 is such that: all 
the 𝜌df⊥-interpretations with height 0 satisfy (𝑝, ⊥𝖼, 𝑝), but not all of them satisfy (𝑏, ⊥𝖼, 𝑏) or (𝑠, ⊥𝖼, 𝑠); not all the 𝜌df⊥-interpretations 
with height 1 satisfy (𝑝, ⊥𝖼, 𝑝).

It can also be verified that min𝐹 is a model of 𝐹 : all the 𝜌df⊥-interpretations with finite height satisfy the strict part 𝐹 𝑠𝑡𝑟. The 
minimal interpretations that do not satisfy (𝑏, ⊥𝖼, 𝑏) have height 0 and satisfy 𝐹 𝑠, and consequently satisfy (𝑏, 𝗌𝖼, 𝑓 ). Therefore, the 
defeasible triple ⟨𝑏, 𝗌𝖼, 𝑓 ⟩ is satisfied by min𝐹 .

Note that there cannot be a model of 𝐹 that is preferred to min𝐹 . If we move any 𝜌df⊥-interpretation from rank 1 to rank 0, 
the resulting model would not satisfy ⟨𝑏, 𝗌𝖼, 𝑓 ⟩ anymore: every interpretation in rank 1 does not satisfy neither (𝑏, ⊥𝖼, 𝑏) nor (𝑏, 𝗌𝖼, 𝑓 ), 
hence, by moving one of them to rank 0 we obtain an interpretation  that would not satisfy ⟨𝑏, 𝗌𝖼, 𝑓 ⟩, since we would have in 
𝖼_min(𝑏, ) a 𝜌df⊥-interpretation not satisfying (𝑏, 𝗌𝖼, 𝑓 ). Instead, if we move any 𝜌df⊥-interpretation from rank ∞ to any finite rank, 
the resulting model would not satisfy 𝐹 𝑠𝑡𝑟.

Being a minimal model of 𝐹 , min𝐹 satisfies the presumption of typicality. To check this, it suffices to determine what we 
can derive about sparrows: since sparrows do not have any exceptional property, they should inherit all the typical properties of 
birds, and we should be able to derive that they presumably fly. We need to check the 𝜌df⊥ interpretations in 𝖼_min(𝑠, min𝐹 ), 
that must be in rank 0, since 𝐹 𝑠 ⊬𝜌df⊥ (𝑠, ⊥𝖼, 𝑠). In particular, the 𝜌df⊥ interpretations at rank 0 satisfy 𝐹 𝑠 or 𝐹 𝑠𝑡𝑟 ∪ {(𝑏, ⊥𝖼, 𝑏)}, and 
the interpretations in 𝖼_min(𝑠, min𝐹 ) must be among those satisfying 𝐹 𝑠, since 𝐹 𝑠𝑡𝑟 ∪ {(𝑏, ⊥𝖼, 𝑏)} ⊢𝜌df⊥ (𝑠, ⊥𝖼, 𝑠). This implies that all 
interpretations in 𝖼_min(𝑠, min𝐹 ) satisfy (𝑠, 𝗌𝖼, 𝑏) and (𝑏, 𝗌𝖼, 𝑓 ), that is, they satisfy (𝑠, 𝗌𝖼, 𝑓 ). Consequently, according to Definition 3.4, 
min𝐹 ⊩𝜌df⊥ ⟨𝑠, 𝗌𝖼, 𝑓 ⟩, that is, 𝐹 ⊧min ⟨𝑠, 𝗌𝖼, 𝑓 ⟩, as desired. □

3.3. Exceptionality

Minimal entailment defines the semantics. We next define a decision procedure for it. To do so, we define the notion of exception-

ality, a reformulation in our context of a property that is fundamental for RC [35]. Informally, a class 𝑡 (or, respectively, a predicate 
𝑡) is exceptional w.r.t. a defeasible graph if there is no typical situation in which 𝑡 can be populated with some instance. Formally it 
corresponds to saying that in every ranked model of the graph, all the 𝜌df⊥-interpretations with height 0 satisfy (𝑡, ⊥𝖼, 𝑡) (respectively, 
(𝑡, ⊥𝗉, 𝑡)).

Definition 3.8 (Exceptionality). Let 𝐺 be a defeasible 𝜌df⊥-graph,  = (ℳ, 𝑟) be a ranked model in ℜ𝐺 and let 𝑡 be a term.

1. We say that 𝑡 is c-exceptional (resp. p-exceptional) w.r.t.  if for every  ∈ ℳ s.t. 𝑟() = 0, we have that  ⊩𝜌df⊥ (𝑡, ⊥𝖼, 𝑡)
(resp.  ⊩𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)).

2. We say that 𝑡 is c-exceptional (resp. p-exceptional) w.r.t. 𝐺 if it is c-exceptional (resp. p-exceptional) w.r.t. all  ∈ℜ𝐺 .

In Example 3.5 𝑝 is c-exceptional w.r.t. min𝐹 . It turns out that in order to check exceptionality w.r.t. a graph it is sufficient to 
refer to the minimal model of the graph.

Proposition 3.2. A term 𝑡 is c-exceptional (resp. p-exceptional) w.r.t. a defeasible graph 𝐺 iff it is c-exceptional (resp. p-exceptional) 
w.r.t. min𝐺 .

Hence, in Example 3.5 𝑝 is c-exceptional w.r.t. the graph 𝐹 , since it is exceptional w.r.t. the minimal model min𝐹 . We now prove 
that a term 𝑡 is c-exceptional (resp., p-exceptional) w.r.t. a defeasible graph 𝐺 iff 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) (resp., 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)), which will 
14

provide us a decision procedure to decide exceptionality.
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In order to prove the above claim, we introduce the notion of proof tree and prove some lemmas beforehand. To start with, we 
reformulate the classical notion of proof tree for 𝜌df ⊥.

Definition 3.9 (𝜌df⊥ proof tree). A 𝜌df⊥ proof tree is a finite tree in which

• each node is a 𝜌df⊥ triple;

• every node is connected to the node(s) immediately above through one of the inference rules (1)-(7) presented in Section 2.3.

Let 𝑇 be a 𝜌df⊥ proof tree, 𝐻 be the set of the triples appearing as top nodes (called leaves) and let (𝑠, 𝑝, 𝑜) be the triple appearing in 
the unique bottom node (called root). Then 𝑇 is a 𝜌df⊥ proof tree from 𝐻 to (𝑠, 𝑝, 𝑜).

For instance, in Example 3.2 we have a 𝜌df⊥ proof tree from {(𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ), (𝑦𝑃 , 𝗌𝖼, ℎ𝑃 ), (𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ), (ℎ𝑃 , ⊥𝖼, 𝑢ℎ𝑃 )} to (𝑑𝑈, ⊥𝖼, 𝑑𝑈 ).
By Definitions 2.3 and 3.9, the following proposition is immediate to prove.

Proposition 3.3. Let 𝐺 be a 𝜌df⊥ graph and (𝑠, 𝑝, 𝑜) be a 𝜌df⊥ triple. Then 𝐺 ⊢𝜌df⊥ (𝑠, 𝑝, 𝑜) iff there is a 𝜌df⊥ proof tree from 𝐻 to (𝑠, 𝑝, 𝑜)
for some 𝐻 ⊆𝐺.

As next, we define a depth function on the trees.

Definition 3.10 (Immediate subtree and depth function 𝑑). Let 𝑇 be a 𝜌df⊥ proof tree. The set of the immediate subtrees of 𝑇 , 𝔗 =
{𝑇1, … , 𝑇𝑛}, are the trees 𝑇𝑖 obtained from 𝑇 by eliminating the root node of 𝑇 .

The depth 𝑑(𝑇 ) ∈ℕ of 𝑇 is defined inductively the following way:

• if 𝑇 is a single node then 𝑑(𝑇 ) = 0;

• else, 𝑑(𝑇 ) = 1 +max{𝑑(𝑇 ′) ∣ 𝑇 ′ ∈𝔗}.

Now we prove the following lemmas that will be used to establish that a term 𝑡 is c-exceptional (resp., p-exceptional) w.r.t. a 
defeasible graph 𝐺 iff 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) (resp., 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)) (see Proposition 3.12 later on).

Lemma 3.4. Let 𝑇 be a 𝜌df⊥ proof tree from 𝐻 to (𝑝, 𝗌𝖼, 𝑞). Then 𝑇 contains only triples of the form (𝐴, 𝗌𝖼, 𝐵).

Lemma 3.5. Let 𝑇 be a 𝜌df⊥ proof tree from 𝐻 to (𝑝, ⊥𝖼, 𝑞). Then 𝑇 contains only triples of the form (𝐴, 𝗌𝖼, 𝐵) or (𝐴, ⊥𝖼, 𝐵).

Note that a tree proving (𝑡, ⊥𝖼, 𝑡) is just a particular case of Lemma 3.5.

Lemma 3.6. Let 𝐺 be a defeasible 𝜌df⊥-graph,  = (ℳ, 𝑟) be a ranked model in ℜ𝐺 and ⟨𝑝, 𝗌𝖼, 𝑞⟩ ∈ 𝐺𝑑𝑒𝑓 . For every  ∈ℳ s.t. 𝑟() = 0, 
either  ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑞) or  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).

Analogously, for every ⟨𝑝, 𝗌𝗉, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 and every  ∈ℳ s.t. 𝑟() = 0, either  ⊩𝜌df⊥ (𝑝, 𝗌𝗉, 𝑞) or  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑝).

We can extend the above lemma to derived subclass and subproperty triples.

Lemma 3.7. Let 𝐺 be a defeasible 𝜌df⊥-graph,  = (ℳ, 𝑟) be a ranked model in ℜ𝐺 and let 𝐺𝑠 ⊢𝜌df⊥ (𝑝, 𝗌𝖼, 𝑞) for some terms 𝑝, 𝑞. For every 
 ∈ℳ s.t. 𝑟() = 0, either  ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑞) or  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).

Analogously, if 𝐺𝑠 ⊢𝜌df⊥ (𝑝, 𝗌𝗉, 𝑞) for some terms 𝑝, 𝑞, then for every  ∈ℳ s.t. 𝑟() = 0, either  ⊩𝜌df⊥ (𝑝, 𝗌𝗉, 𝑞) or  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑝).

Lemma 3.8. Let 𝐺 be a defeasible graph, 𝑝 and 𝑞 terms, and let min𝐺 = (ℳ, 𝑟) be 𝐺’s minimal model. If 𝐺𝑠 ⊢𝜌df⊥ (𝑝, ⊥𝖼, 𝑞) then  ⊩𝜌df⊥
(𝑝, ⊥𝖼, 𝑞) for every  ∈ℳ s.t. 𝑟() = 0.

The following is an immediate corollary of Lemma 3.8.

Corollary 3.9. For any defeasible graph 𝐺 and any term 𝑡, if 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) then 𝑡 is c-exceptional w.r.t. 𝐺.

Now we prove the analogous result for p-exceptionality.

Lemma 3.10. Let 𝐺 be a defeasible graph, 𝑝, 𝑞 be any pair of terms, and let min𝐺 = (ℳ, 𝑟) be 𝐺’s minimal model. If 𝐺𝑠 ⊢𝜌df⊥ (𝑝, ⊥𝗉, 𝑞) then 
 ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑞) for every  ∈ℳ s.t. 𝑟() = 0.
15

An immediate corollary of Lemma 3.10 is the following.
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Procedure 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺).
Input: Defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓

Output: Set 𝜖𝖼(𝐺) of c-exceptional triples w.r.t. 𝐺

1: 𝜖𝖼(𝐺) ∶=∅
2: for all ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 do

3: if 𝐺𝑠 ⊢𝜌df⊥ (𝑝, ⊥𝖼 , 𝑝) then

4: 𝜖𝖼(𝐺) ∶=𝜖𝖼(𝐺) ∪ {⟨𝑝, 𝚜𝚌, 𝑞⟩}
5: return 𝜖𝖼(𝐺)

Corollary 3.11. For any defeasible graph 𝐺 and any term 𝑡, if 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝗉, 𝑡) then 𝑡 is p-exceptional w.r.t. 𝐺.

Now we are ready to prove (see appendix) the main proposition of this section.

Proposition 3.12. A term 𝑡 is c-exceptional (resp., p-exceptional) w.r.t. a defeasible graph 𝐺 iff 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) (resp., 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)).

Proposition 3.12 gives us a correct and complete correspondence between the semantic notions of c-exceptionality and p-

exceptionality with the 𝜌df⊥ decision procedure ⊢𝜌df⊥ . This correspondence allows us then to compute all the c-exceptional triples 
and all the p-exceptional ones, as illustrated by the procedures 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺) and 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺), respectively, where the 
notion of exceptional triple is defined in the obvious way:

Definition 3.11 (Exceptional triple). Let 𝐺 be a defeasible 𝜌df⊥-graph. We say that a defeasible triple ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 (resp. ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈
𝐺𝑑𝑒𝑓 ) is c-exceptional (resp. p-exceptional) w.r.t. 𝐺 if 𝑝 is c-exceptional (resp. p-exceptional) w.r.t. 𝐺.

Procedure 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺).
Input: Defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓

Output: Set 𝜖𝗉(𝐺) of p-exceptional triples w.r.t. 𝐺

1: 𝜖𝗉(𝐺) ∶=∅
2: for all ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 do

3: if 𝐺𝑠 ⊢𝜌df⊥ (𝑝, ⊥𝗉, 𝑝) then

4: 𝜖𝗉(𝐺) ∶=𝜖𝖼(𝐺) ∪ {⟨𝑝, 𝚜𝚙, 𝑞⟩}
5: return 𝜖𝗉(𝐺)

Procedures 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺) and 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺) correctly model exceptionality, as proved by the following immediate corol-

lary of Proposition 3.12.

Corollary 3.13. Given a defeasible graph 𝐺 and a defeasible triple ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝐺𝑑𝑒𝑓 (resp., ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝐺𝑑𝑒𝑓 ), ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝜖𝖼(𝐺) (resp., ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝜖𝗉(𝐺)) iff it is c-exceptional (resp. p-exceptional) w.r.t. 𝐺.

Example 3.6 (Running example cont.). Like in Example 3.2, it is easily verified that, besides 𝐺𝑠 ⊢𝜌df⊥ (𝑑𝑈, ⊥𝖼, 𝑑𝑈 ) and 𝐺𝑠 ⊢𝜌df⊥
(𝑢𝐷𝐶, ⊥𝗉, 𝑢𝐷𝐶), we also have 𝐺𝑠 ⊢𝜌df⊥ (𝑐𝐷𝑈, ⊥𝖼, 𝑐𝐷𝑈 ).16 As a consequence,

𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺) = {⟨𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩, ⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩, ⟨𝑐𝐷𝑈, 𝗌𝖼, ℎ𝑃 ⟩}
𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺) = {⟨𝑢𝐷𝐶, 𝗌𝗉, ℎ𝐷𝐼⟩} . □

3.4. The ranking procedure

Iteratively applied, the notions of c-exceptionality and p-exceptionality allow us to associate to every term, i.e., to every defeasible 
triple, a rank value w.r.t. a defeasible graph 𝐺. Specifically, we introduce a ranking procedure, called 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺), that orders the 
defeasible information in 𝐺𝑑𝑒𝑓 into a sequence 𝙳0, … , 𝙳𝑛, 𝙳∞ of sets 𝙳𝑖 of defeasible triples, with 𝑛 ⩾ 0 and 𝙳∞ possibly empty. The 
procedure is shown below.

The ranking procedure is built on top of the 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲 and 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿 procedures, using 𝜌df⊥ decision steps only.

Example 3.7 (Running example cont.). Consider Example 3.6. Let us order 𝐺𝑑𝑒𝑓 by running 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺). So, consider 𝙳0 ∶=𝐺𝑑𝑒𝑓 . From 
Example 3.6 we immediately have

𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺𝑠𝑡𝑟 ∪ 𝙳0) ∶= 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺)

𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺𝑠𝑡𝑟 ∪ 𝙳0) ∶= 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺)

𝙳1 ∶= {⟨𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩, ⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩, ⟨𝑐𝐷𝑈, 𝗌𝖼, ℎ𝑃 ⟩, ⟨𝑢𝐷𝐶, 𝗌𝗉, ℎ𝐷𝐼⟩} .
16

16 𝑢𝐷𝐶 ↦ usesDrugControlled, 𝑐𝐷𝑈 ↦ controlledDrugUser and ℎ𝐷𝐼 ↦ hasDrugIndependence.
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Procedure 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺).
Input: Defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓

Output: ranking 𝚛(𝐺) = {𝙳0 , … , 𝙳𝑛, 𝙳∞}
1: 𝙳0 ∶=𝐺𝑑𝑒𝑓

2: 𝑖∶=0
3: repeat

4: 𝙳𝑖+1 ∶=𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺𝑠𝑡𝑟 ∪ 𝙳𝑖) ∪ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺𝑠𝑡𝑟 ∪ 𝙳𝑖)
5: 𝑖∶=𝑖 + 1
6: until 𝙳𝑖 = 𝙳𝑖+1
7: 𝙳∞ ∶=𝙳𝑖
8: 𝚛(𝐺) ∶={𝙳0 , … , 𝙳𝑖−1 , 𝙳∞}
9: return 𝚛(𝐺)

Now, it can be verified that w.r.t. 𝐺𝑠𝑡𝑟 ∪ 𝙳1, 𝑑𝑈 and 𝑢𝐷𝐶 are not exceptional, while 𝑐𝐷𝑈 is, as

𝐺𝑠𝑡𝑟 ∪ (𝙳1)𝑠 ⊬𝜌df⊥ (𝑑𝑈,⊥𝖼, 𝑑𝑈 )

𝐺𝑠𝑡𝑟 ∪ (𝙳1)𝑠 ⊬𝜌df⊥ (𝑢𝐷𝐶,⊥𝗉, 𝑢𝐷𝐶)

𝐺𝑠𝑡𝑟 ∪ (𝙳1)𝑠 ⊢𝜌df⊥ (𝑐𝐷𝑈,⊥𝖼, 𝑐𝐷𝑈 ) .

Therefore,

𝙳2 ∶= {⟨𝑐𝐷𝑈, 𝗌𝖼, ℎ𝑃 ⟩} .
Finally, it is easy to check that

𝙳3 ∶= ∅

that is,

𝙳∞ ∶= ∅

and, thus,

𝚛(𝐺) ∶= {𝙳0,𝙳1,𝙳2,𝙳∞} . □

The following example shows an example of a triple that turns out to have infinite rank.

Example 3.8. Let 𝐿 be the graph {(𝑝, 𝖽𝗈𝗆, 𝑟), (𝑞, 𝖽𝗈𝗆, 𝑡), (𝑟, ⊥𝖼, 𝑡), ⟨𝑞, 𝚜𝚌, 𝑝⟩}. The only defeasible triple is ⟨𝑞, 𝚜𝚌, 𝑝⟩, hence 𝙳0 = {⟨𝑞, 𝚜𝚌, 𝑝⟩}. 
Applying the procedure 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝙻), from the graph 𝐿𝑠 we conclude the triple (𝑞, ⊥𝗉, 𝑞) with the following derivation:

(𝑝,𝖽𝗈𝗆, 𝑟) (𝑞,𝖽𝗈𝗆, 𝑡) (𝑟,⊥𝖼, 𝑡)
(7a’)

(𝑝,⊥𝗉, 𝑞) (𝑞,𝚜𝚙, 𝑝)
(6b)(𝑞,⊥𝗉, 𝑞)

Hence we have 𝙳1 = 𝙳0, that is, we have a fixed point, and we can conclude 𝙳∞ = 𝙳0 = {⟨𝑞, 𝚜𝚌, 𝑝⟩}. □

Now we prove that the ranking procedure 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺) correctly mirrors the ranking of the defeasible information w.r.t. the height 
functions ℎ𝖼

𝐺
and ℎ𝗉

𝐺
. Specifically, we want to show (see Proposition 3.19 later on) that

• for 𝑖 < 𝑛, ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳𝑖 ⧵ 𝙳𝑖+1 iff ℎ𝖼
𝐺
(𝑝) = 𝑖;

• for 𝑖 = 𝑛, ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳𝑛 ⧵ 𝙳∞ iff ℎ𝖼
𝐺
(𝑝) = 𝑛,

and an analogous result w.r.t. ℎ
𝗉
𝐺

.

To do so, we need to introduce some preliminary constructions and lemmas. To start with, let us note that the information in a 
graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 is ranked from the semantical point of view by the minimal model min𝐺 = (ℳ, 𝑟) and the height functions ℎ𝖼

𝐺

and ℎ𝗉
𝐺

defined on it. Let 𝑖
min𝐺 = (ℳ𝑖, 𝑟𝑖) be the submodel of min𝐺 obtained by eliminating all the 𝜌df⊥ interpretations in ℳ whose 

height is strictly less than 𝑖 (𝑖 ⩾ 0). Specifically, given a graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 and its minimal model min𝐺 = (ℳ, 𝑟), 𝑖
min𝐺 = (ℳ𝑖, 𝑟𝑖)

is defined as follows:

• ℳ𝑖 ∶={ ∈ℳ ∣ 𝑟() ⩾ 𝑖};
17

• 𝑟𝑖()∶=𝑟() − 𝑖, for every  ∈ℳ𝑖.
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That is, 𝑖
min𝐺 is obtained from min𝐺 by eliminating all the interpretations that have a rank of 𝑖 − 1 or less. We next show that the 

interpretation 𝑖
min𝐺 models the defeasible information in the graph that has a higher level of exceptionality: the higher the value of 

𝑖, the higher the level of exceptionality. That is, given a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 , let

𝐺𝑖 ∶=𝐺𝑠𝑡𝑟 ∪𝐺
𝑑𝑒𝑓

𝑖
, (6)

where

𝐺
𝑑𝑒𝑓

𝑖
∶={⟨𝑝,𝚜𝚌, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 ∣ ℎ𝖼

𝐺
(𝑝) ⩾ 𝑖} ∪ {⟨𝑝,𝚜𝚙, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 ∣ ℎ𝗉

𝐺
(𝑝) ⩾ 𝑖} . (7)

Then the following proves that 𝑖
min𝐺 is indeed a model of 𝐺𝑖.

Lemma 3.14. Let 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a defeasible graph and min𝐺 = (ℳ, 𝑟) its minimal ranked model. Then 𝑖
min𝐺 = (ℳ𝑖, 𝑟𝑖) is a model of 

the subgraph 𝐺𝑖 =𝐺𝑠𝑡𝑟 ∪𝐺
𝑑𝑒𝑓

𝑖
.

Now, it turns out that the minimal model for 𝐺𝑖, that is built using the set of 𝜌df⊥-interpretations ℳ, can easily be defined by 
extending 𝑖

min𝐺 . That is, let ∗
𝑖
= (ℳ, 𝑟∗

𝑖
) be a ranked interpretation where 𝑟∗

𝑖
is defined as

𝑟∗
𝑖
() =

{
𝑟𝑖() if  ∈ℳ𝑖

0 otherwise .

The following holds.

Lemma 3.15. Given a defeasible graph 𝐺, ∗
𝑖

is the minimal model of the subgraph 𝐺𝑖.

The following lemma connects the height of a term with the notion of exceptionality in the models ∗
𝑖
.

Lemma 3.16. Let 𝐺 = 𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a defeasible graph and let min𝐺 be its minimal model, with ℎ(min𝐺) = 𝑛. For every 𝑖 ⩽ 𝑛 and term 
𝑝 s.t. ℎ𝖼

𝐺
(𝑝) ⩾ 𝑖 (resp., ℎ𝗉

𝐺
(𝑝) ⩾ 𝑖) 𝑝 is c-exceptional (resp., p-exceptional) w.r.t. 𝑖

min𝐺 = (ℳ𝑖, 𝑟𝑖) iff it is c-exceptional (resp., p-exceptional) 
w.r.t. ∗

𝑖
= (ℳ, 𝑟∗

𝑖
).

The following lemma connects the height to the computation of exceptionality.

Lemma 3.17. Let 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a defeasible graph, and min𝐺 = (ℳ, 𝑟) its minimal model, with ℎ(min𝐺) = 𝑛, and ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 . 
Then,

• for every 𝑖 < 𝑛, ℎ𝖼
𝐺
(𝑝) ⩾ 𝑖 + 1 iff ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺𝑖);

• for 𝑖 = 𝑛, ℎ𝖼
𝐺
(𝑝) =∞ iff ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺𝑖).

Analogously, let ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 . Then,

• for every 𝑖 < 𝑛, ℎ𝗉
𝐺
(𝑝) ⩾ 𝑖 + 1 iff ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺𝑖);

• for 𝑖 = 𝑛, ℎ𝗉
𝐺
(𝑝) =∞ iff ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺𝑖).

We now move on to prove the correspondence between the ranking procedure and the height (the semantic ranking of the 
defeasible information).

Given a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 , 𝐺𝙳
𝑖

(𝑖 ⩾ 0) is the subgraph of 𝐺 defined as follows:

𝐺𝙳
𝑖
∶=𝐺𝑠𝑡𝑟 ∪ 𝙳𝑖 , (8)

where 𝙳𝑖 is in the output of 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺), i.e., 𝙳𝑖 ∈ 𝚛(𝐺). Our objective now is to prove that 𝐺𝑖 =𝐺𝙳
𝑖
. To prove that for every 𝑖, 𝐺𝑖 =𝐺𝙳

𝑖
, 

it is sufficient to prove that for every rank value 𝑖 ≠∞ a term 𝑡 is exceptional w.r.t. 𝐺𝙳
𝑖

iff it is exceptional w.r.t. 𝑖
min𝐺 .

The following can be shown.

Lemma 3.18. Let 𝐺 be a defeasible graph, with 𝑛 being the height of its minimal model. Then, for every 𝑖 ⩽ 𝑛, 𝐺𝑖 =𝐺𝙳
𝑖
.

Now we can state the main proposition for our ranking procedure.

Proposition 3.19. Let 𝐺 = 𝐺𝑠𝑡𝑟 ∪ 𝐺𝑑𝑒𝑓 be a defeasible graph, ⟨𝑝, 𝚜𝚌, 𝑞⟩ (resp., ⟨𝑝, 𝚜𝚙, 𝑞⟩) be in 𝐺𝑑𝑒𝑓 , and 𝚛(𝐺) = {𝙳0, … , 𝙳𝑛, 𝙳∞} be the 
ranking obtained by 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺). The following statements hold:
18

• for 𝑖 < 𝑛, ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳𝑖 ⧵ 𝙳𝑖+1 iff ℎ𝖼
𝐺
(𝑝) = 𝑖;
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• for 𝑖 = 𝑛, ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳𝑛 ⧵ 𝙳∞ iff ℎ𝖼
𝐺
(𝑝) = 𝑛.

Proof. Immediate consequence of Lemma 3.18. □

Another consequence of Lemma 3.18 is the following corollary, that will be useful later on.

Corollary 3.20. Let 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a defeasible graph, with 𝚛(𝐺) = {𝙳0, … , 𝙳𝑛, 𝙳∞} being the ranking obtained by 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺), and let 
𝑝 be a term. The following statements hold:

• ℎ𝖼
𝐺
(𝑝) = 0 if and only if 𝐺𝙳

0 ⊬𝜌df⊥ (𝑝, ⊥𝖼, 𝑝);
• for every 𝑖, 0 < 𝑖 ⩽ 𝑛, ℎ𝖼

𝐺
(𝑝) = 𝑖 if and only if 𝐺𝙳

𝑖−1 ⊢𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) and 𝐺𝙳
𝑖
⊬𝜌df⊥ (𝑝, ⊥𝖼, 𝑝);

• ℎ𝖼
𝐺
(𝑝) =∞ if and only if 𝐺𝙳

𝑛
⊢𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).

Analogously,

• ℎ
𝗉
𝐺
(𝑝) = 0 if and only if 𝐺𝙳

0 ⊬𝜌df⊥ (𝑝, ⊥𝗉, 𝑝);
• for every 𝑖, 0 < 𝑖 ⩽ 𝑛, ℎ𝗉

𝐺
(𝑝) = 𝑖 if and only if 𝐺𝙳

𝑖−1 ⊢𝜌df⊥ (𝑝, ⊥𝗉, 𝑝) and 𝐺𝙳
𝑖
⊬𝜌df⊥ (𝑝, ⊥𝗉, 𝑝);

• ℎ𝖼
𝐺
(𝑝) =∞ if and only if 𝐺𝙳

𝑛
⊢𝜌df⊥ (𝑝, ⊥𝗉, 𝑝).

Proof. Immediate from Proposition 3.12, Lemma 3.17 and Lemma 3.18. □

3.5. Decision procedures for defeasible 𝜌df

In this section we present our main decision procedures. That is, given triples ⟨𝑝, 𝚜𝚌, 𝑞⟩, ⟨𝑝, 𝚜𝚙, 𝑞⟩ and (𝑠, 𝑝, 𝑜) as queries, the 
procedures below decide whether they are or not minimally entailed by a defeasible graph 𝐺.

Remark 3.2. Given a fixed defeasible graph 𝐺, we assume that its ranking 𝚛(𝐺) = {𝙳0, … , 𝙳𝑛, 𝙳∞} = 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺) has already been 
computed.

We start with the case of 𝜌df⊥-triples of the form (𝑠, 𝑝, 𝑜). The procedure 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝 below decides whether 𝐺 ⊧min
(𝑠, 𝑝, 𝑜) holds. Essentially, given 𝐺, we take the strict part 𝐺𝑠𝑡𝑟 to which we add disjointness triples related to defeasible ones with 
infinite rank and then test for 𝜌df⊥ entailment.

Procedure 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝(𝐺, 𝚛(𝐺), (𝑠, 𝑝, 𝑜)).
Input: Graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 , ranking 𝚛(𝐺) = {𝙳0 , … , 𝙳𝑛, 𝙳∞}, a 𝜌df⊥ -triple (𝑠, 𝑝, 𝑜)
Output: 𝚝𝚛𝚞𝚎 if 𝐺 ⊧min (𝑠, 𝑝, 𝑜); 𝚏𝚊𝚕𝚜𝚎 otherwise

1: 𝐺′ ∶=𝐺𝑠𝑡𝑟 ∪ {(𝑝, ⊥𝖼 , 𝑝) ∣ ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳∞} ∪ {(𝑝, ⊥𝗉 , 𝑝) ∣ ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙳∞}
2: return 𝐺′ ⊢𝜌df⊥ (𝑠, 𝑝, 𝑜)

The following lemma can be proved, which motivates the construction of graph 𝐺′ in the procedure 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝.

Lemma 3.21. Let 𝐺 = 𝐺𝑠𝑡𝑟 ∪ 𝐺𝑑𝑒𝑓 be a defeasible graph, 𝚛(𝐺) = {𝙳0, … , 𝙳𝑛, 𝙳∞} its ranking, and min𝐺 = (ℳ, 𝑟) its minimal model, with 
 ∈ℳ. Then  ∈ℳℕ iff  ⊩𝜌df⊥ 𝐺

𝑠𝑡𝑟 ∪ {(𝑝, ⊥𝖼, 𝑝) ∣ ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳∞} ∪ {(𝑝, ⊥𝗉, 𝑝) ∣ ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙳∞}.

The following theorem establishes correctness and completeness of the 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝 procedure.

Theorem 3.22. Consider a defeasible graph 𝐺 and a 𝜌df⊥-triple (𝑠, 𝑝, 𝑜). Then

𝐺 ⊧min (𝑠, 𝑝, 𝑜) iff 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝(𝐺,𝚛(𝐺), (𝑠, 𝑝, 𝑜)) .

Proof. By Lemma 3.21 and Theorem 2.1 we have that 𝐺 ⊧min (𝑠, 𝑝, 𝑜) if and only if 𝐺𝑠𝑡𝑟 ∪ {(𝑝, ⊥𝖼, 𝑝) ∣ ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳∞} ∪ {(𝑝, ⊥𝗉, 𝑝) ∣⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙳∞} ⊨𝜌df⊥ (𝑠, 𝑝, 𝑜). Therefore, the procedure

𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝 is correct and complete. □

Example 3.9 (Running example cont.). Consider Example 3.7. We have seen that 𝚛(𝐺) = {𝙳0, 𝙳1, 𝙳2, 𝙳∞}, with 𝙳∞ = ∅. Let us show now 
that “tom is a person”. To do so, let us show that

𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝(𝐺,𝚛(𝐺), (tom, 𝗍𝗒𝗉𝖾,person)) = 𝚝𝚛𝚞𝚎 .

As 𝙳∞ = ∅, we have that 𝐺′ = 𝐺𝑠𝑡𝑟. Now, in Example 2.4 we have seen that 𝐺𝑠𝑡𝑟 ⊢𝜌df⊥ (tom, 𝗍𝗒𝗉𝖾, 𝑝𝑒𝑟𝑠𝑜𝑛). Therefore,
19

𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝(𝐺, 𝚛(𝐺), (tom, 𝗍𝗒𝗉𝖾, person)) returns 𝚝𝚛𝚞𝚎 and by Theorem 3.22 we can conclude that 𝐺 ⊧min (tom, 𝗍𝗒𝗉𝖾, person). □



Information Sciences 643 (2023) 118409G. Casini and U. Straccia

Procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐺, 𝚛(𝐺), ⟨𝑝, 𝚜𝚌, 𝑞⟩).
Input: Graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 , ranking 𝚛(𝐺) = {𝙳0 , … , 𝙳𝑛, 𝙳∞}, defeasible triple ⟨𝑝, 𝚜𝚌, 𝑞⟩
Output: 𝚝𝚛𝚞𝚎 if 𝐺 ⊧min ⟨𝑝, 𝚜𝚌, 𝑞⟩; 𝚏𝚊𝚕𝚜𝚎 otherwise

1: 𝑖∶=0
2: 𝙳𝑛+1 ∶=𝙳∞
3: repeat

4: if 𝑖 ⩽ 𝑛 then

5: 𝐺′ ∶=𝐺𝑠𝑡𝑟 ∪ (𝙳𝑖)𝑠

6: 𝑗 ∶=𝑖
7: 𝑖∶=𝑖 + 1
8: else

9: return 𝚝𝚛𝚞𝚎
10: until 𝐺′ ⊬𝜌df ⊥ (𝑝, ⊥𝖼 , 𝑝)
11: 𝙳𝑝 ∶={⟨𝑟, 𝚜𝚌, 𝑠⟩ ∣ ⟨𝑟, 𝚜𝚌, 𝑠⟩ ∈ 𝙳𝑗 ⧵ 𝙳𝑗+1}
12: return 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞)

We next consider triples of the form ⟨𝑝, 𝚜𝚌, 𝑞⟩. The decision procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 decides whether 𝐺 ⊧min ⟨𝑝, 𝚜𝚌, 𝑞⟩ holds 
(we will later consider also an analogous procedure for triples of form ⟨𝑝, 𝚜𝚙, 𝑞⟩). Roughly, given a graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 , the ranking 
𝚛(𝐺) = {𝙳0, … , 𝙳𝑛, 𝙳∞} of defeasible triples in 𝐺𝑑𝑒𝑓 and a query triple ⟨𝑝, 𝚜𝚌, 𝑞⟩, we first search for the lowest ranked 𝙳𝑗 (smallest 
𝑗) such that 𝑝 is not c-exceptional w.r.t. 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑗 )𝑠, i.e., 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑗 )𝑠 ⊬𝜌df⊥ (𝑝, ⊥𝖼, 𝑝). Then, from such a set 𝙳𝑗 we remove all higher 
ranked defeasible triples, and we call 𝙳𝑝 the resulting set. We conclude by checking whether the query triple ⟨𝑝, 𝚜𝚌, 𝑞⟩ is entailed by 
𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠, i.e., 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞).

To establish the correctness and completeness of procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 we prove some lemmas beforehand. Let us recall 
that, by Lemma 3.4, every proof tree with a triple (𝑝, 𝚜𝚌, 𝑞) as root contains only triples of the form (𝐴, 𝚜𝚌, 𝐵). Using such a lemma, 
the following can be proven.

Lemma 3.23. Let 𝑇 be a proof tree from a graph 𝐻 to a triple (𝑝, 𝚜𝚌, 𝑞), and let  be a model of 𝐻 . If  ⊩𝜌df⊥ (𝑠, ⊥𝖼, 𝑠) for some triple 
(𝑠, 𝚜𝚌, 𝑜) ∈𝐻 , then  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).

Lemma 3.24. Let 𝐺 = 𝐺𝑠𝑡𝑟 ∪ 𝐺𝑑𝑒𝑓 be a defeasible graph, and let 𝚛(𝐺) = {𝙳0, … , 𝙳𝑛, 𝙳∞} be its ranking. For any pair of terms 𝑝, 𝑞 s.t. 
ℎ𝖼
𝐺
(𝑝) ⩽ 𝑛,

𝐺 ⊧min ⟨𝑝,𝚜𝚌, 𝑞⟩ iff 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝,𝚜𝚌, 𝑞) ,

where 𝙳𝑝 is defined as in the 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 procedure.

The following theorem establishes correctness and completeness of the 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 procedure.

Theorem 3.25. Let 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a defeasible graph and let ⟨𝑝, 𝚜𝚌, 𝑞⟩ be a defeasible triple. Then,

𝐺 ⊧min ⟨𝑝,𝚜𝚌, 𝑞⟩ iff 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐺,𝚛(𝐺), ⟨𝑝,𝚜𝚌, 𝑞⟩) .
Example 3.10 (Running example cont.). Consider again Example 3.7. Let us show that “young drug users are usually unhappy” 
(cf. statement (8) in Example 1.1). To do so, let us show that

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐺,𝚛(𝐺), ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩) = 𝚝𝚛𝚞𝚎 .

For 𝑖 = 0, we have 𝐺′ = 𝐺𝑠, and 𝐺𝑠 ⊢𝜌df⊥ (𝑦𝐷𝑈, ⊥𝖼, 𝑦𝐷𝑈 ), since 𝐺𝑠 ⊢𝜌df⊥ (𝑑𝑈, ⊥𝖼, 𝑑𝑈 ), that together with (𝑦𝐷𝑈, 𝗌𝖼, 𝑑𝑈 ) implies 
(𝑦𝐷𝑈, ⊥𝖼, 𝑦𝐷𝑈 ) by the rule (𝐸𝑚𝑝𝑡𝑦𝑆𝑃 ′).

For 𝑖 = 1, we have 𝐺′ = 𝐺 ∪ (𝙳1)𝑠, and 𝐺′ ⊬𝜌df⊥ (𝑦𝐷𝑈, ⊥𝖼, 𝑦𝐷𝑈 ), since 𝐺′ ⊬𝜌df⊥ (𝑑𝑈, ⊥𝖼, 𝑑𝑈 ). Therefore, according to line 11 we 
have

𝙳𝑝 ∶= 𝙳1 ⧵ 𝙳2 = {⟨𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩, ⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩, ⟨𝑢𝐷𝐶, 𝗌𝗉, ℎ𝐷𝐼⟩} .
Finally, it is easy to check that:

𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 )

since (𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ) ∪ (𝑦𝐷𝑈, 𝗌𝖼, 𝑑𝑈 ) ⊆𝐺𝑠𝑡𝑟 ∪ (𝙳𝑦𝐷𝑈 )𝑠. Therefore,

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐺,𝚛(𝐺), ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩) = 𝚝𝚛𝚞𝚎

and by Theorem 3.25 we can conclude that 𝐺 ⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩.
Please note that 𝐺 ̸⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, ℎ𝑃 ⟩ as (𝑦𝑃 , 𝗌𝖼, ℎ𝑃 ) ∉𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠. □
20
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Procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿(𝐺, 𝚛(𝐺), ⟨𝑝, 𝚜𝚙, 𝑞⟩).
Input: Graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 , ranking 𝚛(𝐺) = {𝙳0 , … , 𝙳𝑛, 𝙳∞}, defeasible triple ⟨𝑝, 𝚜𝚙, 𝑞⟩
Output: 𝚝𝚛𝚞𝚎 if 𝐺 ⊧min ⟨𝑝, 𝚜𝚙, 𝑞⟩; 𝚏𝚊𝚕𝚜𝚎 otherwise

1: 𝑖∶=0
2: 𝙳𝑛+1 ∶=𝙳∞
3: repeat

4: if 𝑖 ⩽ 𝑛 then

5: 𝐺′ ∶=𝐺𝑠𝑡𝑟 ∪ (𝙳𝑖)𝑠

6: 𝑗 ∶=𝑖
7: 𝑖∶=𝑖 + 1
8: else

9: return 𝚝𝚛𝚞𝚎
10: until 𝐺′ ⊬𝜌df ⊥ (𝑝, ⊥𝗉 , 𝑝)
11: 𝙳𝑝 ∶={⟨𝑟, 𝚜𝚙, 𝑠⟩ ∣ ⟨𝑟, 𝚜𝚙, 𝑠⟩ ∈ 𝙳𝑗 ⧵ 𝙳𝑗+1}
12: return 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝, 𝚜𝚙, 𝑞)

Remark 3.3 (Drowning problem). We take the opportunity, using Example 3.10, to show that our entailment relation presents the 
same inferential limit that characterises Rational Closure, and that motivates the entailment relation we are going to present in 
Section 4 later on. By referring to Example 3.10, please note that indeed we also have

𝐺 ̸⊧min ⟨𝑑𝑈, 𝗌𝖼, 𝑠⟩
as 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐺, 𝚛(𝐺), ⟨𝑑𝑈, 𝗌𝖼, 𝑠⟩) returns 𝚏𝚊𝚕𝚜𝚎, i.e., we cannot derive that “drug users are usually students” (cf. statement 
(10) in Example 1.1).

This latter example shows a well-known behaviour of RC: in the case a class is exceptional w.r.t. a super-class, it does not inherit 
any of the typical properties of the super-class. In this specific case, since drug users are exceptional young people (they are not 
happy), in RC they do not inherit any of the typical properties of young people: in particular, we cannot conclude that drug users 
are students. This behaviour, called the drowning problem [5], may not be desirable in some applications and various RC extensions 
have been developed to overcome this problem [14,15,34]. In this work, we will address it in Section 4 via DINs.

Eventually, an analogous procedure to 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 can be defined for the case of defeasible triples of the form ⟨𝑝, 𝚜𝚙, 𝑞⟩, 
as illustrated by the 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿 procedure.

The proof that procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿 is correct and complete w.r.t. ⊧min proceeds similarly to the one for

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲.

Specifically, we first prove the analogues of Lemma 3.4.

Lemma 3.26. Let 𝑇 be a 𝜌df⊥ proof tree from 𝐻 to (𝑝, 𝚜𝚙, 𝑞). Then 𝑇 contains only triples of the form (𝐴, 𝚜𝚙, 𝐵).

Proof. The proof is similar to the proof of Lemma 3.4, we just need to refer to rule (2a) instead of (3a). □

Also for the other propositions the proof is analogous to the correspondent propositions for procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲. It 
suffices to change every instance of 𝚜𝚌 with 𝚜𝚙, ⊥𝖼 with ⊥𝗉, every reference to Lemma 3.4 with Lemma 3.26, and so on. Specifically, 
we have

Lemma 3.27. Let 𝑇 be a proof tree from a graph 𝐻 to a triple (𝑝, 𝚜𝚙, 𝑞), and let  be a model of 𝐻 . If  ⊩𝜌df⊥ (𝑠, ⊥𝗉, 𝑠) for some triple 
(𝑠, 𝚜𝚙, 𝑜) ∈𝐻 , then  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑝).

Lemma 3.28. Let 𝐺 = 𝐺𝑠𝑡𝑟 ∪ 𝐺𝑑𝑒𝑓 be a defeasible graph, and let 𝚛(𝐺) = {𝙳0, … , 𝙳𝑛, 𝙳∞} be its ranking. For any pair of terms 𝑝, 𝑞 s.t. 
ℎ
𝗉
𝐺
(𝑝) ⩽ 𝑛,

𝐺 ⊧min ⟨𝑝,𝚜𝚙, 𝑞⟩ iff 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝,𝚜𝚙, 𝑞) ,

where 𝙳𝑝 is defined as in the 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿 procedure.

Eventually, we conclude with the following theorem establishing correctness and completeness of the 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿 proce-

dure.

Theorem 3.29. Let 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a defeasible graph and let ⟨𝑝, 𝚜𝚙, 𝑞⟩ be a defeasible triple. Then,

𝐺 ⊧ ⟨𝑝,𝚜𝚙, 𝑞⟩ iff 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿(𝐺,𝚛(𝐺), ⟨𝑝,𝚜𝚙, 𝑞⟩) .
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Example 3.11 (Running example cont.). Consider again Example 3.7. Likewise Example 3.10, it is not difficult to show that indeed

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿(𝐺,𝚛(𝐺), ⟨𝑢𝐷𝐶, 𝗌𝗉, ℎ𝐷𝐼⟩) = 𝚝𝚛𝚞𝚎 .

Therefore, by Theorem 3.29 we can conclude that 𝐺 ⊧min ⟨𝑢𝐷𝐶, 𝗌𝗉, ℎ𝐷𝐼⟩). That is, “someone that uses some drug in a controlled way 
has usually drug independence to that drug”. However, please also note that 𝐺 ̸⊧min ⟨𝑢𝐷𝐶, 𝗌𝗉, ℎ𝐷𝐴⟩) instead17 as one may check that

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿(𝐺,𝚛(𝐺), ⟨𝑢𝐷𝐶, 𝗌𝗉, ℎ𝐷𝐴⟩) = 𝚏𝚊𝚕𝚜𝚎 . □

For completeness, we conclude this section with some examples relying on the “penguin” Example 3.5.

Example 3.12. Consider the graph 𝐻 , similar to the graph 𝐹 from Example 3.5, but with the following changes:

• the triple ⟨𝑏, 𝗌𝖼, ℎ𝑓 ⟩ has been added, where ℎ𝑓 is read as “having feathers”;

• the information that penguins do not fly has been made defeasible, that is, the triple (𝑝, 𝗌𝖼, 𝑒) has been substituted by ⟨𝑝, 𝗌𝖼, 𝑒⟩;
• the triples ⟨𝑝𝑗, 𝗌𝖼, 𝑓 ⟩ and (𝑝𝑗, 𝗌𝖼, 𝑝) have been added, where 𝑝𝑗 is read as “penguins with jet-packs”.

That is, 𝐻 =𝐻𝑠𝑡𝑟 ∪𝐻𝑑𝑒𝑓 , with

𝐻𝑠𝑡𝑟 = {(𝑝, 𝗌𝖼, 𝑏), (𝑠, 𝗌𝖼, 𝑏), (𝑒,⊥𝖼, 𝑓 ), (𝑝𝑗, 𝗌𝖼, 𝑝)}

𝐻𝑑𝑒𝑓 = {⟨𝑏, 𝗌𝖼, 𝑓 ⟩, ⟨𝑝, 𝗌𝖼, 𝑒⟩, ⟨𝑏, 𝗌𝖼, ℎ𝑓 ⟩, ⟨𝑝𝑗, 𝗌𝖼, 𝑓 ⟩} .
Given 𝐻𝑠 = {(𝑝, 𝗌𝖼, 𝑏), (𝑠, 𝗌𝖼, 𝑏), (𝑏, 𝗌𝖼, 𝑓 ), (𝑝, 𝗌𝖼, 𝑒), (𝑒, ⊥𝖼, 𝑓 ), (𝑏, 𝗌𝖼, ℎ𝑓 ), (𝑝𝑗, 𝗌𝖼, 𝑓 ), (𝑝𝑗, 𝗌𝖼, 𝑝)}, it is easy to check that:

𝐻𝑠 ⊬𝜌df⊥ (𝑏,⊥𝖼, 𝑏)

𝐻𝑠 ⊬𝜌df⊥ (𝑠,⊥𝖼, 𝑠)

𝐻𝑠 ⊢𝜌df⊥ (𝑝,⊥𝖼, 𝑝)

𝐻𝑠 ⊢𝜌df⊥ (𝑝𝑗,⊥𝖼, 𝑝𝑗) .

Therefore, within procedure 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐻), we have

𝙳1 = {⟨𝑝, 𝗌𝖼, 𝑒⟩, ⟨𝑝𝑗, 𝗌𝖼, 𝑓 ⟩} .
Since

𝐻𝑠𝑡𝑟 ∪ (𝙳1)𝑠 ⊬𝜌df⊥ (𝑝,⊥𝖼, 𝑝)

𝐻𝑠𝑡𝑟 ∪ (𝙳1)𝑠 ⊢𝜌df⊥ (𝑝𝑗,⊥𝖼, 𝑝𝑗)

the procedure 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐻) determines

𝙳2 = {⟨𝑝𝑗, 𝗌𝖼, 𝑓 ⟩} ,
and terminates with

𝙳∞ = ∅ ,

as 𝐻𝑠𝑡𝑟 ∪ (𝙳2)𝑠 ⊬𝜌df⊥ (𝑝𝑗, ⊥𝖼, 𝑝𝑗).
Having computed 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐻), we can now check what is minimally entailed.

At first, we can check that penguins do not fly, that is, we can make the following queries:

Triple ⟨𝑝, 𝗌𝖼, 𝑒⟩. We apply the procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻, 𝑟(𝐻), ⟨𝑝, 𝗌𝖼, 𝑒⟩) and have: 𝐺′ ⊬𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) for 𝑖 = 1, that implies 
𝙳𝑝 = {⟨𝑝, 𝗌𝖼, 𝑒⟩}. 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝, 𝗌𝖼, 𝑒), since (𝙳𝑝)𝑠 = {(𝑝, 𝗌𝖼, 𝑒)}, and 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻, 𝑟(𝐻), ⟨𝑝, 𝗌𝖼, 𝑒⟩) returns 𝚝𝚛𝚞𝚎.

Triple ⟨𝑝, 𝗌𝖼, 𝑓 ⟩. We apply the procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻, 𝑟(𝐻), ⟨𝑝, 𝗌𝖼, 𝑓 ⟩) and have: 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊬𝜌df⊥ (𝑝, 𝗌𝖼, 𝑓 ), and

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻, 𝑟(𝐻), ⟨𝑝, 𝗌𝖼, 𝑓 ⟩) returns 𝚏𝚊𝚕𝚜𝚎.

The procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 allows us to correctly derive that “penguins do not fly”, while it avoids to derive that “penguins 
fly”. What about the other typical property of birds in our graph, that is, having feathers?
22
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Triple ⟨𝑝, 𝗌𝖼, ℎ𝑓 ⟩. We apply the procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻, 𝑟(𝐻), ⟨𝑝, 𝗌𝖼, ℎ𝑓 ⟩) and have: 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊬𝜌df⊥ (𝑝, 𝗌𝖼, ℎ𝑓 ), and

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻,𝑟(𝐻), ⟨𝑝, 𝗌𝖼, ℎ𝑓 ⟩) = 𝚏𝚊𝚕𝚜𝚎 .

This latter example shows again the drowning problem (see Remark 3.3). In this specific case, since penguins are exceptional birds 
(they do not fly), in RC they do not inherit any of the typical properties of birds: that is, we cannot conclude that penguins have 
feathers.

Now we move to check the behaviour of sub-classes that do not show any exceptional behaviour. From our graph we know that 
sparrows are birds, and we have no information about any unusual property associated to sparrows. As a consequence, reasoning on 
the base of the principle of ‘presumption of typicality’ (see Section 3.2), we would like sparrows to inherit all the typical properties 
of birds. In fact, we have:

Triple ⟨𝑠, 𝗌𝖼, 𝑓 ⟩. We apply the procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻, 𝑟(𝐻), ⟨𝑠, 𝗌𝖼, 𝑓 ⟩) and get: 𝐺′ ⊬𝜌df⊥ (𝑠, ⊥𝖼, 𝑠) for 𝑖 = 0, that implies 
𝙳𝑝 = {⟨𝑏, 𝗌𝖼, 𝑓 ⟩, ⟨𝑏, 𝗌𝖼, ℎ𝑓 ⟩}. Now, 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑠, 𝗌𝖼, 𝑓 ), since (𝑏, 𝗌𝖼, 𝑓 ) ∈ (𝙳𝑝)𝑠 and (𝑠, 𝗌𝖼, 𝑏) ∈𝐺𝑠𝑡𝑟. Therefore,

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻,𝑟(𝐻), ⟨𝑠, 𝗌𝖼, 𝑓 ⟩) = 𝚝𝚛𝚞𝚎 .

Triple ⟨𝑠, 𝗌𝖼, ℎ𝑓 ⟩. We apply the procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻, 𝑟(𝐻), ⟨𝑠, 𝗌𝖼, ℎ𝑓 ⟩) and get: 𝐺′ ⊬𝜌df⊥ (𝑠, ⊥𝖼, 𝑠) for 𝑖 = 0. 𝐺𝑠𝑡𝑟 ∪
(𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑠, 𝗌𝖼, ℎ𝑓 ), since (𝑏, 𝗌𝖼, ℎ𝑓 ) ∈ (𝙳𝑝)𝑠 and (𝑠, 𝗌𝖼, 𝑏) ∈𝐺𝑠𝑡𝑟, it follows that

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻,𝑟(𝐻), ⟨𝑠, 𝗌𝖼, ℎ𝑓 ⟩) = 𝚝𝚛𝚞𝚎 .

Finally, we check what happens with an extra exceptional level. Do penguins with jet-packs fly or not?

Triple ⟨𝑝𝑗, 𝗌𝖼, 𝑓 ⟩. We apply the procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻, 𝑟(𝐻), ⟨𝑝𝑗, 𝗌𝖼, 𝑓 ⟩) and have: 𝐺′ ⊬𝜌df⊥ (𝑝𝑗, ⊥𝖼, 𝑝𝑗) for 𝑖 = 2, that implies 
𝙳𝑝 = {⟨𝑝𝑗, 𝗌𝖼, 𝑓 ⟩}. 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝𝑗, 𝗌𝖼, 𝑓 ), since (𝙳𝑝)𝑠 = {(𝑝𝑗, 𝗌𝖼, 𝑓 )}, and

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻,𝑟(𝐻), ⟨𝑝𝑗, 𝗌𝖼, 𝑓 ⟩) = 𝚝𝚛𝚞𝚎 .

Triple ⟨𝑝𝑗, 𝗌𝖼, 𝑒⟩. We apply the procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻, 𝑟(𝐻), ⟨𝑝𝑗, 𝗌𝖼, 𝑒⟩) and have:

𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊬𝜌df⊥ (𝑝𝑗, 𝗌𝖼, 𝑒), and

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐻,𝑟(𝐻), ⟨𝑝𝑗, 𝗌𝖼, 𝑒⟩) = 𝚏𝚊𝚕𝚜𝚎 .

Therefore, correctly RC does not allow penguins with jet-packs to inherit the property of not-flying from typical penguins. □

The next example shows a case in which we have some information with infinite rank, and how that indicates the presence of 
some conflict.

Example 3.13. Let the graph 𝐿 contain the following information

𝐿 = {(𝑏, 𝗌𝖼, 𝑏𝑎), (𝑚𝑏, 𝗌𝖼, 𝑏), (𝑏𝑎,⊥𝖼, 𝑏𝑤)⟨𝑚𝑏, 𝗌𝖼, 𝑏𝑤⟩} ,
where ba is read “breaths air”, bw is read “breaths underwater”, and mb is the class “marsh bird”.

When we apply the 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐿) procedure, as

𝐿𝑠 ⊢𝜌df⊥ (𝑚𝑏,⊥𝖼,𝑚𝑏)

we obtain 𝙳0 = 𝙳1 = 𝙳∞ = {⟨𝑚𝑏, 𝗌𝖼, 𝑏𝑤⟩}. Now, we can check, using the 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝 procedure, that e.g., 𝐿 minimally entails 
(𝑚𝑏, ⊥𝖼, 𝑚𝑏): since ⟨𝑚𝑏, 𝗌𝖼, 𝑏𝑤⟩ ∈ 𝙳∞, we have (𝑚𝑏, ⊥𝖼, 𝑚𝑏) ∈𝐿′, that obviously implies

𝐿′ ⊢𝜌df⊥ (𝑚𝑏,⊥𝖼,𝑚𝑏) .

Therefore, as expected,

𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝(𝐿, 𝑟(𝐿), (𝑚𝑏,⊥𝖼,𝑚𝑏)) = 𝚝𝚛𝚞𝚎 . □

The outcomes in Example 3.13 are reasonable and desirable: despite we are dealing with defeasible information, we are facing an 
unsolvable conflict: we are informed that birds breath air, (𝑏, 𝗌𝖼, 𝑏𝑎), without exceptions, since it is a strict 𝜌df⊥-triple, while marsh 
birds usually breath underwater, ⟨𝑚𝑏, 𝗌𝖼, 𝑏𝑤⟩. The triple (𝑏, 𝗌𝖼, 𝑏𝑎), not being defeasible, does not allow the existence of birds breathing 
underwater, and from the information at our disposal it is reasonable to conclude that marsh birds cannot exist, that is, (𝑚𝑏, ⊥𝖼 , 𝑚𝑏).

Triples with infinite rank appear when there is some unsolvable conflict in the graph. Another example comes when we have in 
the graph pieces of information that are in direct conflict with each other. For example, if we add to the graph 𝐻 in Example 3.12

the two defeasible triples ⟨𝑚𝑏, 𝗌𝖼, 𝑓 ⟩, ⟨𝑚𝑏, 𝗌𝖼, 𝑒⟩ (‘marsh birds typically fly’ and ‘marsh birds typically do not fly’), that are in direct 
23
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3.6. Structural properties

RC, like many other non-monotonic approaches, has also been analysed from a ‘structural properties’ point of view [37]. For 
example, in the propositional case, given a knowledge base  of defeasible conditionals 𝛼 ⇝ 𝛽 (read ‘if 𝛼 holds, typically 𝛽 holds 
too’), where 𝛼 and 𝛽 are propositions, RC satisfies a particular form of constrained monotonicity, called Rational Monotonicity (RM) 
[35]:

(RM)  ⊧ 𝛼⇝ 𝛽,  ̸⊧ 𝛼⇝ ¬𝛾
 ⊧ 𝛼 ∧ 𝛾 ⇝ 𝛽

The intended meaning of an instance of the structural property above is the following: if we know that typical birds fly ( ⊧ 𝛼⇝ 𝛽), 
and we are not aware that all typical birds are not black ( ̸⊧ 𝛼 ⇝ ¬𝛾), then we may conclude that, typically, black birds fly 
( ⊧ 𝛼 ∧ 𝛾 ⇝ 𝛽).

In our framework, a propositional defeasible conditional 𝛼⇝ 𝛽 correspond to defeasible triples of the form ⟨𝑝, 𝚜𝚌, 𝑞⟩ and ⟨𝑝, 𝚜𝚙, 𝑞⟩. 
Therefore, given a graph 𝐺, the property (RM) may take a form like18

(RM)
𝐺 ⊧min ⟨𝑝,𝚜𝚌, 𝑞⟩, 𝐺 ̸⊧min ⟨𝑝,𝚜𝚌,¬𝑟⟩

𝐺 ⊧min ⟨𝑝 ∧ 𝑟,𝚜𝚌, 𝑞⟩
Such a property is linked to the use of conjunction and negation of terms, which, however, are not supported (so far) in 𝜌df⊥. It does 
not seem possible to express (𝑅𝑀) in defeasible 𝜌df⊥.

However, there are a few basic structural properties that still can be expressed in our framework. One of the simplest one is the 
property of Supraclassicality, as it is called in the propositional setting, that simply indicates that a strict piece of information implies 
also its own defeasible, weaker formulation, that is,

(Supra𝑐)
𝐺 ⊧min (𝑝,𝚜𝚌, 𝑞)
𝐺 ⊧min ⟨𝑝,𝚜𝚌, 𝑞⟩ (Supra𝑝)

𝐺 ⊧min (𝑝,𝚜𝚙, 𝑞)
𝐺 ⊧min ⟨𝑝,𝚜𝚙, 𝑞⟩

Proposition 3.30. ⊧min satisfies (𝑆𝑢𝑝𝑟𝑎𝑐) and (𝑆𝑢𝑝𝑟𝑎𝑝).

Proof. Consider (𝑆𝑢𝑝𝑟𝑎𝑐 ), and let 𝐺 ⊧min (𝑝, 𝚜𝚌, 𝑞). That implies that all 𝜌df⊥-interpretations in the minimal model min𝐺 satisfy 
(𝑝, 𝚜𝚌, 𝑞). Consequently, for every 𝜌df⊥-interpretation  in 𝖼_min(𝑝, min𝐺),  ⊩𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞). That is, according to Definition 3.4, 
min𝐺 ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩, that is to 𝐺 ⊨𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩. The proof (𝑆𝑢𝑝𝑟𝑎𝑝) is analogous. □

Reflexivity, Left Logical Equivalence, and Right Weakening are other essential properties. In the propositional case they are of the 
form:

(𝑅𝑒𝑓 )  ⊧ 𝛼⇝ 𝛼

(LLE)  ⊧ 𝛼⇝ 𝛽, ⊧ 𝛼 ≡ 𝛾

 ⊧ 𝛾 ⇝ 𝛽
(𝑅𝑊 )  ⊧ 𝛼⇝ 𝛽, 𝛽 ⊧ 𝛾

 ⊧ 𝛼⇝ 𝛾

As for Supraclassicality, these properties can also be translated in our system in two versions: one for classes and one for predicates. For 
(𝐿𝐿𝐸), logical equivalence ‘≡’ is translated using symmetric pairs of 𝚜𝚌- and 𝚜𝚙-triples. Specifically, the above axioms are encoded 
as

(𝑅𝑒𝑓𝑐 ) 𝐺 ⊧min ⟨𝑝,𝚜𝚌, 𝑝⟩
(LLE𝑐 )

𝐺 ⊧min ⟨𝑝,𝚜𝚌, 𝑟⟩, 𝐺 ⊧min (𝑝,𝚜𝚌, 𝑞), 𝐺 ⊧min (𝑞,𝚜𝚌, 𝑝)
𝐺 ⊧min ⟨𝑞,𝚜𝚌, 𝑟⟩ (RW𝑐)

𝐺 ⊧min ⟨𝑝,𝚜𝚌, 𝑞⟩, 𝐺 ⊧min (𝑞,𝚜𝚌, 𝑟)
𝐺 ⊧min ⟨𝑝,𝚜𝚌, 𝑟⟩

(𝑅𝑒𝑓𝑝) 𝐺 ⊧min ⟨𝑝,𝚜𝚙, 𝑝⟩
(LLE𝑝)

𝐺 ⊧min ⟨𝑝,𝚜𝚙, 𝑟⟩, 𝐺 ⊧min (𝑝,𝚜𝚙, 𝑞), 𝐺 ⊧min (𝑞,𝚜𝚙, 𝑝)
𝐺 ⊧min ⟨𝑞,𝚜𝚙, 𝑟⟩ (RW𝑝)

𝐺 ⊧min ⟨𝑝,𝚜𝚙, 𝑞⟩, 𝐺 ⊧min (𝑞,𝚜𝚙, 𝑟)
𝐺 ⊧min ⟨𝑝,𝚜𝚙, 𝑟⟩

Note that (𝑅𝑒𝑓𝑐 ) and (𝑅𝑒𝑓𝑝) do not hold, as they do not hold in the classical form 𝐺 ⊧min (𝑝, 𝚜𝚌, 𝑝) and 𝐺 ⊧min (𝑝, 𝚜𝚙, 𝑝). This is the 
consequence of having considered minimal 𝜌df for which reflexivity for 𝚜𝚌 and 𝚜𝚙 triples does not hold. If we use (full) 𝜌df, we will 
recover reflexivity for the classical triples, and, by Proposition 3.30, we would obtain immediately also (𝑅𝑒𝑓𝑐 ) and (𝑅𝑒𝑓𝑝).

Concerning (𝐿𝐿𝐸) and (𝑅𝑊 ), they are satisfied.

Proposition 3.31. ⊧min satisfies (𝐿𝐿𝐸𝑐 ), (𝑅𝑊𝑐), (𝐿𝐿𝐸𝑝), and (𝑅𝑊𝑝).
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Remark 3.4. Let us note that, despite (𝑅𝑀) seems not to be syntactically expressible in our framework, we have proposed the same 
kind of construction that is behind propositional RC, that is, we model a kind of defeasible reasoning implementing the Presumption of 
Typicality [34, p. 4]: if we are not informed of the contrary, we reason assuming that we are dealing with typical behaviours. From a 
semantical point of view, this “maximisation of typicality” has been modelled considering the minimal models of a KB: those models in 
which the entities are associated to the lowest (i.e., most typical) possible rank value, modulo the satisfaction of the knowledge base. 
This formal solution has been used also elsewhere in order to give a semantic characterisation of RC [9,26,40]. On the other hand, 
from the decision procedure point of view, we have defined an algorithm that follows similar ones developed for RC in other formal 
frameworks; in particular, our decision procedure is built on top of the decision procedure for the monotonic fragment, and it decides 
RC through a calculation of exceptionalities and rank values, as it is done e.g., for RC for propositional logic and DLs [12,16,21].

Nevertheless, there are some more properties satisfied by our entailment relation ⊧min. In the following, let us consider the closure 
operation 𝖢𝗅min defined as follows: given a graph 𝐺,

𝖢𝗅min(𝐺) ∶= {�𝑠, 𝑝, 𝑜� ∣𝐺 ⊧min �𝑠, 𝑝, 𝑜�}.

As we may expect, 𝖢𝗅min is not monotonic, that is, given any graph 𝐺 and triple �𝑠, 𝑝, 𝑜�, the following does not necessarily hold19:

𝖢𝗅min(𝐺) ⊆ 𝖢𝗅min(𝐺 ∪ {�𝑠, 𝑝, 𝑜�}) .

Proposition 3.32. 𝖢𝗅min is not monotonic.

Proof. Consider the graph 𝐹 in Example 3.5, and its subgraph

𝐹 ′ = {(𝑝, 𝗌𝖼, 𝑏), (𝑠, 𝗌𝖼, 𝑏), ⟨𝑏, 𝗌𝖼, 𝑓 ⟩, (𝑒,⊥𝖼, 𝑓 )} ,

obtained eliminating the triple (𝑝, 𝗌𝖼, 𝑒).
It can be easily shown that w.r.t. 𝐹 ′ penguins are not exceptional, i.e.,

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿(𝐹 ′, 𝑟(𝐹 ′), ⟨𝑝, 𝗌𝖼, 𝑓 ⟩) = 𝚝𝚛𝚞𝚎 ,

while w.r.t. 𝐹 penguins are exceptional, i.e.,

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿(𝐹 , 𝑟(𝐹 ), ⟨𝑝, 𝗌𝖼, 𝑓 ⟩) = 𝚏𝚊𝚕𝚜𝚎 . □

Nonetheless, and not surprising, 𝖢𝗅min(𝐺) is monotonic w.r.t. the strict part of the information.

Proposition 3.33. Let 𝐺 be any graph, (𝑠, 𝑝, 𝑜) any 𝜌df⊥-triple, and �𝑠′, 𝑝′, 𝑜′� be any triple. If 𝐺 ⊧min (𝑠, 𝑝, 𝑜), then 𝐺 ∪ {�𝑠′, 𝑝′, 𝑜′�} ⊧min
(𝑠, 𝑝, 𝑜).

Proof. This is immediate from Theorem 3.22. Indeed, 𝐺 ⊧min (𝑠, 𝑝, 𝑜) implies 𝐺′ ⊢𝜌df⊥ (𝑠, 𝑝, 𝑜), with 𝐺′ defined according to the 
procedure 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝. Let 𝐹 ∶= 𝐺 ∪ {�𝑠′, 𝑝′, 𝑜′�}, and let 𝐹 ′ be defined applying the procedure 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝 to 
𝐹 . Clearly 𝐺′ ⊆ 𝐹 ′, and, given that ⊢𝜌df⊥ is monotonic, we can conclude 𝐹 ′ ⊢𝜌df⊥ (𝑠, 𝑝, 𝑜), that is, 𝐹 ⊧min (𝑠, 𝑝, 𝑜). □

This is clearly a desirable behaviour, since the strict part of our information should be treated as non-defeasible information, and 
consequently we should reason monotonically about it.

𝖢𝗅min satisfies some other desirable properties: namely, Inclusion, Cumulativity, and Idempotence.

Proposition 3.34. 𝖢𝗅min satisfies inclusion. That is, for any graph 𝐺

𝐺 ⊆ 𝖢𝗅min(𝐺) .

Proof. 𝖢𝗅min(𝐺) is determined by the model min𝐺 , and, by definition, min𝐺 ∈ ℜ𝐺 , that is, min𝐺 is a model of 𝐺, implying 
𝐺 ⊆ 𝖢𝗅min(𝐺). □

Proposition 3.35. 𝖢𝗅min satisfies Cumulativity. That is, for any pair of graphs 𝐺, 𝐺′,

if 𝐺 ⊆𝐺′ ⊆ 𝖢𝗅min(𝐺), then 𝖢𝗅min(𝐺′) = 𝖢𝗅min(𝐺) .
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19 Monotonicity at the level of the entailment relation is sometimes called semi-monotonicity in the literature on non-monotonic reasoning [40].
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Proof. 𝖢𝗅min(𝐺) is determined by the model min𝐺 , that is, the minimal model of 𝐺. Since 𝐺′ ⊆ 𝖢𝗅min(𝐺), min𝐺 is also a model of 
𝐺′. Therefore, min𝐺 must be the minimal model also for 𝐺′. Indeed, assume that is not the case, that is, there is a model 𝑅 of 𝐺′

such that 𝑅 ⪯min𝐺 . Since 𝐺 ⊆𝐺′, 𝑅 is also a model of 𝐺, and min𝐺 would not be the minimal model of 𝐺, against the hypothesis. 
Hence both 𝖢𝗅min(𝐺) and 𝖢𝗅min(𝐺′) are determined by the model min𝐺 . □

Cumulativity has two immediate consequences that are well-known, desirable properties: a constrained form of monotonicity, 
called Cautious Monotonicity, and the classical property of Cut.

Proposition 3.36. 𝖢𝗅min satisfies Cautious Monotonicity. That is, for any graph 𝐺 and any triple �𝑠, 𝑝, 𝑜�,

if 𝐺 ⊧min �𝑠, 𝑝, 𝑜� and 𝐺 ⊧min �𝑠′, 𝑝′, 𝑜′�, then 𝐺 ∪ �𝑠′, 𝑝′, 𝑜′� ⊧min �𝑠, 𝑝, 𝑜� .

Proposition 3.37. 𝖢𝗅min satisfies Cut. That is, for any graph 𝐺 and any triple �𝑠, 𝑝, 𝑜�,

if 𝐺 ∪ �𝑠′, 𝑝′, 𝑜′� ⊧min �𝑠, 𝑝, 𝑜� and 𝐺 ⊧min �𝑠′, 𝑝′, 𝑜′�, then 𝐺 ⊧min �𝑠, 𝑝, 𝑜� .

Please note that these two properties are here analysed at the level of entailment. As discussed above, in the case of the conditional 
reasoning [35] these structural properties can be expressed at two levels: at the level of conditionals (see the first formulation of 
(RM) above), and the meta-level of the entailment relation. Here we are looking at the properties (CM) and (Cut) at the meta-level 
of the entailment relation. Similarly to the (RM) case, if conjunction among terms would have been allowed, such properties at the 
level of the language may be expressed as

(𝐶𝑀)
𝐺 ⊨𝜌df⊥ ⟨𝑝,𝚜𝚌, 𝑞⟩, 𝐺 ⊨𝜌df⊥ ⟨𝑝,𝚜𝚌, 𝑟⟩

𝐺 ⊨𝜌df⊥ ⟨𝑝 ∧ 𝑟,𝚜𝚌, 𝑞⟩ (𝐶𝑢𝑡)
𝐺 ⊨𝜌df⊥ ⟨𝑝 ∧ 𝑟,𝚜𝚌, 𝑞⟩, 𝐺 ⊨𝜌df⊥ ⟨𝑝,𝚜𝚌, 𝑟⟩

𝐺 ⊨𝜌df⊥ ⟨𝑝,𝚜𝚌, 𝑞⟩
Finally, 𝖢𝗅min satisfies also Idempotence.

Proposition 3.38. 𝖢𝗅min satisfies Idempotence. That is, for any graph 𝐺,

𝖢𝗅min(𝖢𝗅min(𝐺)) = 𝖢𝗅min(𝐺) .

Proof. Idempotence is an immediate consequence of Inclusion and Cumulativity. It is sufficient to set 𝐺′ = 𝖢𝗅min(𝐺) in the Cumulativity 
property, while Inclusion guarantees that 𝐺 ⊆ 𝖢𝗅min(𝐺) holds. □

The satisfaction of such properties, defined at the level of entailment and also called global properties by Lehmann and Magidor, 
was already proved for the original formulation of RC in the propositional case [35, Sect. 5.5].

3.7. Computational complexity

We now address the computational complexity of the previously defined procedures and show that our entailment decision 
procedures run in polynomial time.

To start with, let us consider ⊢𝜌df⊥ . Now, consider a graph 𝐺 and a 𝜌df⊥-triple (𝑠, 𝑝, 𝑜). An easy way to decide whether 𝐺 ⊢𝜌df⊥
(𝑠, 𝑝, 𝑜) holds is to compute the closure 𝖢𝗅(𝐺) of 𝐺 and then check whether (𝑠, 𝑝, 𝑜) ∈ 𝖢𝗅(𝐺). Now, as 𝐺 is ground, like for [39], it is 
easily verified that, both the time to compute the closure of 𝐺 as well as its size are 𝑂(|𝐺|2) and, thus,

Proposition 3.39. For a graph 𝐺 and a 𝜌df⊥-triple (𝑠, 𝑝, 𝑜), 𝐺 ⊢𝜌df⊥ (𝑠, 𝑝, 𝑜) can be decided in time 𝑂(|𝐺|2).
Remark 3.5. Let us note that [39, Theorem 21] provides also an 𝑂(|𝐺| log |𝐺|) time algorithm to decide the ground 𝜌df entailment 
problem.20 Whether a similar algorithm can be extended also to 𝜌df⊥ (so including also rules (5)-(7)) while maintaining the same 
computational complexity is still an open problem.

We next consider the 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲 and 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿 procedures. It is immediately verified that, by Proposition 3.39,

Proposition 3.40. For a defeasible graph 𝐺 = 𝐺𝑠𝑡𝑟 ∪ 𝐺𝑑𝑒𝑓 , both 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺) as well as 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺) require at most |𝐺𝑑𝑒𝑓 |
checks and, thus, both run in time 𝑂(|𝐺𝑑𝑒𝑓 ||𝐺|2).

Consider now the case of the 𝚁𝚊𝚗𝚔𝚒𝚗𝚐 procedure. It is easily verified that steps 3.-6. may be repeated at most |𝐺𝑑𝑒𝑓 | times and 
each of which calls once the 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲 and 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿 procedures. Therefore, by Proposition 3.40, we have easily that
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Proposition 3.41. For a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 , 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺) runs in time 𝑂(|𝐺𝑑𝑒𝑓 |2|𝐺|2). Moreover, the number of sets in 𝚛(𝐺)
is at most 𝑂(|𝐺𝑑𝑒𝑓 |).

Eventually, let us consider the entailment check procedures in Section 3.5. Let us recall Remark 3.2 and, thus, we assume that 
the ranking has been computed once and for all. The time required to compute 𝚛(𝐺) is, by Proposition 3.41, 𝑂(|𝐺𝑑𝑒𝑓 |2|𝐺|2).

To what concerns 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝, the following result is an immediate consequence from Proposition 3.39.

Proposition 3.42. Consider a defeasible graph 𝐺 = 𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 and a 𝜌df⊥-triple (𝑠, 𝑝, 𝑜). Then the procedure 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝(𝐺,
𝚛(𝐺), (𝑠, 𝑝, 𝑜)) runs in time 𝑂(|𝐺|2).

Now, consider 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲. By Proposition 3.41, it is easily verified that the steps 3.-10. may be repeated at most 
𝑂(|𝐺𝑑𝑒𝑓 |) times and each time we make one ⊢𝜌df⊥ check. By considering also the additional ⊢𝜌df⊥ check in step 12, by Proposition 3.39

we have

Proposition 3.43. Consider a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟∪𝐺𝑑𝑒𝑓 and a defeasible triple ⟨𝑝, 𝚜𝚌, 𝑞⟩. Then the procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐺,
𝚛(𝐺), ⟨𝑝, 𝚜𝚌, 𝑞⟩)) runs in time 𝑂(|𝐺𝑑𝑒𝑓 ||𝐺|2).

The computational complexity of 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿 is the same as for 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 and, thus, we conclude with

Proposition 3.44. Consider a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟∪𝐺𝑑𝑒𝑓 and a defeasible triple ⟨𝑝, 𝚜𝚙, 𝑞⟩. Then the procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿(𝐺,
𝚛(𝐺), ⟨𝑝, 𝚜𝚌, 𝑞⟩)) runs in time 𝑂(|𝐺𝑑𝑒𝑓 ||𝐺|2).

From Propositions 3.39 - 3.44, it follows immediately that

Corollary 3.45. Consider a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 and a triple �𝑝, ∗, 𝑞�. Then 𝐺 ⊧min �𝑝, ∗, 𝑞� can be decided in polynomial time.

4. Inheritance networks based closure

As we have seen in Remark 3.3 and Example 3.12, RC suffers from the so-called drowning problem: if a class is exceptional w.r.t. a 
superclass it does not inherit any of the typical property of the superclass (e.g., we can neither derive that “drug users are usually 
students” nor that “penguins usually have feathers”). Such an inferential behaviour is considered a weakness in many applications. In 
order to overcome such a limit, some closure operations extending RC have been proposed: for example, the Lexicographic Closure 
[13,34,36], the Defeasible Inheritance-based approach [14], the Relevant Closure [15], and the Multipreference Closure [23].

Here we propose an adaptation of the Defeasible Inheritance-based approach [14], originally formulated for propositional logic 
and DLs, to the RDFS framework. We focus on such an approach for two reasons: it is inspired by inheritance nets [48], hence it 
is based on a formalism that is already particularly close to RDFS; and, it is promising from the computational complexity point of 
view, as we have already seen in [14] and in the case of the DL ⊥ [16, Section 4].

The approach is based on refining RC by using the graph to identify the axioms taking part in each specific conflict between 
pieces of information. As we are going to see, such a solution will allow us both to overcome the drowning effect and to preserve 
computational tractability.21 We also point out that, at the time of writing, we did not find a tractable procedure to decide defeasible 
subsumption under other approaches such as Lexicographic Closure, Relevant Closure, or Multipreference closure mentioned above. 
However, some tractable results are known for some specific syntactic cases under Lexicographic Closure. In fact, [18] shows that, 
while rational closure and lexicographic entailment share the same complexity for deciding entailment of propositional conditional 
knowledge bases (they are both 𝑃𝑁𝑃 -complete), when moving to the Horn-case, the complexity of the two approaches diverge in 
the sense that the former is 𝑃 -complete, while the latter still remains 𝑃𝑁𝑃 -complete. [18] also shows that for so-called feedback-

free Horn conditional KBs22 lexicographic Horn entailment is polynomial. Nevertheless, we leave the option to restrict syntactically 
defeasible RDFS graphs under lexicographic closure (or any other before mentioned closure operation) and how these restrictions 
impact computationally to future work.

4.1. Decision procedures for inheritance net based closure

In the Defeasible Inheritance-based approach [14,16] the pieces of information in the KB are translated into an inheritance net, 
which extends the work of Touretzky [48]. Since RDFS is already a graphical formalism, such a translation is not necessary in our 
framework. Also, in [14,16] we have introduced the notion of duct on a graph, which is a generalisation of the classical notion of 

21 In [14, Appendix A] it is also shown that the inheritance-base closure behaves well, and better than RC w.r.t. most of the “benchmark” examples.
22 Very roughly, feedback-free Horn conditional KBs are such that the consequent of a defeasible Horn rule cannot occur in a strict Horn-rule, and we can define a 
27

particular partition, the default partition, of the set of the defeasible Horn rules based on the vocabulary (see [18, Sect. 6.4.2] for a detailed explanation).
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path that allows the formalisation of conjunctions and disjunctions, which we do not need here. In fact, we can revert to the notion 
of paths only, defined inductively as follows.23

Definition 4.1 (path). Given a graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 , the paths in 𝐺 are defined as follows:

1. every triple �𝑝, ∗, 𝑞� in 𝐺 corresponds to a path 𝜋 = {�𝑝, ∗, 𝑞�} in 𝐺 from 𝑝 to 𝑞;

2. if 𝜋 is a path from 𝑝 to 𝑞 and �𝑞, ∗, 𝑠� is a triple in 𝐺 that does not already occur in 𝜋, then 𝜋′ = 𝜋 ∪ {�𝑞, ∗, 𝑠�} is a path in 𝐺 from 
𝑝 to 𝑠.

Using the notion of path we apply the RC procedure locally: that is, if we want to decide whether ⟨𝑝, 𝗌𝖼, 𝑞⟩ or ⟨𝑝, 𝗌𝗉, 𝑞⟩ are entailed 
by a graph, the exceptionality rankings and the RC are calculated considering only the information in the KB that has some connection 
to 𝑝 and 𝑞 (for more details, we refer the reader to [14]): we consider only the defeasible triples in 𝐺𝑑𝑒𝑓 corresponding to triples 
appearing in the paths from 𝑝 to 𝑞, and we compute the RC of only such a portion of the KB.

For the rest of this section, we will assume that we will be working with graphs 𝐺 = 𝐺𝑠𝑡𝑟 ∪ 𝐺𝑑𝑒𝑓 s.t. 𝐺𝑠𝑡𝑟 is closed under 
𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝, that is, for every 𝜌df⊥ triple (𝑠, 𝑝, 𝑜), (𝑠, 𝑝, 𝑜) ∈ 𝐺𝑠𝑡𝑟 iff 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝(𝐺, 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺), (𝑠, 𝑝, 𝑜)) returns 
𝚝𝚛𝚞𝚎.

Now, let 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a graph, and consider any triple ⟨𝑝, ∗, 𝑞⟩ with ∗∈ {𝚜𝚌, 𝚜𝚙}. The procedure for deciding whether ⟨𝑝, ∗, 𝑞⟩
is in the closure of a graph 𝐺 using the Defeasible Inheritance-based approach is as follows [14].

First, we need to proceed with a first closure operation, that needs to be done once and for all: set 𝐺𝑖𝑛 ∶=𝐺; then, for every pair 
of nodes 𝑝, 𝑞 in the graph do

Step 1. Compute the set of all paths starting in 𝑝 and ending into 𝑞, and let Δ𝑝,𝑞 be the set of all the defeasible triples ⟨𝑡, ∗, 𝑧⟩ (with 
∗∈ {𝗌𝖼, 𝚜𝚙}) appearing in such paths.

Step 2. Let 𝐺𝑝,𝑞 =𝐺𝑠𝑡𝑟 ∪Δ𝑝,𝑞 .

Step 3. If 𝐺𝑝,𝑞 ⊧min ⟨𝑝, ∗, 𝑞⟩, let 𝐺𝑖𝑛 ∶=𝐺𝑖𝑛 ∪ {⟨𝑝, ∗, 𝑞⟩}.

The procedure 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗 describes the pseudo-algorithm corresponding to such steps.

Procedure 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺).
Input: Graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 with 𝐺𝑠𝑡𝑟 closed under 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝
Output: Graph 𝐺𝑖𝑛

1: 𝐺𝑖𝑛 ∶=𝐺
2: for all ⟨𝑝, 𝑞⟩, s.t. 𝑝, 𝑞 ∈ 𝚞𝚗𝚒(𝐺) do

3: Δ𝑝,𝑞 ∶=
⋃
{𝜎 ∣ 𝜎 is a path in 𝐺 from 𝑝 to 𝑞} ⧵𝐺𝑠𝑡𝑟

4: 𝐺𝑝,𝑞 ∶=𝐺𝑠𝑡𝑟 ∪Δ𝑝,𝑞

5: if 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐺𝑝,𝑞 , 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺𝑝,𝑞 ), ⟨𝑝, 𝚜𝚌, 𝑞⟩) = 𝚝𝚛𝚞𝚎 then

6: 𝐺𝑖𝑛 ∶=𝐺𝑖𝑛 ∪ ⟨𝑝,𝚜𝚌, 𝑞⟩
7: if 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿(𝐺𝑝,𝑞 , 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺𝑝,𝑞 ), ⟨𝑝, 𝚜𝚙, 𝑞⟩) = 𝚝𝚛𝚞𝚎 then

8: 𝐺𝑖𝑛 ∶=𝐺𝑖𝑛 ∪ ⟨𝑝,𝚜𝚙, 𝑞⟩
9: return 𝐺𝑖𝑛

The expansion of the graph 𝐺 into the graph 𝐺𝑖𝑛 adds to the graph defeasible connections that are not involved into conflicts, but 
that would have been lost in RC due to the drowning problem. Example 4.1 below will show it.

Once we have avoided the drowning effect, we define the inheritance based entailment (that we will indicate with the symbol 
⊢𝑖𝑛) by closing 𝐺𝑖𝑛 under RC. That is:

Definition 4.2 (Inheritance-based entailment). For any graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 and any triple �𝑝, 𝑟, 𝑞�,

𝐺 ⊢𝑖𝑛 �𝑝, 𝑟, 𝑞� iff 𝐺𝑖𝑛 ⊧min �𝑝, 𝑟, 𝑞� . (9)

Given Theorems 3.25 and 3.29, Equation (9) can be reformulated as follows:

𝐺 ⊢𝑖𝑛 (𝑝, 𝑟, 𝑞) iff 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝(𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺),

𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺)), (𝑝, 𝑟, 𝑞)) = 𝚝𝚛𝚞𝚎;

𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚌, 𝑞⟩ iff 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺), (10)

𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺)), ⟨𝑝,𝚜𝚌, 𝑞⟩) = 𝚝𝚛𝚞𝚎;

𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚙, 𝑞⟩ iff 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿(𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺),
28

23 We use Greek letters 𝜋, 𝜎, … to denote paths.
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𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺)), ⟨𝑝,𝚜𝚙, 𝑞⟩) = 𝚝𝚛𝚞𝚎 .

That is, given a graph 𝐺, if we have as query, respectively, a strict triple, a defeasible 𝚜𝚌-triple, or a defeasible 𝚜𝚙-triple, ⊢𝑖𝑛 is 
determined by calling, respectively, 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝, 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲, and 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿.

Example 4.1 (Running example cont.). We have already seen in Example 3.12 that 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 and 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿
suffer from the drowning effect. This also holds for Example 3.10 (see also Remark 3.3). In particular, in Example 3.10 we have 
seen that, despite young people are usually happy, young drug users are atypical young people that are usually unhappy: i.e., 𝐺 ⊧min⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩ and 𝐺 ̸⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, ℎ𝑃 ⟩. Now, the exceptionality of the class of young drug users w.r.t. the class of young people 
implies that, due to the drowning effect, young drug users do not inherit any of the defeasible properties associated to young people, 
in particular we will not be able to derive that typically young drug users are students, that is, 𝐺 ̸⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩.

We can easily check this. As we have seen in Example 3.10, the defeasible set associated to the query ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩ is

𝙳𝑦𝐷𝑈 = {⟨𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩, ⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩} .
As the defeasible set associated to a query triple depends on its first element, 𝙳𝑦𝐷𝑈 is associated also to the query ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩. Now, 
it is easy to check that

𝐺𝑠𝑡𝑟 ∪ (𝙳𝑦𝐷𝑈 )𝑠 ⊬𝜌df⊥ (𝑦𝐷𝑈, 𝗌𝖼, 𝑠)

as ⟨𝑦𝑃 , 𝗌𝖼, 𝑠⟩ is not in 𝙳𝑦𝐷𝑈 . As a consequence 𝐺 ̸⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩.
On the other hand, using ⊢𝑖𝑛 we avoid the drowning effect, as shown next. Our query triple is ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩. First of all we have to 

check whether it is in 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺). Consider all the paths from 𝑦𝐷𝑈 to 𝑠: i.e.,

𝜎 = {(𝑦𝐷𝑈, 𝗌𝖼, 𝑦𝑃 ), ⟨𝑦𝑃 , 𝗌𝖼, 𝑠⟩}
𝜎′ = {(𝑦𝐷𝑈, 𝗌𝖼, 𝑑𝑈 ), ⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩, ⟨𝑦𝑃 , 𝗌𝖼, 𝑠⟩} .

That is,

Δ(𝑦𝐷𝑈,𝑆) ∶=(𝜎 ∪ 𝜎′) ⧵𝐺𝑠𝑡𝑟 = {⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩, ⟨𝑦𝑃 , 𝗌𝖼, 𝑠⟩}
and

𝐺(𝑦𝐷𝑈,𝑠) =𝐺𝑠𝑡𝑟 ∪Δ(𝑦𝐷𝑈,𝑠) .

Now we have to check whether 𝐺(𝑦𝐷𝑈,𝑠) ⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩. We do so by invoking

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐺(𝑦𝐷𝑈,𝑠),𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺(𝑦𝐷𝑈,𝑠)), ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩) .
First of all, we need to execute 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺(𝑦𝐷𝑈,𝑠)). As

(𝐺(𝑦𝐷𝑈,𝑠))𝑠 ⊬𝜌df⊥ (𝑑𝑈,⊥𝖼, 𝑑𝑈 )

(𝐺(𝑦𝐷𝑈,𝑠))𝑠 ⊬𝜌df⊥ (𝑦𝑃 ,⊥𝖼, 𝑦𝑃 ) ,

we obtain 𝑟(𝐺(𝑦𝐷𝑈𝑟,𝑠)) = {𝙳0, 𝙳∞} with

𝙳0 = {⟨𝑦𝑃 , 𝗌𝖼, 𝑠⟩, ⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩} ,
and 𝙳∞ = ∅. That is, 𝐺(𝑦𝐷𝑈,𝑠) is a subgraph of 𝐺 without any exceptionality. It is now easy to check that the defeasible set associated 
to the query triple ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩ is

𝙳𝑦𝐷𝑈 = 𝙳0

and we obtain

𝐺𝑠𝑡𝑟 ∪ (𝙳0)𝑠 ⊢𝜌df⊥ (𝑦𝐷𝑈, 𝗌𝖼, 𝑠) ,

as we have (𝑦𝐷𝑈, 𝗌𝖼, 𝑦𝑃 ) and (𝑦𝑃 , 𝗌𝖼, 𝑠) in 𝐺𝑠𝑡𝑟 ∪ (𝙳0)𝑠. That is,

𝐺(𝑦𝐷𝑈,𝑠) ⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩ .
Therefore, ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩ ∈ 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺), that is, ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩ ∈ 𝐺𝑖𝑛. Given that 𝐺 ⊢𝑖𝑛 ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩ iff 𝐺𝑖𝑛 ⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩
or, equivalently,

⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩ ∈ 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝙸𝚗𝚑𝚎𝚛𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺)) ,
29

⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩ ∈𝐺𝑖𝑛, and ⊧min satisfies Inclusion (Proposition 3.34), we can conclude that



Information Sciences 643 (2023) 118409G. Casini and U. Straccia

𝐺 ⊢𝑖𝑛 ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩ ,
as desired.

On the other hand, it is easy to check that in case of conflicting information the inheritance-based approach and rational closure 
behave alike.

To see this, we can check whether the triple ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩ follows from 𝐺, as in Example 3.10. The paths from 𝑦𝐷𝑈 to 𝑢ℎ𝑃 are:

𝜎 = {(𝑦𝐷𝑈, 𝗌𝖼, 𝑦𝑃 ), ⟨𝑦𝑃 , 𝗌𝖼, ℎ𝑃 ⟩, (ℎ𝑃 ,⊥𝖼, 𝑢ℎ𝑃 )}

𝜎′ = {(𝑦𝐷𝑈, 𝗌𝖼, 𝑑𝑈 ), ⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩, ⟨𝑦𝑃 , 𝗌𝖼, ℎ𝑃 ⟩, (ℎ𝑃 ,⊥𝖼, 𝑢ℎ𝑃 )}

𝜎′′ = {(𝑦𝐷𝑈, 𝗌𝖼, 𝑑𝑈 ), ⟨𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩} .
Therefore,

Δ(𝑦𝐷𝑈,𝑢ℎ𝑃 ) ∶=(𝜎 ∪ 𝜎′ ∪ 𝜎′′) ⧵𝐺𝑠𝑡𝑟 = {⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩, ⟨𝑦𝑃 , 𝗌𝖼, ℎ𝑃 ⟩, ⟨𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩}
and

𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 ) =𝐺𝑠𝑡𝑟 ∪Δ(𝑦𝐷𝑈,𝑢ℎ𝑃 ) .

Now we check whether 𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 ) ⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩ holds. At first, we rank Δ(𝑦𝐷𝑈,𝑢ℎ𝑃 ) via 𝚁𝚊𝚗𝚔𝚒𝚗𝚐(𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 )). We have:

𝙳0 ∶=Δ(𝑦𝐷𝑈,𝑢ℎ𝑃 ) .

We need to check whether 𝑑𝑈, 𝑦𝑃 are ‘empty classes’ in (𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 ))𝑠. Indeed, as for 𝐺𝑠 in Example 3.10, we obtain (𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 ))𝑠 ⊢𝜌df⊥
(𝑑𝑈, ⊥𝖼, 𝑑𝑈 ), while 𝑦𝑃 does not turn out to be empty in (𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 ))𝑠. Consequently, 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺𝑠𝑡𝑟 ∪ 𝙳0)∶={⟨𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩,⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩} and also 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺𝑠𝑡𝑟 ∪ 𝙳0)∶=∅. Therefore,

𝙳1 ∶={⟨𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩, ⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩} .
Next, in 𝐺𝑠𝑡𝑟 ∪ 𝙳1, 𝑑𝑈 is not exceptional anymore, and we obtain

𝙳2 ∶=∅ .

That is,

𝙳∞∶=∅

and, thus,

𝚛(𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 )) = {𝙳0,𝙳1,𝙳∞} .

Now we can check whether 𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 ) ⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩. To do so, we call

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 ),𝚛(𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 ), ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩) .
For 𝑖 = 0, we have 𝐺′ = (𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 ))𝑠, and 𝐺′ ⊢𝜌df⊥ (𝑦𝐷𝑈, ⊥𝖼, 𝑦𝐷𝑈 ), since (𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 ))𝑠 ⊢𝜌df⊥ (𝑑𝑈, ⊥𝖼, 𝑑𝑈 ), that, together with 
(𝑦𝐷𝑈, 𝗌𝖼, 𝑑𝑈 ), implies (𝑦𝐷𝑈, ⊥𝖼, 𝑦𝐷𝑈 ) by the rule (𝐸𝑚𝑝𝑡𝑦𝑆𝑃 ′).

For 𝑖 = 1, we have 𝐺′ = 𝐺𝑠𝑡𝑟 ∪ (𝙳1)𝑠, and 𝐺′ ⊬𝜌df⊥ (𝑦𝐷𝑈, ⊥𝖼, 𝑦𝐷𝑈 ). Hence we associate the defeasible set 𝙳1 to the query ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩. Following the procedure 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 we obtain:

𝙳𝑦𝐷𝑈 ∶=𝙳1 ⧵ 𝙳∞ = {⟨𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩, ⟨𝑑𝑈, 𝗌𝖼, 𝑦𝑃 ⟩} .
Eventually, it is easy to check that:

𝐺𝑠𝑡𝑟 ∪ (𝙳𝑦𝐷𝑈 )𝑠 ⊢𝜌df⊥ (𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 )

as (𝑑𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ) ∪ (𝑦𝐷𝑈, 𝗌𝖼, 𝑑𝑈 ) ⊆𝐺𝑠𝑡𝑟 ∪ (𝙳𝑦𝐷𝑈 )𝑠.
Therefore, we can conclude 𝐺𝑦𝐷𝑈,𝑢ℎ𝑃 ⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩. That implies that ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩ ∈ 𝐺𝑖𝑛, and consequently 𝐺 ⊢𝑖𝑛⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩.
We can verify that actually

𝐺𝑖𝑛 ∶=𝐺 ∪ {⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑢ℎ𝑃 ⟩, ⟨𝑦𝐷𝑈, 𝗌𝖼, 𝑠⟩} .
For example, ⟨𝑦𝐷𝑈, 𝗌𝖼, ℎ𝑃 ⟩ ∉𝐺𝑖𝑛: in fact, we have Δ(𝑦𝐷𝑈,ℎ𝑃 ) = Δ(𝑦𝐷𝑈,𝑢ℎ𝑃 ), that implies that we have the same ranking and the same set 
𝙳𝑦𝐷𝑈 . Moreover, 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑦𝐷𝑈 )𝑠 ⊬𝜌df⊥ (𝑦𝐷𝑈, 𝗌𝖼, ℎ𝑃 ), since (𝑦𝑃 , 𝗌𝖼, ℎ𝑃 ) ∉𝐺𝑠𝑡𝑟 ∪ (𝙳𝑦𝐷𝑈 )𝑠, which implies that 𝐺(𝑦𝐷𝑈,𝑢ℎ𝑃 ) ̸⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, ℎ𝑃 ⟩.

Given 𝐺𝑖𝑛, and in particular checked that ⟨𝑦𝐷𝑈, 𝗌𝖼, ℎ𝑃 ⟩ ∉ 𝐺𝑖𝑛, it is possible to verify that 𝐺𝑖𝑛 ̸⊧min ⟨𝑦𝐷𝑈, 𝗌𝖼, ℎ𝑃 ⟩, that is, 𝐺 ⊬𝑖𝑛
30

⟨𝑦𝐷𝑈, 𝗌𝖼, ℎ𝑃 ⟩. □
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4.2. Structural properties

Here we check that Inheritance-based entailment ⊢𝑖𝑛 satisfies some of the properties satisfied also by RC. Most of the proofs are 
straightforward, since ⊢𝑖𝑛 corresponds to an RC over the graph 𝐺𝑖𝑛 (see Definition 4.2). Let 𝖢𝗅𝑖𝑛 be the closure operation corresponding 
to ⊢𝑖𝑛:

𝖢𝗅𝑖𝑛(𝐺) ∶= {�𝑠, 𝑝, 𝑜� ∣𝐺 ⊢𝑖𝑛 �𝑠, 𝑝, 𝑜�}.

Some properties are the same as in Section 3.6, simply reformulated for ⊢𝑖𝑛.

(𝑆𝑢𝑝𝑟𝑎𝑐)
𝐺 ⊢𝑖𝑛 (𝑝,𝚜𝚌, 𝑞)
𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚌, 𝑞⟩ (𝑆𝑢𝑝𝑟𝑎𝑝)

𝐺 ⊢𝑖𝑛 (𝑝,𝚜𝚙, 𝑞)
𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚙, 𝑞⟩

The proof of the next proposition proceeds as in Proposition 3.30, just considering the graph 𝐺𝑖𝑛 instead of the graph 𝐺.

Proposition 4.1. ⊨𝜌df⊥ satisfies (𝑆𝑢𝑝𝑟𝑎𝑐 ) and (𝑆𝑢𝑝𝑟𝑎𝑝).

Then we have Reflexivity, Left Logical Equivalence, and Right Weakening.

(𝑅𝑒𝑓𝑐) 𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚌, 𝑝⟩
(𝐿𝐿𝐸𝑐 )

𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚌, 𝑟⟩, 𝐺 ⊢𝑖𝑛 (𝑝,𝚜𝚌, 𝑞), 𝐺 ⊢𝑖𝑛 (𝑞,𝚜𝚌, 𝑝)
𝐺 ⊢𝑖𝑛 ⟨𝑞,𝚜𝚌, 𝑟⟩ (𝑅𝑊𝑐)

𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚌, 𝑞⟩, 𝐺 ⊢𝑖𝑛 (𝑞,𝚜𝚌, 𝑟)
𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚌, 𝑟⟩

(𝑅𝑒𝑓𝑝) 𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚙, 𝑝⟩
(𝐿𝐿𝐸𝑝)

𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚙, 𝑟⟩, 𝐺 ⊢𝑖𝑛 (𝑝,𝚜𝚙, 𝑞), 𝐺 ⊢𝑖𝑛 (𝑞,𝚜𝚙, 𝑝)
𝐺 ⊢𝑖𝑛 ⟨𝑞,𝚜𝚙, 𝑟⟩ (𝑅𝑊𝑝)

𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚙, 𝑞⟩, 𝐺 ⊢𝑖𝑛 (𝑞,𝚜𝚙, 𝑟)
𝐺 ⊢𝑖𝑛 ⟨𝑝,𝚜𝚙, 𝑟⟩

As for ⊧min, (𝑅𝑒𝑓𝑐) and (𝑅𝑒𝑓𝑝) do not hold, since we have used minimal 𝜌df for which reflexivity of 𝚜𝚌 and 𝚜𝚙 triples does not hold.

The proof of Proposition 4.2 proceeds as in Proposition 3.31, just considering the graph 𝐺𝑖𝑛 instead of the graph 𝐺.

Proposition 4.2. ⊢𝑖𝑛 satisfies (𝐿𝐿𝐸𝑐 ), (𝑅𝑊𝑐), (𝐿𝐿𝐸𝑝), and (𝑅𝑊𝑝).

Proposition 4.3. 𝖢𝗅𝑖𝑛 is not monotonic.

Once more, it can be proved as for Proposition 3.32.

Proposition 4.4. 𝖢𝗅𝑖𝑛 satisfies inclusion. That is, for any graph 𝐺

𝐺 ⊆ 𝖢𝗅𝑖𝑛(𝐺).

Proof. 𝐺 ⊆𝐺𝑖𝑛. 𝖢𝗅min(𝐺𝑖𝑛) is determined by a model of 𝐺𝑖𝑛 , implying 𝐺 ⊆𝐺𝑖𝑛 ⊆ 𝖢𝗅min(𝐺𝑖𝑛), that is, 𝐺 ⊆ 𝖢𝗅𝑖𝑛(𝐺). □

However, the operator 𝖢𝗅𝑖𝑛 does not always satisfy Idempotence.

Proposition 4.5. 𝖢𝗅𝑖𝑛 does not satisfy Idempotence. That is, there is a graph 𝐺 such that

𝖢𝗅𝑖𝑛(𝖢𝗅𝑖𝑛(𝐺)) ≠ 𝖢𝗅𝑖𝑛(𝐺) .

An immediate consequence of Proposition 4.5 is also the failure of Cumulativity.

Proposition 4.6. 𝖢𝗅𝑖𝑛 does not satisfy Cumulativity. That is, there are at least two graphs 𝐺 and 𝐺′ such that

𝐺 ⊆𝐺′ ⊆ 𝖢𝗅𝑖𝑛(𝐺) and 𝖢𝗅𝑖𝑛(𝐺′) ≠ 𝖢𝗅𝑖𝑛(𝐺) .

Note that the same graph used in the proof of Proposition 4.5 proves also Proposition 4.6, as it is sufficient to set 𝐺′ = 𝖢𝗅𝑖𝑛(𝐺).

Remark 4.1. As stated in Proposition 4.5, 𝖢𝗅𝑖𝑛 does not satisfy Idempotence. However, it is still possible to refine 𝖢𝗅𝑖𝑛 so that it does 
satisfy Idempotence. In fact, it is sufficient to iterate the application of 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗 followed by 𝖢𝗅min, until we do reach 
a fixed point. Given that we work with finite graphs, such a fixed point must be reached after a finite number of iterations. In 
particular, given a graph 𝐺, the procedure 𝖢𝗅𝑖𝑛 can be iterated at most twice for each pair of nodes 𝑝, 𝑞 in 𝐺, once to obtain a new 
triple ⟨𝑝, 𝚜𝚌, 𝑞⟩, and once to obtain a new triple ⟨𝑝, 𝚜𝚙, 𝑞⟩. Hence the new procedure would consist in at most 2(|𝐺|2) reiterations of 
31

the procedure 𝖢𝗅𝑖𝑛 and, thus, we still remain polynomial to decide defeasible entailment. We have preferred to introduce only one 
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iteration of 𝖢𝗅𝑖𝑛, since the graph for which Idempotence does not hold appears to be quite artificial and has a complex configuration 
(see the example used to prove Proposition 4.5). In particular, the inferential advantages given by the reiteration of the 𝖢𝗅𝑖𝑛 operation 
do not appear to be worth of the extra computational costs.

However, at the time of writing, we are still missing a proof showing whether by iterating 𝖢𝗅𝑖𝑛 we obtain or not Cumulativity.

4.3. Computational complexity

In this section we prove that deciding ⊢𝑖𝑛 is still computationally tractable, i.e., it runs in polynomial time. We start with 
𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗.

In line 3 of the 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗 procedure we need to compute all paths between two nodes.

Lemma 4.7. Consider a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 and two nodes, 𝑝 and 𝑞, in 𝐺. Δ𝑝,𝑞 can be determined in 𝑂(|𝐺|2) time.

Given Lemma 4.7, we can show that:

Proposition 4.8. Consider a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 . Assume that 𝐺𝑠𝑡𝑟 is closed under 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝. Then the procedure 
𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺) runs in time 𝑂(|𝐺𝑑𝑒𝑓 ||𝐺|4).

We conclude with:

Corollary 4.9. Consider a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 . Then 𝐺 ⊢𝑖𝑛 �𝑝, 𝑜, 𝑞� can be decided in polynomial time.

5. Dealing with non-ground graphs

So far, we assumed graphs to be ground. However, as pointed out in e.g., [29], many 𝜌df graphs contain so-called blank nodes in 
triples, i.e., in logical terms existentially quantified variables. We next show how our approach may be extended to non-grounded 
𝜌df⊥ graphs as well by preserving the computational complexity of the ground case.

Defeasible 𝜌df⊥ To start with, again we recap here only the salient notions we will rely on and refer the reader e.g., directly 
to [27,39] for more details. So, let 𝐁 be a new alphabet, pairwise disjoint to 𝐔 and 𝐋, denoting blank nodes, and let us denote with 
𝐔𝐁𝐋 the union of these alphabets. A (possibly non-ground) 𝜌df⊥ triple is now of the form 𝜏 = (𝑠, 𝑝, 𝑜) ∈𝐔𝐁𝐋 ×𝐔 ×𝐔𝐁𝐋, where again 
𝑠, 𝑜 ∉ 𝜌df. We will use symbols 𝑥, 𝑦, 𝑧 (with optional sub- or super-scripts) to denote blank nodes in triples. However, we still assume 
that defeasible triples remain ground and, thus, e.g., triples of the form ⟨𝑐, 𝗌𝖼, 𝑑⟩ (indicating that “typically, an instance of 𝑐 is also an instance 
of 𝑏”) remain ground.24

We define a map as a function 𝜇 ∶𝐔𝐁𝐋→𝐔𝐁𝐋 preserving URIs and literals, i.e., 𝜇(𝑡) = 𝑡, for all 𝑡 ∈𝐔𝐋. Given a graph 𝐺, we define 
𝜇(𝐺) = {(𝜇(𝑠), 𝜇(𝑝), 𝜇(𝑜)) ∣ (𝑠, 𝑝, 𝑜) ∈𝐺}. We speak of a map 𝜇 from 𝐺1 to 𝐺2, and write 𝜇 ∶𝐺1 →𝐺2, if 𝜇 is such that 𝜇(𝐺1) ⊆𝐺2.

From a semantical point of view, we extend the notion of interpretation to capture the idea of existentiality of blank nodes by 
imposing the following additional condition to an interpretation  = ⟨Δ𝖱, Δ𝖯, Δ𝖢, Δ𝖫, 𝔓�⋅�, ℭ�⋅�, ⋅⟩:

8. on 𝐁, ⋅ is a function ⋅ ∶ 𝐁 →Δ𝑅.

The notion of satisfiability (resp. entailment) is as Definition 2.1 (resp. Definition 2.2).

From a deductive system point of view, as reported in [39], we have to consider some additional rules: namely,

8. Implicit Typing:

(𝑎) (𝐴,𝖽𝗈𝗆,𝐵),(𝐷,𝗌𝗉,𝐴),(𝑋,𝐷,𝑌 )
(𝑋,𝗍𝗒𝗉𝖾,𝐵) (𝑏) (𝐴,𝗋𝖺𝗇𝗀𝖾,𝐵),(𝐷,𝗌𝗉,𝐴),(𝑋,𝐷,𝑌 )

(𝑌 ,𝗍𝗒𝗉𝖾,𝐵)

9. Simple’:

𝐺

𝐺′ for a map 𝜇 ∶𝐺′ →𝐺

with the convention that in all rules (2) - (8) meta-variables may represent now elements in 𝐔𝐁𝐋. Please note that, rule (9) captures 
the semantics of blank nodes.

Finally, the notion of derivation (Definition 2.3) is extended in the obvious way:

Definition 5.1 (Derivation ⊢𝜌df⊥ ). Let 𝐺 and 𝐻 be 𝜌df⊥-graphs. 𝐺 ⊢𝜌df⊥ 𝐻 iff there exists a sequence of graphs 𝑃1, 𝑃2, … , 𝑃𝑘 with 
𝑃1 =𝐺 and 𝑃𝑘 =𝐻 and for each 𝑗 (2 ⩽ 𝑗 ⩽ 𝑘) one of the following cases holds:

24 In fact, so far we do not envisage meaningful cases in which such triples may be not ground. Nevertheless, we will leave the case in which this type of triples may 
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contain blank nodes as well for future work.
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• there is a map 𝜇 ∶ 𝑃𝑗 → 𝑃𝑗−1 (rule (9));

• 𝑃𝑗 ⊆ 𝑃𝑗−1 (rule (1));

• there is an instantiation 𝑅∕𝑅′ of one of the rules (2)-(8), such that 𝑅 ⊆ 𝑃𝑗−1 and 𝑃𝑗 = 𝑃𝑗−1 ∪𝑅′.

Such a sequence of graphs is called a proof of 𝐺 ⊢𝜌df⊥ 𝐻 . Whenever 𝐺 ⊢𝜌df⊥ 𝐻 , we say that the graph 𝐻 is derived from the graph 
𝐺. Each pair (𝑃𝑗−1, 𝑃𝑗 ), 1 ⩽ 𝑗 ⩽ 𝑘 is called a step of the proof which is labelled by the respective instantiation 𝑅∕𝑅′ of the rule applied 
at the step.

With 𝖢𝗅𝐵(𝐺) we denote the closure of a 𝜌df⊥ graph 𝐺 under the application of rules (2) − (8) (see also [39,27]).

Example 5.1. Consider the 𝜌df ⊥ graph 𝐺 containing the triples

𝐺 = {(𝑎, 𝗌𝖼, 𝑥), (𝑥, 𝗌𝖼, 𝑏), (𝑦, 𝗌𝖼, 𝑐),

(𝑐,⊥𝖼, 𝑑), (𝑝,𝚍𝚘𝚖, 𝑦), (𝑞,𝚍𝚘𝚖, 𝑑)} .

Then, it is not difficult to verify that 𝖢𝗅𝐵(𝐺) contains the following triples:

𝖢𝗅𝐵(𝐺) ⊇ {(𝑎, 𝗌𝖼, 𝑏), (𝑦,⊥𝖼, 𝑑), (𝑝,⊥𝗉, 𝑞)} . □

Now, likewise for Theorem 2.1, by using also [39, Theorem 8] and [39, Theorem 10], we may prove similarly that

Theorem 5.1. Let 𝐺 and 𝐻 be possibly non-ground 𝜌df⊥-graphs.

1. 𝐺 ⊢𝜌df⊥ 𝐻 iff 𝐺 ⊨𝜌df⊥ 𝐻 .

2. If 𝐺 ⊢𝜌df⊥ 𝐻 then there is a proof of 𝐻 from 𝐺 such that rule (9) is used at most once and at the last step of the proof.

Example 5.2 (Example 5.1 cont.). By referring to Example 5.1, it is easily verified that indeed

𝐺 ⊨𝜌df⊥ {(𝑎, 𝗌𝖼, 𝑏), (𝑦,⊥𝖼, 𝑑), (𝑝,⊥𝗉, 𝑞)} .

From a computational complexity point of view, from [47] and Theorem 5.1, point 2, it follows immediately that, as for 𝜌df, also 
for 𝜌df⊥ we have that

Theorem 5.2. Let 𝐺 and 𝐻 be possibly non-ground 𝜌df⊥-graphs. Then

1. Deciding 𝐺 ⊨𝜌df⊥ 𝐻 is an NP-complete problem.

2. If 𝐻 is ground, then 𝐺 ⊨𝜌df⊥ 𝐻 iff 𝐻 ⊆ 𝖢𝗅𝐵(𝐺).
3. The size of |𝖢𝗅𝐵(𝐺)| is 𝑂(|𝐺|2).

In particular, note that even if 𝐺 may contain blank nodes, if 𝐻 is ground, then deciding 𝐺 ⊨𝜌df⊥ 𝐻 can be done in time 𝑂(|𝐺|2).
Please note also the following: by using Theorem 5.1, point 2, and Theorem 5.2, we may also decide the case 𝐺 ⊨𝜌df⊥ (𝑠, 𝑝, 𝑜), 

where 𝑠, 𝑜 may be blank nodes, in time 𝑂(|𝐺|2) by computing 𝖢𝗅𝐵(𝐺) incrementally and then

Case (𝑥, 𝑝, 𝑜), 𝑥 ∈ 𝐁, 𝑝, 𝑜 ∈𝐔𝐋: check whether there is (𝑠, 𝑝, 𝑜) ∈ 𝖢𝗅𝐵(𝐺) with 𝑠 ∈𝐔𝐁𝐋;

Case (𝑠, 𝑝, 𝑦), 𝑦 ∈ 𝐁, 𝑠, 𝑝 ∈𝐔𝐋: check whether there is (𝑠, 𝑝, 𝑜) ∈ 𝖢𝗅𝐵(𝐺) with 𝑜 ∈𝐔𝐁𝐋;

Case (𝑥, 𝑝, 𝑦), 𝑥, 𝑦 ∈ 𝐁, 𝑝 ∈𝐔𝐋: check whether there is (𝑠, 𝑝, 𝑜) ∈ 𝖢𝗅𝐵(𝐺) with 𝑠, 𝑜 ∈𝐔𝐁𝐋.

Therefore,

Corollary 5.3. Let 𝐺 and 𝐻 be possibly non-ground 𝜌df⊥-graphs. If 𝐻 is ground or |𝐻| = 1 then 𝐺 ⊨𝜌df⊥ 𝐻 can be decided in time 𝑂(|𝐺|2).
Next, we turn our attention to defeasible graphs 𝐺 in which the strict 𝜌df⊥ part may contain non-ground triples. We ask about 

the computational complexity of deciding defeasible entailment. Now, note the following:

1. Consider the 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲 and 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿 procedures. In both cases, in Step 3., the query triple is ground, and thus, by 
Corollary 5.3, both procedures run in polynomial time, and Proposition 3.40 applies.

2. From the previous point, also the ranking procedure 𝚁𝚊𝚗𝚔𝚒𝚗𝚐 runs in polynomial time and Proposition 3.41 applies.

3. From what was said above and Corollary 5.3, also the procedure 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝 runs in polynomial time and Proposi-
33

tion 3.42 applies.
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4. Finally, consider procedures 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 and 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙿. Again, as the involved query triples are ground, both 
procedures run in polynomial time, and Propositions 3.43 and 3.44 apply.

Therefore, the analogue of Corollary 3.45 holds. That is,

Theorem 5.4. Consider a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 , where the 𝜌df⊥ part of 𝐺𝑠𝑡𝑟 may contain blank nodes. Consider a triple �𝑝, ∗, 𝑞�. 
Then 𝐺 ⊧min �𝑝, ∗, 𝑞� can be decided in polynomial time.

Inheritance networks based closure We eventually show how to extend our decision procedure for inheritance net closure described 
in Section 4 also to the non-ground case.

At first, as for Section 4, we will assume a possibly non-ground graph 𝐺 =𝐺𝑠𝑡𝑟∪𝐺𝑑𝑒𝑓 s.t. 𝐺𝑠𝑡𝑟 is closed under 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝. 
How to do that has been described above. As next, we extend the notion of path given in Definition 4.1 naturally to the case in which 
also non-ground triples may occur in a path. So, for instance, by referring to the graph 𝐺 in Example 5.1,

𝜋 = {(𝑎, 𝗌𝖼, 𝑥), (𝑥, 𝗌𝖼, 𝑏)}

is a path in 𝐺 from 𝑎 to 𝑏.
Finally, given a possibly non-ground graph 𝐺 and a (ground) defeasible triple ⟨𝑝, ∗, 𝑞⟩ with ∗∈ {𝚜𝚌, 𝚜𝚙}, the procedure for deciding 

whether ⟨𝑝, ∗, 𝑞⟩ is in the closure of a graph 𝐺 using the Defeasible Inheritance-based approach is exactly as the one described in 
Section 4. That is, we apply to 𝐺 the procedure 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺), obtaining 𝐺𝑖𝑛 and then define (see Definition 4.2), for 
any triple �𝑝, 𝑟, 𝑞�, that

𝐺 ⊢𝑖𝑛 �𝑝, 𝑟, 𝑞� iff 𝐺𝑖𝑛 ⊧min �𝑝, 𝑟, 𝑞� .

From a computational complexity point of view, it is then easily verified that Lemma 4.7 holds for the non-ground case as well. Then, 
using Corollary 5.3, we obtain the analogue of Corollary 4.9:

Corollary 5.5. Consider a possibly non-ground defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 . Then 𝐺 ⊢𝑖𝑛 �𝑝, 𝑟, 𝑞� can be decided in polynomial time.

In summary, even if blank nodes are allowed in 𝜌df⊥, the computational complexity does not change w.r.t. the ground case, which 
concludes this section.

6. Related work

There have been some works in the past about extending RDFS with non-monotonic capabilities, which we briefly summarise 
below.

The series of works [1,2] essentially deals with Extended RDFS (ERDF), where an ERDF ontology consists of two parts: an 
ERDF graph and an ERDF program containing derivation rules. ERDF augments the expressivity of RDFS in the following way: 
an ERDF graph allows negated triples of the form ¬(𝑠, 𝑝, 𝑜) indicating informally that ¬𝑝(𝑠, 𝑜)25 does hold, while in the body of 
derivation rules all the classical connectives ¬, ⊃, ∧, ∨, ∀, ∃, plus the weak negation (negation-as-failure) ∼ are allowed. Thanks to 
the latter, we can model non-monotonic reasoning via negation-as-failure semantics. For instance, one may express rules such as 
¬𝗍𝗒𝗉𝖾(𝑥, 𝐸𝑈𝑀𝑒𝑚𝑏𝑒𝑟) ←∼ 𝗍𝗒𝗉𝖾(𝑥, 𝐸𝑈𝑀𝑒𝑚𝑏𝑒𝑟) (a non-EU Member state is one that can not be proven to be a EU member state), or 
¬𝗍𝗒𝗉𝖾(𝑥, 𝐸𝑈𝑀𝑒𝑚𝑏𝑒𝑟) ← 𝗍𝗒𝗉𝖾(𝑥, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦).

ERDF allows to combine open-world and closed-world reasoning. In order to define entailment the authors have proposed a stable 
model semantics [1] and #n-stable model semantics [2]. In general, under stable model semantics, query answering is undecidable. 
Decidability can be obtained either by constraining the language or using the #n-stable model semantics [2]. Moreover, from a 
computational complexity point view, decision problems in ERDF are non-polynomial (see Table 1 in [2] for details). For instance, 
deciding model existence, and, thus, model existence is not guaranteed, ranges from NP to PSPACE, while query answering goes from 
co-NP to PSPACE, depending on the setting. In our case, model existence is guaranteed, the computational complexity is lower and 
no rule layer is introduced, remaining, thus, a triple language. Furthermore, while the authors did enrich RDFS language with two 
negation operators, we have introduced the disjointness properties ⊥𝖼 and ⊥𝗉 only, which are weaker than negation from a logical 
point of view.

On a similar line, i.e., using rule languages on top of RDFS, and borrowing non-monotonic semantics developed within rules 
languages, are also all other approaches we are aware of, such as [3,6,32] and practical large scale solutions such as [31,42,45]. Let 
us also note that there are more general solutions in providing a rule layer on top of ontology languages such as RDFS and OWL, 
which can be found in e.g., [19,20].

Strongly related to the present proposal is the introduction of non-monotonic reasoning in the framework of DL (a First-Order 
Logic that restricts to unary and binary predicates and specific syntactic constructs), that is aimed at modelling defeasible reasoning 

25 More precisely, for a predicate 𝑝 there is a positive extension of 𝑝 and a negative extension of 𝑝, which need not necessarily be disjoint. So, for instance, (𝑠, 𝑝, 𝑜)
34

enforces (𝑠, 𝑜) to be in the positive extension of 𝑝, while ¬(𝑠, 𝑝, 𝑜) enforces (𝑠, 𝑜) to be in the negative extension of 𝑝.
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in the other main ontology formalism, the OWL family of languages. In particular, also in this area some of the most popular proposals 
are based on semantic solutions associated to rational closure, as mentioned in the introduction.

In [12] a form of rational closure for DLs is defined, that has later received a semantic characterisation in terms of ranked DL 
interpretations [11,16]. [12] introduces in the language a defeasible subsumption relation ⊏∼ between concepts, where 𝐶 ⊏∼𝐷 is read 
as ‘Typically, an instance of the concept 𝐶 is also an instance of the concept 𝐷’.

In [26] a similar approach is also considered, introducing in the language inclusion axioms of the form 𝐓𝐶 ⊑𝐷, whose meaning 
is the same as 𝐶 ⊏∼𝐷, and defining on the semantical side modular orderings on the domain, and it has been proved [16, Proposition 
30] that the main semantic construction they propose is in fact equivalent to the one later proposed in [11,16]. Recently, the work 
[7] has also investigated how to extend the rational closure construction to DLs that do not satisfy the disjoint union model property.

As mentioned above, the entailment relation defined by rational closure suffers from the “drowning problem” (see Remark 3.3), 
that here we have addressed in Section 4 defining the inheritance-based approach. Also in DLs the same problem has been addressed 
in various ways, including the original formulation of the inheritance-based closure [14], and other extensions of rational closure 
[13,15,23].

Finally, another limit of rational closure in the framework of DLs is that it does not allow to make defeasible inferences across 
role connections: for example, if our ontology contains only 𝐶 ⊏∼ 𝐷 and ⊤ ⊑ ∃𝑅.𝐶 , we cannot conclude ⊤ ⊏∼ ∃𝑅.𝐷. Such a limit has 
been addressed in e.g., [41], the aim of which is to extend rational closure with defeasible inheritance across role expressions in the 
description logic ⊥. An entailment relation that addresses the same issue, but without using a semantics based on rational closure, 
is the one proposed in [8]. In the RDFS framework this type of problem, i.e., defeasible inheritance across existential role expressions 
is not present, due to the expressivity constraints of 𝜌df.

In summary, adopting a rule layer or, in general, a more expressive logic, however, may also come with an increase in computa-

tional cost.

7. Brief conclusions

Contribution. We have shown how one may integrate RC within RDFS and, thus, obtain a non-monotonic variant of the latter. To 
do so, we started from 𝜌df, which is the logic behind RDFS, and then extended it to 𝜌df⊥, allowing to state that two entities are 
incompatible. Eventually, we have worked out defeasible 𝜌df⊥ via a typical RC construction. Furthermore, we have addressed the 
“drowning problem”, via a ‘local’, path-based application of RC.

The main and unique features of our approach are summarised as follows:

• defeasible 𝜌df⊥ remains syntactically a triple language and is a simple vocabulary extension of 𝜌df by introducing some new 
predicate symbols, namely ⊥𝖼 and ⊥𝗉, with specific semantics allowing to state that two terms are incompatible;

• any RDFS reasoner/store may handle the new types of triples as ordinary ones if it does not want to take account of the extra 
semantics of the new predicate symbols;

• the defeasible entailment decision procedure is built on top of the 𝜌df⊥ entailment decision procedure, which in turn is an 
extension of the one for 𝜌df via some additional inference rules, favouring a potential implementation;

• each defeasible graph has an unique minimal model;

• the “drowning problem” is addressed via a simple, ‘local’, path-based application of RC;

• defeasible entailment can be decided in polynomial time.

We have also analysed our proposal from a ‘structural properties’ point of view with respect to those properties that can be expressed 
in our language.26

Future work. Concerning future work, there are still some extensions that are worth to be addressed within our framework. In 
particular, (𝑖) we would like to investigate how to extend defeasible triples also to other predicates of the 𝜌df vocabulary beyond 𝚜𝚌
and 𝚜𝚙 and possibly involving blank nodes in case it makes sense to do so; (𝑖𝑖) another point deals with the computational complexity 
of our framework. In particular, we would like to see whether an approach similar as described in [39] can be applied to our context 
as well, as explained in Remark 3.5, and we want to address the problem of conjunctive query answering; and (𝑖𝑖𝑖) last, but not 
least, we want to implement our proposal. In particular, to scale up in practice, we are interested in working out parallelisation 
of computation, a non-trivial problem for non-monotonic reasoning, that has already been investigated for some of the approaches 
based on the use of a top-layer of rules [46].
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26 We recall that some can not be expressed in 𝜌df⊥ as Boolean connectives are missing in RDFS.
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Appendix A. Proofs for Section 2

Lemma 2.2. Let 𝐺 and 𝐻 be 𝜌df⊥-graphs, let 𝐺 be satisfiable, and let one of the following statements hold:

• 𝐻 ⊆𝐺;

• there is an instantiation 𝑅∕𝑅′ of one of the rules (2)-(7), such that 𝑅 ⊆𝐺 and 𝐻 =𝐺 ∪𝑅′.

Then, 𝐺 ⊨𝜌df⊥ 𝐻 .

Proof. 𝐺 is satisfiable, hence let  = ⟨Δ𝖱, Δ𝖯, Δ𝖢, Δ𝐿, 𝔓�⋅�, ℭ�⋅�, ⋅⟩ be a model of 𝐺 ( ⊩𝜌df⊥ 𝐺). That is,  satisfies all the conditions 
in Definition 2.1. We have to prove that 𝐺 ⊨𝜌df⊥ 𝐻 , that is,  ⊩𝜌df⊥ 𝐻 .

We consider only the rules (5)-(7). The theorem has already been proved for groups of rules (1)-(4) in [39, Lemma 31].27

Rule (5𝑎). Let (𝑐, ⊥𝖼, 𝑑) ∈𝑅 for some 𝑅 ⊆ 𝐺, 𝑅′ =𝑅 ∪ {(𝑑, ⊥𝖼, 𝑐)}, obtained via the application of rule (5𝑎), and 𝐻 =𝐺 ∪𝑅′. We have 
that for every model  of 𝐺,  ⊩𝜌df⊥ 𝑅, since 𝑅 ⊆𝐺. Therefore,  satisfies (𝑐, ⊥𝖼, 𝑑), and, since it is a model of 𝐺 and is symmetric 
on ⊥𝖼 (see Definition 2.1), we have that (𝑑 , 𝑐 ) ∈𝔓�⊥𝖼

�. That is,  satisfies (𝑑, ⊥𝖼, 𝑐). Hence, from  ⊩𝜌df⊥ 𝑅′ and  ⊩𝜌df⊥ 𝐺, 
 ⊩𝜌df⊥ 𝐻 follows.

Rule (5𝑏). Let (𝑐, ⊥𝖼, 𝑑) and (𝑒, 𝗌𝖼, 𝑐) be in 𝑅, for some 𝑅 ⊆𝐺. Consider 𝑅′ =𝑅 ∪ {(𝑒, ⊥𝖼, 𝑑)}, obtained via the application of rule (5𝑏), 
and 𝐻 =𝐺 ∪𝑅′. We have that for every model  of 𝐺,  ⊩𝜌df⊥ 𝑅, since 𝑅 ⊆𝐺.  satisfies (𝑐, ⊥𝖼, 𝑑) and (𝑒, 𝗌𝖼, 𝑐), and, since it is a 
model of 𝐺, by sc-transitivity of , (𝑒 , 𝑑 ) ∈𝔓�⊥𝗉

� follows. That is,  satisfies (𝑒, ⊥𝖼, 𝑑). Hence, since  ⊩𝜌df⊥ 𝑅
′ and  ⊩𝜌df⊥ 𝐺, 

we have that  ⊩𝜌df⊥ 𝐻 .

Rule (5𝑐). Let (𝑐, ⊥𝖼, 𝑐) ∈ 𝑅 for some 𝑅 ⊆ 𝐺, 𝑅′ = 𝑅 ∪ {(𝑐, ⊥𝖼, 𝑑)}, obtained via the application of rule (5𝑐), and 𝐻 = 𝐺 ∪ 𝑅′. We 
have that for every model  of 𝐺,  ⊩𝜌df⊥ 𝑅, since 𝑅 ⊆ 𝐺. Therefore,  satisfies (𝑐, ⊥𝖼, 𝑐), and, since it is a model of 𝐺 and is 
c-exhaustive on ⊥𝖼 (see Definition 2.1), we have that (𝑐 , 𝑑 ) ∈𝔓�⊥𝖼

�. That is,  satisfies (𝑐, ⊥𝖼, 𝑑). Hence, from  ⊩𝜌df⊥ 𝑅
′ and 

 ⊩𝜌df⊥ 𝐺,  ⊩𝜌df⊥ 𝐻 follows.

Rules (6𝑎), (6𝑏) and (6𝑐). The argument is analogous to rules (5𝑎), (5𝑏) and (5𝑐)
Rule (7𝑎). Let (𝑝, 𝖽𝗈𝗆, 𝑐), (𝑞, 𝖽𝗈𝗆, 𝑑), and (𝑐, ⊥𝖼, 𝑑) be in 𝑅 for some 𝑅 ⊆ 𝐺, 𝑅′ = 𝑅 ∪ {(𝑝, ⊥𝗉, 𝑞)}, obtained via the application of rule 

(7𝑎), and 𝐻 =𝐺∪𝑅′. We have that for every model  of 𝐺,  ⊩𝜌df⊥ 𝑅, since 𝑅 ⊆𝐺.  satisfies (𝑝, 𝖽𝗈𝗆, 𝑐), (𝑞, 𝖽𝗈𝗆, 𝑑), and (𝑐, ⊥𝖼, 𝑑), 
that by condition 1 of Disjointness II implies  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑞).

Rule (7𝑏). As for rule (7𝑎), just by referring to condition 2 of Disjointness II instead of condition 1 of Disjointness II. □

Lemma 2.3. Given a 𝜌df⊥-graph 𝐺, define an interpretation 𝐺 as a tuple

𝐺 = ⟨Δ𝖱,Δ𝖯,Δ𝖢,Δ𝖫,𝔓�⋅�,ℭ�⋅�, ⋅𝐺 ⟩
such that:

1. Δ𝖱 ∶= 𝚞𝚗𝚒(𝐺) ∪ 𝜌df⊥;

2. Δ𝖯 ∶= {𝑝 ∈ 𝚞𝚗𝚒(𝐺) ∣ (𝑠, 𝑝, 𝑜) ∈ 𝖢𝗅(𝐺)} ∪ 𝜌df⊥ ∪ {𝑝 ∈ 𝚞𝚗𝚒(𝐺) ∣ either (𝑝, 𝗌𝗉, 𝑞), (𝑞, 𝗌𝗉, 𝑝), (𝑝, 𝚍𝚘𝚖, 𝑐), (𝑝, 𝗋𝖺𝗇𝗀𝖾, 𝑑), (𝑝, ⊥𝗉, 𝑞) or (𝑞, ⊥𝗉, 𝑝) ∈
𝖢𝗅(𝐺)};

3. Δ𝖢 ∶= {𝑐 ∈ 𝚞𝚗𝚒(𝐺) ∣ (𝑥, 𝗍𝗒𝗉𝖾, 𝑐) ∈ 𝖢𝗅(𝐺)} ∪ {𝑐 ∈ 𝚞𝚗𝚒(𝐺) ∣ either (𝑐, 𝗌𝖼, 𝑑), (𝑑, 𝗌𝖼, 𝑐), (𝑝, 𝚍𝚘𝚖, 𝑐), (𝑝, 𝗋𝖺𝗇𝗀𝖾, 𝑐), (𝑐, ⊥𝖼, 𝑑) or (𝑑, ⊥𝖼, 𝑐) ∈ 𝖢𝗅(𝐺)};

4. Δ𝖫 ∶= 𝚞𝚗𝚒(𝐺) ∩𝐋;

5. 𝔓�⋅� is an extension function 𝔓�⋅�∶ Δ𝖯 → 2Δ𝖱×Δ𝖱 s.t. 𝔓�𝑝� ∶= {(𝑠, 𝑜) ∣ (𝑠, 𝑝, 𝑜) ∈ 𝖢𝗅(𝐺)};

6. ℭ�⋅� is an extension function ℭ�⋅�∶ Δ𝖢 → 2Δ𝖱 s.t. ℭ�𝑐� ∶= {𝑥 ∈ 𝚞𝚗𝚒(𝐺) ∣ (𝑥, 𝗍𝗒𝗉𝖾, 𝑐) ∈ 𝖢𝗅(𝐺)};

7. ⋅𝐺 is an identity function over Δ𝖱.

Then, for every 𝜌df⊥-graph 𝐺, 𝐺 ⊩𝜌df⊥ 𝐺.

Proof. We need to prove that 𝐺 satisfies the constraints in Definition 2.1. At first, note that for the conditions Simple to Typing 
II, the proof corresponds to the proof of Lemma 32 in [39].28 So, let us verify the remaining conditions.

27 In [39, Lemma 31] the authors consider a stronger system in which the predicates 𝗌𝖼 and 𝗌𝗉 are reflexive. We drop such properties, hence dropping the 
corresponding groups (6) and (7) of derivation rules in [39, Table 1]. Hence we need to follow the proof of Lemma 31 in [39] only until the point (4) included.
28 With the minor difference that in [39, Lemma 32] the authors impose also reflexivity to the interpretations of the predicates 𝗌𝖼 and 𝗌𝗉 and consider the associated 
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derivation rules, while here we do not.
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Disjointness I:

1. If (𝑐, 𝑑) ∈𝔓�⊥𝖼
𝐺 �, then 𝑐, 𝑑 ∈Δ𝖢. This holds by construction of Δ𝖢.

2. 𝔓�⊥𝖼
𝐺 � is symmetric, sc-transitive and c-exhaustive over Δ𝖢.

Symmetry: Let (𝑐, 𝑑) ∈𝔓�⊥𝖼
𝐺 � =𝔓�⊥𝖼�. By construction of 𝐺 we have that (𝑐, ⊥𝖼, 𝑑) ∈ 𝖢𝗅(𝐺), and we also have that 𝑐, 𝑑 ∈Δ𝖢. 

Due to the closure under rule (5a), (𝑑, ⊥𝖼, 𝑐) ∈ 𝖢𝗅(𝐺), and by construction of 𝔓�⋅�, (𝑑, 𝑐) ∈𝔓�⊥𝖼
𝐺 �.

sc-transitivity: Let (𝑐, 𝑑) ∈𝔓�⊥𝖼
𝐺 � =𝔓�⊥𝖼� and (𝑒, 𝑐) ∈𝔓�𝗌𝖼𝐺 � =𝔓�𝗌𝖼�. By construction of 𝐺 we have that (𝑐, ⊥𝖼, 𝑑), (𝑒, 𝗌𝖼, 𝑐) ∈

𝖢𝗅(𝐺), and we also have that 𝑐, 𝑑, 𝑒 ∈ Δ𝖢. Due to the closure under rule (5b), (𝑒, ⊥𝖼, 𝑑) ∈ 𝖢𝗅(𝐺), and by construction of 𝔓�⋅�, 
(𝑒, 𝑑) ∈𝔓�⊥𝖼

𝐺 �.

c-exhaustive: Let (𝑐, 𝑐) ∈𝔓�⊥𝖼
𝐺 � =𝔓�⊥𝖼�. By construction of 𝐺 we have that (𝑐, ⊥𝖼, 𝑐) ∈ 𝖢𝗅(𝐺) and 𝑐 ∈Δ𝖢. Due to the closure 

under rule (5c), (𝑐, ⊥𝖼, 𝑑) ∈ 𝖢𝗅(𝐺), and by construction of 𝔓�⋅�, (𝑐, 𝑑) ∈𝔓�⊥𝖼
𝐺 � with 𝑑 ∈Δ𝖢.

3. If (𝑝, 𝑞) ∈𝔓�⊥𝗉
𝐺 �, then 𝑝, 𝑞 ∈Δ𝖯. This holds by construction of Δ𝖯.

4. 𝔓�⊥𝗉
𝐺 � is symmetric, sp-transitive and p-exhaustive over Δ𝖯. The proof is a rephrasing of the proof of point 2.

Disjointness II:

1. If (𝑝, 𝑐) ∈𝔓�𝖽𝗈𝗆𝐺 �, (𝑞, 𝑑) ∈𝔓�𝖽𝗈𝗆𝐺 �, and (𝑐, 𝑑) ∈𝔓�⊥𝖼
𝐺 �, then (𝑝, 𝑞) ∈𝔓�⊥𝗉

𝐺 �.

Indeed, let (𝑝, 𝑐) ∈ 𝔓�𝖽𝗈𝗆𝐺 �, (𝑞, 𝑑) ∈ 𝔓�𝖽𝗈𝗆𝐺 �, and (𝑐, 𝑑) ∈ 𝔓�⊥𝖼
𝐺 �. By construction of 𝔓�⋅�, (𝑝, 𝖽𝗈𝗆, 𝑐), (𝑞, 𝖽𝗈𝗆, 𝑑), and 

(𝑐, ⊥𝖼, 𝑑) are in 𝖢𝗅(𝐺). Moreover, 𝖢𝗅(𝐺) is closed under rule (7a) and, thus, (𝑝, ⊥𝗉, 𝑞) ∈ 𝖢𝗅(𝐺), and, by construction of 𝔓�⋅�, 
(𝑝, 𝑞) ∈𝔓�⊥𝗉

𝐺 �.

2. If (𝑝, 𝑐) ∈𝔓�𝗋𝖺𝗇𝗀𝖾𝐺 �, (𝑞, 𝑑) ∈𝔓�𝗋𝖺𝗇𝗀𝖾𝐺 �, and (𝑐, 𝑑) ∈𝔓�⊥𝖼
𝐺 �, then (𝑝, 𝑞) ∈𝔓�⊥𝗉

𝐺 �.

The proof is analogous to the previous point: we just need to refer to 𝗋𝖺𝗇𝗀𝖾 and rule (7b) instead of 𝖽𝗈𝗆 and rule (7a), which 
concludes. □

Lemma 2.4. Let 𝐺 and 𝐻 be 𝜌df⊥-graphs. If 𝐺 ⊨𝜌df⊥ 𝐻 then 𝐻 ⊆ 𝖢𝗅(𝐺).

Proof. The proof mirrors the proof of Lemma 33 in [39]. In particular, consider the interpretation

𝐺 = ⟨Δ𝖱,Δ𝖯,Δ𝖢,Δ𝖫,𝔓�⋅�,ℭ�⋅�, ⋅𝐺 ⟩
as defined in Lemma 2.3. Therefore, as both 𝐺 ⊩𝜌df⊥ 𝐺 and 𝐺 ⊨𝜌df⊥ 𝐻 hold, we have 𝐺 ⊩𝜌df⊥ 𝐻 by Definition 2.2. Therefore, for 
each (𝑠, 𝑝, 𝑜) ∈𝐻 , 𝑝𝐺 ∈ Δ𝖯 and (𝑠𝐺 , 𝑜𝐺 ) ∈𝔓�𝑝𝐺 �. Moreover, by construction 𝑝𝐺 = 𝑝, and 𝔓�𝑝𝐺 � =𝔓�𝑝� = {(𝑠, 𝑜) ∣ (𝑠, 𝑝, 𝑜) ∈ 𝖢𝗅(𝐺)}. 
Finally, since (𝑠𝐺 , 𝑜𝐺 ) ∈𝔓�𝑝𝐺 �, we have that (𝑠𝐺 , 𝑝𝐺 , 𝑜𝐺 )) ∈ 𝖢𝗅(𝐺), i.e., (𝑠, 𝑝, 𝑜) ∈ 𝖢𝗅(𝐺), for each (𝑠, 𝑝, 𝑜) ∈𝐻 . Therefore, 𝐻 ⊆ 𝖢𝗅(𝐺), 
which concludes. □

Appendix B. Proofs for Section 3

Proposition 3.1. For every defeasible graph 𝐺, | min⪯(ℜ𝐺)| = 1.

Proof. Assume to the contrary that | min⪯(ℜ𝐺)| > 1, i.e., there are  = (ℳ, 𝑟), ′ = (ℳ, 𝑟′), with , ′ ∈ min⪯(ℜ𝐺) and  ≠′.

It cannot be the case that  ⪯′ and ′ ⪯, since that would imply that  =′. Hence it must be the case that  and ′ are 
incomparable w.r.t. ⪯; that is, there are at least two interpretations ,  in ℳ s.t. 𝑟() < 𝑟′() and 𝑟′( ) < 𝑟( ).

Now, consider ⋆ = (ℳ, 𝑟⋆), with 𝑟⋆() = min{𝑟(), 𝑟′()} for every  ∈ℳ. Clearly, ⋆ ≺ and ⋆ ≺′. As next, let us prove 
that ⋆ ⊩𝜌df⊥ 𝐺. At first, note that ⋆ ⊩𝜌df⊥ 𝐺𝑠𝑡𝑟 holds as the satisfaction of 𝐺𝑠𝑡𝑟 depends only on ℳ and not on the ranks. At 
second, assume to the contrary that ⋆ ⊮𝜌df⊥ 𝐺𝑑𝑒𝑓 , that is, there is a defeasible triple ⟨𝑠, 𝑝, 𝑜⟩ ∈ 𝐺 such that ⋆ ⊮𝜌df⊥ ⟨𝑠, 𝑝, 𝑜⟩ and 
let’s assume that ⟨𝑠, 𝑝, 𝑜⟩ is of the form ⟨𝑐, 𝗌𝖼, 𝑑⟩ (the proof for the case ⟨𝑝, 𝗌𝗉, 𝑞⟩ is similar). That means that there is ̄ ∈ 𝖼_min(𝑐, ⋆)
s.t. ̄ ⊮𝜌df⊥ (𝑐, 𝗌𝖼, 𝑑). But, by the definition of 𝑟⋆, either ̄ ∈ 𝖼_min(𝑐, ) or ̄ ∈ 𝖼_min(𝑐, ′) and, thus, either  ⊮𝜌df⊥ ⟨𝑐, 𝗌𝖼, 𝑑⟩ or 
′ ⊮𝜌df⊥ ⟨𝑐, 𝗌𝖼, 𝑑⟩ holds, against the hypothesis that both  and ′ are ranked models of 𝐺. As a consequence, ⋆ ⊩𝜌df⊥ 𝐺𝑑𝑒𝑓 has 
to hold and, thus, ⋆ ⊩𝜌df⊥ 𝐺. That is, ⋆ ∈ℜ𝐺 . But then, it can not be the case that , ′ ∈ min⪯(ℜ𝐺) as there is ⋆ ∈ℜ𝐺 with 
⋆ ≺ and ⋆ ≺′, which is against our hypothesis. Therefore, there can not be two distinct ranked models , ′ in min⪯(ℜ𝐺)
and, as ℜ𝐺 is not empty, | min⪯(ℜ𝐺)| = 1 has to hold. □

Proposition 3.2. A term 𝑡 is c-exceptional (resp. p-exceptional) w.r.t. a defeasible graph 𝐺 iff it is c-exceptional (resp. p-exceptional) 
w.r.t. min𝐺 .

Proof. Let 𝑡 be c-exceptional.

⇒) Immediate from the definition of exceptionality.

⇐) We proceed by contradiction: let 𝑡 be c-exceptional w.r.t. min𝐺 , and assume that there is a model  = (ℳ, 𝑟) ∈ℜ𝐺 s.t. 𝑡 is 
not c-exceptional w.r.t. . That is, there is an  ∈ℳ s.t. 𝑟() = 0 and  ⊮𝜌df⊥ (𝑡, ⊥𝖼, 𝑡). In such a case, by Definition 3.5 and 
Proposition 3.1, we would have that  has rank 0 also in min𝐺 . Consequently 𝑡 cannot be c-exceptional w.r.t. min𝐺 , which 
contradicts our assumption.
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The proof is analogous if 𝑡 is p-exceptional. □
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Lemma 3.4. Let 𝑇 be a 𝜌df⊥ proof tree from 𝐻 to (𝑝, 𝗌𝖼, 𝑞). Then 𝑇 contains only triples of the form (𝐴, 𝗌𝖼, 𝐵).

Proof. The proof is on induction on the depth 𝑑(𝑇 ) of 𝑇 , where by assumption, 𝑇 has (𝑝, 𝗌𝖼, 𝑞) as root.

Case 𝑑(𝑇 ) = 0. Hence, the tree’s only node is (𝑝, 𝗌𝖼, 𝑞), which concludes.

Case 𝑑(𝑇 ) = 1. In this case, there is only one possible tree, obtained by instantiating rule (3a):

(𝑝, 𝗌𝖼, 𝑟), (𝑟, 𝗌𝖼, 𝑞)
(𝑝, 𝗌𝖼, 𝑞)

Remark. Note that we cannot instantiate rule (2b) in the form

(𝑟, 𝗌𝗉, 𝗌𝖼), (𝑝, 𝑟, 𝑞)
(𝑝, 𝗌𝖼, 𝑞)

,

as (𝑟, 𝗌𝗉, 𝗌𝖼) is not allowed to occur in our language (see Section 2).

Case 𝑑(𝑇 ) = 𝑛+ 1. Let us assume that the lemma holds for all proof trees of depth 𝑚 ⩽ 𝑛, with 𝑛 ⩾ 1. Let us show that it holds also for 
the case 𝑑(𝑇 ) = 𝑛 + 1 as well.

Note that the tree 𝑇 of depth 𝑛 + 1 with root (𝑝, 𝗌𝖼, 𝑞) can only be built by taking two trees 𝑇1 and 𝑇2 that have as roots triples of 
the form (𝐴𝑖, 𝗌𝖼, 𝐵𝑖) (𝑖 = 1, 2) with max(𝑑(𝑇1), 𝑑(𝑇2)) = 𝑛, and applying to their roots rule (3a). Therefore, by construction of 𝑇 and 
by induction on 𝑇𝑖, also the tree 𝑇 of depth 𝑛 + 1 contains only triples of the form (𝐴, 𝗌𝖼, 𝐵), which concludes. □

Lemma 3.5. Let 𝑇 be a 𝜌df⊥ proof tree from 𝐻 to (𝑝, ⊥𝖼, 𝑞). Then 𝑇 contains only triples of the form (𝐴, 𝗌𝖼, 𝐵) or (𝐴, ⊥𝖼, 𝐵).

Proof. The proof is on induction on the depth 𝑑(𝑇 ) of 𝑇 , where by assumption, 𝑇 has (𝑝, ⊥𝖼, 𝑞) as root.

Case 𝑑(𝑇 ) = 0. Hence, the tree’s only node is (𝑝, ⊥𝖼, 𝑞), which concludes.

Case 𝑑(𝑇 ) = 1. In this case, there are only three possible trees, obtained by instantiating rules (5𝑎), (5𝑏) or (5𝑐): namely,

(𝑞,⊥𝖼, 𝑝)
(𝑝,⊥𝖼, 𝑞)

,
(𝑠,⊥𝖼, 𝑞), (𝑝, 𝗌𝖼, 𝑠)

(𝑝,⊥𝖼, 𝑞)
or

(𝑝,⊥𝖼, 𝑝)
(𝑝,⊥𝖼, 𝑞)

.

In all three cases the lemma is satisfied, which concludes.

Case 𝑑(𝑇 ) = 𝑛+ 1. Let us assume that the lemma holds for all proof trees of depth 𝑚 ⩽ 𝑛, with 𝑛 ⩾ 1. Let us show that it holds also for 
the case 𝑑(𝑇 ) = 𝑛 + 1 as well.

Note that the tree 𝑇 of depth 𝑛 + 1 with root (𝑝, ⊥𝖼, 𝑞) can only be built in three ways:

• by applying rule (5a) to a tree 𝑇1 of depth 𝑛 having as root a triple of form (𝐴, ⊥𝖼, 𝐵);
• by applying the rule (5b) to two trees 𝑇2 and 𝑇3, with max(𝑑(𝑇2), 𝑑(𝑇3)) = 𝑛, having as root, respectively, a triple of form 
(𝐴, ⊥𝖼, 𝐵) and a triple of form (𝐴, 𝗌𝖼, 𝐵);

• by applying rule (5c) to a tree 𝑇4 of depth 𝑛 having as root a triple of form (𝐴, ⊥𝖼, 𝐴);
Now, by construction of 𝑇 , by induction hypothesis on 𝑇1, 𝑇2, 𝑇4 and by Lemma 3.4 applied to 𝑇3, also the tree 𝑇 of depth 𝑛 + 1
contains only triples of the form (𝐴, 𝗌𝖼, 𝐵) and (𝐴, ⊥𝖼, 𝐵), which concludes. □

Lemma 3.6. Let 𝐺 be a defeasible 𝜌df⊥-graph,  = (ℳ, 𝑟) be a ranked model in ℜ𝐺 and ⟨𝑝, 𝗌𝖼, 𝑞⟩ ∈ 𝐺𝑑𝑒𝑓 . For every  ∈ℳ s.t. 𝑟() = 0, 
either  ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑞) or  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).

Analogously, for every ⟨𝑝, 𝗌𝗉, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 and every  ∈ℳ s.t. 𝑟() = 0, either  ⊩𝜌df⊥ (𝑝, 𝗌𝗉, 𝑞) or  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑝).

Proof. The proof is immediate from the fact that every  in ℜ𝐺 is a model of 𝐺 and Definition 3.4. In fact, if there is  ∈ ℳ
s.t. 𝑟() = 0 and  does satisfy neither (𝑝, 𝗌𝖼, 𝑞) nor (𝑝, ⊥𝖼, 𝑝), then  ⊮𝜌df⊥ ⟨𝑝, 𝗌𝖼, 𝑞⟩ and, thus,  is not a model of 𝐺, against the 
hypothesis.

The proof for ⟨𝑝, 𝗌𝗉, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 is similar. □

Lemma 3.7. Let 𝐺 be a defeasible 𝜌df⊥-graph,  = (ℳ, 𝑟) be a ranked model in ℜ𝐺 and let 𝐺𝑠 ⊢𝜌df⊥ (𝑝, 𝗌𝖼, 𝑞) for some terms 𝑝, 𝑞. For every 
 ∈ℳ s.t. 𝑟() = 0, either  ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑞) or  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).

Analogously, if 𝐺𝑠 ⊢𝜌df⊥ (𝑝, 𝗌𝗉, 𝑞) for some terms 𝑝, 𝑞, then for every  ∈ℳ s.t. 𝑟() = 0, either  ⊩𝜌df⊥ (𝑝, 𝗌𝗉, 𝑞) or  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑝).

Proof. We prove the first half, involving the subclass predicate.

So, assume 𝐺𝑠 ⊢𝜌df⊥ (𝑝, 𝗌𝖼, 𝑞) and let  be a 𝜌df⊥ interpretation in ℳ that has rank 0. The proof is on induction on the depth 𝑑(𝑇 )
of a tree 𝑇 , where 𝑇 has (𝑝, 𝗌𝖼, 𝑞) as root.

Case 𝑑(𝑇 ) = 0. Hence, the tree’s only node is (𝑝, 𝗌𝖼, 𝑞). Therefore, either (𝑝, 𝗌𝖼, 𝑞) ∈𝐺𝑠𝑡𝑟 or ⟨𝑝, 𝗌𝖼, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 . In the former case  ⊩𝜌df⊥
(𝑝, 𝗌𝖼, 𝑞), as, being  a model of 𝐺, every  ∈ℳ must satisfy 𝐺𝑠𝑡𝑟. In the latter case, by Lemma 3.6, either  ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑞) or 
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 ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝), which concludes.



Information Sciences 643 (2023) 118409G. Casini and U. Straccia

Case 𝑑(𝑇 ) = 1. In this case, there is only one possible tree, obtained by instantiating rule (3a):

(𝑝, 𝗌𝖼, 𝑟), (𝑟, 𝗌𝖼, 𝑞)
(𝑝, 𝗌𝖼, 𝑞)

Assume  ⊮𝜌df⊥ (𝑝, 𝗌𝖼, 𝑞). As 𝗌𝖼 is a transitive relation, we have two possibilities only:

Case  ⊮𝜌df⊥ (𝑝, 𝗌𝖼, 𝑟). Then, since (𝑝, 𝗌𝖼, 𝑟) ∈ 𝐺𝑠, it must be the case that ⟨𝑝, 𝗌𝖼, 𝑟⟩ ∈ 𝐺𝑑𝑒𝑓 and, thus, by Lemma 3.6,  ⊩𝜌df⊥
(𝑝, ⊥𝖼, 𝑝).

Case ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑟) but  ⊮𝜌df⊥ (𝑟, 𝗌𝖼, 𝑞). Then, since (𝑟, 𝗌𝖼, 𝑞) ∈ 𝐺𝑠, it must be the case that ⟨𝑟, 𝗌𝖼, 𝑞⟩ ∈ 𝐺𝑑𝑒𝑓 . By Lemma 3.6, 
 ⊩𝜌df⊥ (𝑟, ⊥𝖼, 𝑟). So we have  ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑟) and  ⊩𝜌df⊥ (𝑟, ⊥𝖼, 𝑟). Given the derivation rule (EmptySC’) and the fact that 
⊢𝜌df⊥ is sound, we can conclude that  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).

Therefore, either  ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑞) or  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝), which concludes.

Case 𝑑(𝑇 ) = 𝑛+ 1. Let us assume that the lemma holds for all proof trees of depth 𝑚 ⩽ 𝑛, with 𝑛 ⩾ 1. Let us show that it holds also for 
the case 𝑑(𝑇 ) = 𝑛 + 1 as well, where 𝑇 has (𝑝, 𝗌𝖼, 𝑞) as root. Now, since 𝑑(𝑇 ) > 1, as for case 𝑑(𝑇 ) = 1, the only possibility is that 
the tree terminates with an instantiation of rule (3a): that is,

(𝑝, 𝗌𝖼, 𝑟), (𝑟, 𝗌𝖼, 𝑞)
(𝑝, 𝗌𝖼, 𝑞)

where (𝑝, 𝗌𝖼, 𝑟) and (𝑟, 𝗌𝖼, 𝑞) are, respectively, the roots of trees 𝑇1 and 𝑇2, the immediate subtrees of 𝑇 , with max(𝑑(𝑇1), 𝑑(𝑇2)) = 𝑛. 
By inductive hypothesis on 𝑇𝑖, either  ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑟) or  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝), and  ⊩𝜌df⊥ (𝑟, 𝗌𝖼, 𝑞) or  ⊩𝜌df⊥ (𝑟, ⊥𝖼, 𝑟).
As a consequence, we have three cases:

Case ⊩𝜌df⊥ (𝑝,⊥𝖼, 𝑝). The lemma is satisfied immediately.

Case ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑟) and ⊩𝜌df⊥ (𝑟,⊥𝖼, 𝑟). Then, given the derivation rule (EmptySC’) and the fact that ⊢𝜌df⊥ is sound, we have 
 ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝), which concludes.

Case ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑟) and ⊩𝜌df⊥ (𝑟, 𝗌𝖼, 𝑞). Then, by the transitivity of the interpretation of 𝗌𝖼, we have  ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑞), which 
concludes.

For the second half of the lemma, involving the predicate 𝗌𝗉, the proof has exactly the same structure, with the only difference that 
it refers to the rule (2a) instead of the rule (3a). □

Lemma 3.8. Let 𝐺 be a defeasible graph, 𝑝 and 𝑞 terms, and let min𝐺 = (ℳ, 𝑟) be 𝐺’s minimal model. If 𝐺𝑠 ⊢𝜌df⊥ (𝑝, ⊥𝖼, 𝑞) then  ⊩𝜌df⊥
(𝑝, ⊥𝖼, 𝑞) for every  ∈ℳ s.t. 𝑟() = 0.

Proof. Let 𝐺 be a defeasible graph s.t. 𝐺𝑠 ⊢𝜌df⊥ (𝑝, ⊥𝖼, 𝑞). Then by Proposition 3.3, there is a 𝜌df⊥ proof tree 𝑇 from 𝐻 to (𝑝, ⊥𝖼, 𝑞)
for some 𝐻 ⊆𝐺𝑠. We prove now the lemma by induction on the depth 𝑑(𝑇 ) of 𝑇 .

Given min𝐺 = (ℳ, 𝑟), we need to prove that (𝑝, ⊥𝖼, 𝑞) is satisfied by every  ∈ℳ s.t. 𝑟() = 0. Note that, as min𝐺 is a model of 
𝐺, for every  ∈ℳ,  ⊩𝜌df⊥ 𝐺

𝑠𝑡𝑟 holds (see Definition 3.4).

Case 𝑑(𝑇 ) = 0. The tree’s only node is (𝑝, ⊥𝖼, 𝑞), that is in 𝐺𝑠. Recall that 𝐺𝑠 is the union of 𝐺𝑠𝑡𝑟 and the strict translation of the 
defeasible triples in 𝐺𝑑𝑒𝑓 (Equation (3)). Note that (𝑝, ⊥𝖼, 𝑞) cannot be the strict form of a triple in 𝐺𝑑𝑒𝑓 , as the defeasible triples 
must contain 𝗌𝖼 or 𝗌𝗉 as second element (Definition 3.1), hence (𝑝, ⊥𝖼, 𝑞) ∈ 𝐺𝑠𝑡𝑟. Being min𝐺 a model of 𝐺, its strict part 𝐺𝑠𝑡𝑟

must be satisfied by every  ∈ℳ and, as a consequence, the triple (𝑝, ⊥𝖼, 𝑞) must be satisfied by every  ∈ℳ with rank 0, which 
concludes.

Case 𝑑(𝑇 ) = 1. There are only three possible trees of depth 1 with a triple (𝑝, ⊥𝖼, 𝑞) obtained by instantiating rules (5𝑎), (5𝑏) or (5𝑐):
(𝑞,⊥𝖼, 𝑝)
(𝑝,⊥𝖼, 𝑞)

,
(𝑠,⊥𝖼, 𝑞), (𝑝, 𝗌𝖼, 𝑠)

(𝑝,⊥𝖼, 𝑞)
or

(𝑝,⊥𝖼, 𝑝)
(𝑝,⊥𝖼, 𝑞)

.

In the first case, we can refer to the case 𝑑(𝑇 ) = 0 and the fact that  must satisfy the symmetry of ⊥𝖼. The third case is similar 
to the first one taking into account that  must be c-exhaustive on ⊥𝖼. In the second case the tree consists of an instantiation 
of rule (5b), that has two premises, (𝑠, ⊥𝖼, 𝑞) and (𝑝, 𝗌𝖼, 𝑠), that must both be in 𝐺𝑠. (𝑠, ⊥𝖼, 𝑞) does not have a correspondent 
defeasible triple, so (𝑠, ⊥𝖼, 𝑞) ∈ 𝐺𝑠𝑡𝑟. Since 𝐺𝑠𝑡𝑟 must be satisfied by every 𝜌df-interpretation in a ranked model of 𝐺, we have 
 ⊩𝜌df⊥ (𝑠, ⊥𝖼, 𝑞).
Concerning the premise (𝑝, 𝗌𝖼, 𝑠), we have two possible cases:

Case ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑠). In this case, from  ⊩𝜌df⊥ (𝑠, ⊥𝖼, 𝑞) and the soundness of ⊢𝜌df⊥ , we can conclude  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑞).
Case  ⊮𝜌df⊥ (𝑝, 𝗌𝖼, 𝑠). In this case, (𝑝, 𝗌𝖼, 𝑠) ∈ 𝐺𝑠 and  ⊮𝜌df⊥ (𝑝, 𝗌𝖼, 𝑠) implies that (𝑝, 𝗌𝖼, 𝑠) ∉ 𝐺𝑠𝑡𝑟, so ⟨𝑝, 𝗌𝖼, 𝑠⟩ ∈ 𝐺𝑑𝑒𝑓 must hold. 

By Lemma 3.6,  ⊮𝜌df⊥ (𝑝, 𝗌𝖼, 𝑠), implies that  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝). Now, by rule (5𝑐) and the soundness of ⊢𝜌df⊥ , we can conclude 
 ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑞).

Case 𝑑(𝑇 ) = 𝑛+ 1. Let us assume that the proposition holds for all the proof trees of depth 𝑚 ⩽ 𝑛, with 𝑛 ⩾ 1. Let us show that it holds 
also for the case 𝑑(𝑇 ) = 𝑛 + 1 as well, where 𝑇 has (𝑝, ⊥𝖼, 𝑞) as root. Then, since 𝑑(𝑇 ) > 1, as for the case 𝑑(𝑇 ) = 1 the only three 
possibilities are that the tree terminates with an application rule (5𝑎), (5𝑏) or (5𝑐): that is,

(𝑞,⊥𝖼, 𝑝) (𝑠,⊥𝖼, 𝑞), (𝑝, 𝗌𝖼, 𝑠) (𝑝,⊥𝖼, 𝑝)
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(𝑝,⊥𝖼, 𝑞)
,

(𝑝,⊥𝖼, 𝑞)
or

(𝑝,⊥𝖼, 𝑞)
.
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The first case is straightforward, since the immediate subtree of 𝑇 would be a tree of depth 𝑛 that has (𝑞, ⊥𝖼, 𝑝) as root: by 
inductive hypothesis  ⊩𝜌df⊥ (𝑞, ⊥𝖼, 𝑝) and, since  must satisfy the symmetry of ⊥𝖼, we have  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑞). The third case can 
be proven similarly to the first case by relying on fact that  is c-exhaustive over Δ𝖢. In the second case (𝑠, ⊥𝖼, 𝑞) and (𝑝, 𝗌𝖼, 𝑠)
are, respectively, the roots of trees 𝑇1 and 𝑇2, the immediate subtrees of 𝑇 , with max(𝑑(𝑇1), 𝑑(𝑇2)) = 𝑛. By inductive hypothesis 
on 𝑇1,  ⊩𝜌df⊥ (𝑠, ⊥𝖼, 𝑞). Concerning 𝑇2 and its root (𝑝, 𝗌𝖼, 𝑠) we have two possible cases:

Case ⊩𝜌df⊥ (𝑝, 𝗌𝖼, 𝑠). In this case, by rule (5b) and the soundness of ⊢𝜌df⊥ we conclude  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑞).
Case  ⊮𝜌df⊥ (𝑝, 𝗌𝖼, 𝑠). In this case, by the second part of Lemma 3.7 we have  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝). Now, by rule (5𝑐) and the 

soundness of ⊢𝜌df⊥ , we can conclude  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑞).

This concludes the proof of then lemma. □

Lemma 3.10. Let 𝐺 be a defeasible graph, 𝑝, 𝑞 be any pair of terms, and let min𝐺 = (ℳ, 𝑟) be 𝐺’s minimal model. If 𝐺𝑠 ⊢𝜌df⊥ (𝑝, ⊥𝗉, 𝑞) then 
 ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑞) for every  ∈ℳ s.t. 𝑟() = 0.

Proof. Let 𝐺 be a defeasible graph s.t. 𝐺𝑠 ⊢𝜌df⊥ (𝑝, ⊥𝗉, 𝑞). Then by Proposition 3.3 there must be a 𝜌df⊥ proof tree 𝑇 deriving (𝑝, ⊥𝗉, 𝑞)
from some graph 𝐻 ⊆𝐺𝑠. We prove now the lemma by induction on the depth 𝑑(𝑇 ) of 𝑇 .

Given min𝐺 = (ℳ, 𝑟), we need to prove that (𝑝, ⊥𝗉, 𝑞) is satisfied by every  ∈ℳ s.t. 𝑟() = 0. Note that, as min𝐺 is a model of 
𝐺, for every  ∈ℳ,  ⊩𝜌df⊥ 𝐺

𝑠𝑡𝑟 holds (see Definition 3.4).

Case 𝑑(𝑇 ) = 0. The tree’s only node is (𝑝, ⊥𝗉, 𝑞), that is in 𝐺𝑠. Recall that 𝐺𝑠 is the union of 𝐺𝑠𝑡𝑟 and the strict translation of the 
defeasible triples in 𝐺𝑑𝑒𝑓 (Equation (3)). Note that (𝑝, ⊥𝗉, 𝑞) cannot be the strict form of a triple in 𝐺𝑑𝑒𝑓 , since the defeasible 
triples must contain 𝗌𝖼 or 𝗌𝗉 as second element (Definition 3.1), hence (𝑝, ⊥𝗉, 𝑞) ∈𝐺𝑠𝑡𝑟. Being min𝐺 a model of 𝐺, its strict part 
𝐺𝑠𝑡𝑟 must be satisfied by every  ∈ℳ (see Definition 3.4), and as a consequence the triple (𝑝, ⊥𝗉, 𝑞) must be satisfied by every 
 ∈ℳ with rank 0, which concludes.

Case 𝑑(𝑇 ) = 1. There are five possible trees of depth 1 with a triple (𝑝, ⊥𝗉, 𝑞) as root, obtained by instantiating rule (6𝑎), (6𝑏), (6𝑐), (7𝑎)
or (7𝑏): i.e.,

(1)
(𝑞,⊥𝗉,𝑝)
(𝑝,⊥𝗉,𝑞)

(2)
(𝑠,⊥𝗉,𝑞),(𝑝,𝗌𝗉,𝑠)

(𝑝,⊥𝗉,𝑞)

(3)
(𝑝,⊥𝗉,𝑝)
(𝑝,⊥𝗉,𝑞)

(4)
(𝑝,𝖽𝗈𝗆,𝑟),(𝑞,𝖽𝗈𝗆,𝑠),(𝑟,⊥𝖼,𝑠)

(𝑝,⊥𝗉,𝑞)

(5)
(𝑝,𝗋𝖺𝗇𝗀𝖾,𝑟),(𝑞,𝗋𝖺𝗇𝗀𝖾,𝑠),(𝑟,⊥𝖼,𝑠)

(𝑝,⊥𝗉,𝑞)
.

Case (1). We can refer to the case 𝑑(𝑇 ) = 0 and the fact that  must satisfy the symmetry of ⊥𝗉.

Case (3). This case is similar to Case (1) by referring to the fact that  is c-exhaustive.

Case (2). The tree consists of an instantiation of rule (6b), that has two premises, (𝑠, ⊥𝗉, 𝑞) and (𝑝, 𝗌𝗉, 𝑠), that must both be in 𝐺𝑠. 
(𝑠, ⊥𝗉, 𝑞) does not have a correspondent defeasible triple, so (𝑠, ⊥𝗉, 𝑞) ∈ 𝐺𝑠 implies (𝑠, ⊥𝗉, 𝑞) ∈𝐺𝑠𝑡𝑟. Since 𝐺𝑠𝑡𝑟 must be satisfied 
by every 𝜌df-interpretation in a ranked model of 𝐺, we have  ⊩𝜌df⊥ (𝑠, ⊥𝗉, 𝑞).
Concerning the premise (𝑝, 𝗌𝗉, 𝑠), we have two possible cases:

Case ⊩𝜌df⊥ (𝑝, 𝗌𝗉, 𝑠). In this case, from  ⊩𝜌df⊥ (𝑝, 𝗌𝗉, 𝑠),  ⊩𝜌df⊥ (𝑠, ⊥𝗉, 𝑞), and the soundness of ⊢𝜌df⊥ , we can conclude  ⊩𝜌df⊥
(𝑝, ⊥𝗉, 𝑞).

Case  ⊮𝜌df⊥ (𝑝, 𝗌𝗉, 𝑠). In this case, the situation in which (𝑝, 𝗌𝗉, 𝑠) ∈𝐺𝑠 and  ⊮𝜌df⊥ (𝑝, 𝗌𝗉, 𝑠) is possible only if (𝑝, 𝗌𝗉, 𝑠) ∈𝐺𝑑𝑒𝑓 . 
By Lemma 3.6, we have  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑝). Now, by rule (6𝑐) and the soundness of ⊢𝜌df⊥ we can conclude  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑞).

Case (4). (𝑝, 𝖽𝗈𝗆, 𝑟), (𝑞, 𝖽𝗈𝗆, 𝑠), (𝑟, ⊥𝖼, 𝑠) are in 𝐺𝑠, and since they cannot have a defeasible version, they must be in 𝐺𝑠𝑡𝑟 too. All the 
triples in 𝐺𝑠𝑡𝑟 must be satisfied by every  ∈ℳ. This, together with the soundness of ⊢𝜌df⊥ , guarantees that  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑞).

Case (5). Exactly as Case (4), just consider the triples of form (𝐴, 𝗋𝖺𝗇𝗀𝖾, 𝐵) instead of the triples (𝐴, 𝖽𝗈𝗆, 𝐵).
Case 𝑑(𝑇 ) = 𝑛+ 1. Let us assume that the proposition holds for all the proof trees of depth 𝑚 ⩽ 𝑛, with 𝑛 ⩾ 1. Let us show that it holds 

also for the case 𝑑(𝑇 ) = 𝑛 + 1 as well, where 𝑇 has (𝑝, ⊥𝗉, 𝑞) as root. Then, since 𝑑(𝑇 ) > 1, as for the case with 𝑑(𝑇 ) = 1 there are 
five possibilities, with the tree terminating with an application of the rule (6𝑎), (6𝑏), (6𝑐), (7𝑎) or (7𝑏): namely,

(1)
(𝑞,⊥𝗉,𝑝)
(𝑝,⊥𝗉,𝑞)

(2)
(𝑠,⊥𝗉,𝑞),(𝑝,𝗌𝗉,𝑠)

(𝑝,⊥𝗉,𝑞)

(3)
(𝑝,⊥𝗉,𝑝)
(𝑝,⊥𝗉,𝑞)

(4)
(𝑝,𝖽𝗈𝗆,𝑟),(𝑞,𝖽𝗈𝗆,𝑠),(𝑟,⊥𝖼,𝑠)
40

(𝑝,⊥𝗉,𝑞)
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(5)
(𝑝,𝗋𝖺𝗇𝗀𝖾,𝑟),(𝑞,𝗋𝖺𝗇𝗀𝖾,𝑠),(𝑟,⊥𝖼,𝑠)

(𝑝,⊥𝗉,𝑞)
.

Case (1). Straightforward, as the immediate subtree of 𝑇 is a tree of depth 𝑛 that has (𝑞, ⊥𝗉, 𝑝) as root: by inductive hypothesis 
 ⊩𝜌df⊥ (𝑞, ⊥𝗉, 𝑝) and, since  must satisfy the symmetry of ⊥𝗉, we have  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑞).

Case (3). The proof is as for Case (1) by referring to the fact that  is c-exhaustive.

Case (2). (𝑠, ⊥𝗉, 𝑞) and (𝑝, 𝗌𝗉, 𝑠) are, respectively, the roots of 𝑇1 and 𝑇2, the immediate subtrees of 𝑇 , with max(𝑑(𝑇1), 𝑑(𝑇2)) = 𝑛. 
By inductive hypothesis on 𝑇1,  ⊩𝜌df⊥ (𝑠, ⊥𝗉, 𝑞). Concerning 𝑇2 and its root (𝑝, 𝗌𝗉, 𝑠), we have two possible cases:

Case ⊩𝜌df⊥ (𝑝, 𝗌𝗉, 𝑠). In this case, from  ⊩𝜌df⊥ (𝑠, ⊥𝗉, 𝑞) and by the soundness of ⊢𝜌df⊥ we can conclude  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑞).
Case  ⊮𝜌df⊥ (𝑝, 𝗌𝗉, 𝑠). In this case, by Lemma 3.7 we have  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑝). Now, by rule (6𝑐) and the soundness of ⊢𝜌df⊥ we 

can conclude  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑞).
Case (4). Please note that for every pair of terms 𝑝, 𝑞, 𝐺𝑠 ⊢𝜌df⊥ (𝑝, 𝖽𝗈𝗆, 𝑞) holds only if (𝑝, 𝖽𝗈𝗆, 𝑞) ∈𝐺𝑠: no triple of form (𝐴, 𝖽𝗈𝗆, 𝐵)

can be derived, since there are no rules in 𝜌df⊥ that have triples of form (𝐴, 𝖽𝗈𝗆, 𝐵) as conclusions. The only possibility could 
be the rule (2b), by substituting 𝐸 with 𝖽𝗈𝗆, but in that case in the premises we would have a triple with 𝖽𝗈𝗆 in the third 
position, that is not acceptable in our language (see Section 2.1).

Since the triples (𝐴, 𝖽𝗈𝗆, 𝐵) do not have a defeasible version, (𝑝, 𝖽𝗈𝗆, 𝑞) ∈ 𝐺𝑠 implies that (𝑝, 𝖽𝗈𝗆, 𝑞) ∈ 𝐺𝑠𝑡𝑟, and consequently 
 ⊩𝜌df⊥ (𝑝, 𝖽𝗈𝗆, 𝑞). It follows that in case the tree 𝑇 terminates with an application of rule (7a), it will have three immediate 
subtrees: two trees will both have depth 0 and will consist, respectively, only of the nodes (𝑝, 𝖽𝗈𝗆, 𝑟) and (𝑞, 𝖽𝗈𝗆, 𝑠); the third 
subtree, called 𝑇 ′, will have (𝑟, ⊥𝖼, 𝑠) as root.

We know from Lemma 3.8 applied to 𝑇 ′ that  ⊩𝜌df⊥ (𝑟, ⊥𝖼, 𝑠). So we have that  ⊩𝜌df⊥ (𝑝, 𝖽𝗈𝗆, 𝑟),  ⊩𝜌df⊥ (𝑞, 𝖽𝗈𝗆, 𝑠),  ⊩𝜌df⊥
(𝑟, ⊥𝖼, 𝑠), and, by the soundness of ⊢𝜌df⊥ , we can conclude  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑞).

Case (5). The proof for this case is analogous to Case (4): it is sufficient to substitute 𝖽𝗈𝗆 with 𝗋𝖺𝗇𝗀𝖾.

This concludes the proof of the lemma. □

Proposition 3.12. A term 𝑡 is c-exceptional (resp., p-exceptional) w.r.t. a defeasible graph 𝐺 iff 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) (resp., 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)).

Proof. ⇒ .) Let us show that if a term 𝑡 is c-exceptional (resp., p-exceptional) w.r.t. a defeasible graph 𝐺, then 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝖼, 𝑡)
(resp., 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)).
Let 𝑡 be a term in 𝐺, and let 𝑡 be 𝖼-exceptional (resp., 𝗉-exceptional) w.r.t. 𝐺. Then 𝑡 is 𝖼-exceptional (resp., 𝗉-exceptional) w.r.t. 
min𝐺 = (ℳ, 𝑟), that is, for every  ∈ ℳ s.t. 𝑟() = 0, we have that  ⊩𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) (resp.,  ⊩𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)). Now, we need to 
prove that 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) (resp., 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)).
Let 𝐺𝑠 be the canonical model of 𝐺𝑠. By construction and Lemma 2.3, 𝐺𝑠 ∈ℳ. It is now sufficient to prove that 𝑟(𝐺𝑠 ) = 0. Let 
us proceed by contradiction by assuming that 𝑟(𝐺𝑠 ) > 0, and let ′ = (ℳ, 𝑟′) be the ranked interpretation obtained from min𝐺 , 
with for every  ∈ℳ,

𝑟′() =
{

0 if  = 𝐺𝑠

𝑟() otherwise .

We can easily check that ′ is a model of 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 :

• ′ is still a model of 𝐺𝑠𝑡𝑟, since the satisfaction of 𝜌df⊥-triples is not affected by the ranking function.

• for every ⟨𝑝, 𝗌𝖼, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 , 𝐺𝑠 ⊩𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞) since 𝐺𝑠 is a model of 𝐺𝑠. Now we have two cases:

𝐺𝑠⊩𝜌df⊥ (𝑝,⊥𝖼, 𝑝). In such a case, by Definition 3.4, 𝐺𝑠 ∉ 𝖼_min(𝑝, ′) and 𝐺𝑠 is irrelevant to decide the satisfaction of ⟨𝑝, 𝚜𝚌, 𝑞⟩
in ′. Consequently 𝖼_min(𝑝, ′) = 𝖼_min(𝑝, min𝐺), and min𝐺 ⊩𝜌df⊥ ⟨𝑝, 𝗌𝖼, 𝑞⟩ implies ′ ⊩𝜌df⊥ ⟨𝑝, 𝗌𝖼, 𝑞⟩.

𝐺𝑠 ⊮𝜌df⊥ (𝑝,⊥𝖼, 𝑝). Then, since 𝑟′(𝐺𝑠 ) = 0 and 𝑟′() = 𝑟() for all the other elements  of ℳ, ′ ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩. Otherwise in 
′ there should be an ′ with rank 0 s.t. ′ ⊮𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞) and ′ ⊮𝜌df⊥ (𝑝, ⊥𝖼, 𝑝). But then also and min𝐺 should contain 
such ′ at rank 0, but that cannot be the case, as otherwise min𝐺 would not satisfy ⟨𝑝, 𝗌𝖼, 𝑞⟩, against the fact that min𝐺 is 
a model of 𝐺.

Hence ′ ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩.
• We proceed analogously to prove that for every ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 , ′ ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚙, 𝑞⟩.
Therefore, ′ is a model of 𝐺, but by Definition 3.5 we also have ′ ≺min𝐺 , against the definition of min𝐺 . Consequently it 
must be the case that 𝑟(𝐺𝑠 ) = 0, that implies that, for every 𝑡, 𝐺𝑠 ⊩𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) (resp., 𝐺𝑠 ⊩𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)).
Since 𝐺𝑠 is the canonical model for 𝐺𝑠, 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) (resp., 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)).

⇐ .) Let us show that given a defeasible graph 𝐺, if 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) (resp., 𝐺𝑠 ⊢𝜌df⊥ (𝑡, ⊥𝗉, 𝑡)), then a term 𝑡 is c-exceptional (resp.,

p-exceptional) w.r.t. 𝐺.

This is an immediate consequence of Corollaries 3.9 and 3.11.

This completes the proof. □

Lemma 3.14. Let 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a defeasible graph and min𝐺 = (ℳ, 𝑟) its minimal ranked model. Then 𝑖
min𝐺 = (ℳ𝑖, 𝑟𝑖) is a model of 

the subgraph 𝐺𝑖 =𝐺𝑠𝑡𝑟 ∪𝐺
𝑑𝑒𝑓

𝑖
.

Proof. min𝐺 = (ℳ, 𝑟) is a model of 𝐺. Hence all the interpretations in ℳ are models of 𝐺𝑠𝑡𝑟 and, since ℳ𝑖 ⊆ ℳ, also 𝑖
min𝐺
41

satisfies 𝐺𝑠𝑡𝑟. Concerning the defeasible triples in 𝐺𝑑𝑒𝑓

𝑖
, we proceed by contradiction, assuming 𝑖

min𝐺 is not a model of 𝐺𝑖. So, 
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let ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝐺
𝑑𝑒𝑓

𝑖
and 𝑖

min𝐺 ⊮𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩, that is, there is a 𝜌df⊥-interpretation  s.t.  ∈ 𝖼_min(𝑝, 𝑖
min𝐺) and  ⊮𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩. 

Since ℎ𝖼
𝐺
(𝑝) ⩾ 𝑖, 𝖼_min(𝑝, 𝑖

min𝐺) = 𝖼_min(𝑝, min𝐺), and consequently min𝐺 ⊮𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩, against the assumption that min𝐺 is the 
minimal model of 𝐺. The case ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈𝐺

𝑑𝑒𝑓

𝑖
is proved similarly, which concludes. □

Lemma 3.15. Given a defeasible graph 𝐺, ∗
𝑖

is the minimal model of the subgraph 𝐺𝑖.

Proof. At first, we prove that ∗
𝑖

is a model of 𝐺𝑖. So, let min𝐺 be the minimal model of the graph 𝐺. From the definitions of 
min𝐺 , 𝑖

min𝐺 and ∗
𝑖

it is clear that for every  ∈ℳ, 𝑟∗
𝑖
() <∞ iff 𝑟() <∞. Hence ∗

𝑖
⊩𝜌df⊥ 𝐺

𝑠𝑡𝑟. Now, let ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈𝐺
𝑑𝑒𝑓

𝑖
. From the 

construction of 𝐺𝑑𝑒𝑓

𝑖
, 𝑖

min𝐺 and 𝑅∗
𝑖
, we have that for ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈𝐺

𝑑𝑒𝑓

𝑖
it holds that ℎ𝖼

𝐺
(𝑝) ⩾ 𝑖. Therefore, since for every  ∈ℳ ⧵ℳ𝑖

𝑟() < 𝑖, it must be the case that  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) and, thus, for all the 𝜌df-interpretations  ∈ℳ ⧵ℳ𝑖,  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).
As a consequence, for every ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝐺

𝑑𝑒𝑓

𝑖
, 𝖼_min(𝑝, min𝐺) = 𝖼_min(𝑝, 𝑖

min𝐺), and since min𝐺 ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩ for every ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈𝐺
𝑑𝑒𝑓

𝑖
, ∗

𝑖
⊩𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩ has to hold too.

Analogously, for every ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈𝐺
𝑑𝑒𝑓

𝑖
, we have that

• for all the 𝜌df-interpretations  ∈ℳ ⧵ℳ𝑖,  ⊩𝜌df⊥ (𝑝, ⊥𝗉, 𝑝);
• 𝗉_min(𝑝, min𝐺) = 𝗉_min(𝑝, 𝑖

min𝐺); and

• for every ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈𝐺
𝑑𝑒𝑓

𝑖
, ∗

𝑖
⊩𝜌df⊥ ⟨𝑝, 𝚜𝚙, 𝑞⟩.

Therefore, ∗
𝑖

is a model of 𝐺𝑖.

As next, we have to prove that ∗
𝑖

is in fact the minimal model of 𝐺𝑖. To do so, we proceed by contradiction, by assuming that this 
is not the case. Then there is a model ′ = (ℳ, 𝑟′) of 𝐺𝑖 s.t. for every  ∈ℳ, 𝑟′() ⩽ 𝑟∗(), and there is an ′ ∈ℳ s.t. 𝑟′(′) < 𝑟∗(′). 
Note that, since 𝑟∗() = 0 for every  ∈ℳ ⧵ℳ𝑖, ′ ∈ℳ𝑖 necessarily. We have to prove that such an ′ cannot exist.

Given min𝐺 = (ℳ, 𝑟) and ′ = (ℳ, 𝑟′), we build a ranked interpretation + = (ℳ, 𝑟+) defining 𝑟+ in the following way:

𝑟+() =
{

𝑟′() + 𝑖 if  ∈ℳ𝑖

𝑟() otherwise.

That is,

• 𝑟+() = 𝑟() for every  ∈ℳ ⧵ℳ𝑖;

• from the definitions of 𝑟𝑖, 𝑟′ and 𝑟+ we can conclude that 𝑟+() ⩽ 𝑟() for every  ∈ℳ𝑖, and there is an ′ ∈ℳ𝑖 s.t. 𝑟+(′) < 𝑟(′).

As a consequence, + ≺min𝐺 . Also, + is a model of 𝐺, because

• all the 𝜌df⊥-interpretations  ∈ℳ are models of 𝐺𝑠𝑡𝑟, hence + ⊩𝜌df⊥ 𝐺
𝑠𝑡𝑟;

• for all the defeasible triples ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝐺𝑑𝑒𝑓 ⧵ 𝐺𝑑𝑒𝑓

𝑖
, 𝖼_min(𝑝, +) = 𝖼_min(𝑝, min𝐺), and, since min𝐺 ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩, we have 

+ ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩;
• analogously, for all the defeasible triples ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 ⧵𝐺𝑑𝑒𝑓

𝑖
, 𝗉_min(𝑝, +) = 𝗉_min(𝑝, min𝐺), and, since min𝐺 ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚙, 𝑞⟩, 

we have + ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚙, 𝑞⟩;
• for all the defeasible triples ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝐺

𝑑𝑒𝑓

𝑖
, 𝖼_min(𝑝, +) = 𝖼_min(𝑝, ′), and, since ′ ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩, we have + ⊩𝜌df⊥⟨𝑝, 𝚜𝚌, 𝑞⟩;

• analogously, for all the defeasible triples ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝐺
𝑑𝑒𝑓

𝑖
, 𝗉_min(𝑝, +) = 𝗉_min(𝑝, ′), and, since ′ ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚙, 𝑞⟩, we have 

+ ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚙, 𝑞⟩.
Therefore, + is a model of 𝐺, which is impossible, as min𝐺 is the minimal model of 𝐺 and, thus, ∗

𝑖
is the minimal model of 

the subgraph 𝐺𝑖. □

Lemma 3.16. Let 𝐺 = 𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a defeasible graph and let min𝐺 be its minimal model, with ℎ(min𝐺) = 𝑛. For every 𝑖 ⩽ 𝑛 and term 
𝑝 s.t. ℎ𝖼

𝐺
(𝑝) ⩾ 𝑖 (resp., ℎ𝗉

𝐺
(𝑝) ⩾ 𝑖) 𝑝 is c-exceptional (resp., p-exceptional) w.r.t. 𝑖

min𝐺 = (ℳ𝑖, 𝑟𝑖) iff it is c-exceptional (resp., p-exceptional) 
w.r.t. ∗

𝑖
= (ℳ, 𝑟∗

𝑖
).

Proof. Let 𝑖 ⩽ 𝑛, with ∗
𝑖
= (ℳ, 𝑟∗) and 𝑖

min𝐺 = (ℳ𝑖, 𝑟𝑖) be the models of 𝐺𝑖 built as described above.

For every  ∈ℳ𝑖, 𝑟𝑖() = 𝑟∗
𝑖
(). If  ∈ℳ ⧵ℳ𝑖 we have seen above that 𝑟∗() = 0 and  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) for every term 𝑝 s.t. ℎ𝖼

𝐺
(𝑝) ⩾ 𝑖.

Given these facts, the following statements are equivalent:

• 𝑝 is not c-exceptional w.r.t. 𝑖
min𝐺 ;

• there is an  ∈ℳ𝑖 s.t. 𝑟𝑖() = 0 and  ⊮𝜌df⊥ (𝑝, ⊥𝖼, 𝑝);
• there is an  ∈ℳ𝑖 s.t. 𝑟∗

𝑖
() = 0 and  ⊮𝜌df⊥ (𝑝, ⊥𝖼, 𝑝);
42

• 𝑝 is not c-exceptional w.r.t. ∗
𝑖
.
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Analogously, we can prove that if we consider a term 𝑝 s.t. ℎ𝗉
𝐺
(𝑝) ⩾ 𝑖, the following statements are equivalent:

• 𝑝 is not p-exceptional w.r.t. 𝑖
min𝐺 ;

• there is an  ∈ℳ𝑖 s.t. 𝑟𝑖() = 0 and  ⊮𝜌df⊥ (𝑝, ⊥𝗉, 𝑝);
• there is an  ∈ℳ𝑖 s.t. 𝑟∗

𝑖
() = 0 and  ⊮𝜌df⊥ (𝑝, ⊥𝗉, 𝑝);

• 𝑝 is not p-exceptional w.r.t. ∗
𝑖
,

which concludes the proof. □

Lemma 3.17. Let 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a defeasible graph, and min𝐺 = (ℳ, 𝑟) its minimal model, with ℎ(min𝐺) = 𝑛, and ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 . 
Then,

• for every 𝑖 < 𝑛, ℎ𝖼
𝐺
(𝑝) ⩾ 𝑖 + 1 iff ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺𝑖);

• for 𝑖 = 𝑛, ℎ𝖼
𝐺
(𝑝) =∞ iff ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺𝑖).

Analogously, let ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 . Then,

• for every 𝑖 < 𝑛, ℎ𝗉
𝐺
(𝑝) ⩾ 𝑖 + 1 iff ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺𝑖);

• for 𝑖 = 𝑛, ℎ𝗉
𝐺
(𝑝) =∞ iff ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺𝑖).

Proof. Let ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 .

For 𝑖 < 𝑛, the following statements are equivalent:

• ℎ𝖼
𝐺
(𝑝) ⩾ 𝑖 + 1;

• for all  ∈ℳ ⧵ℳ𝑖+1,  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝);
• for all  ∈ℳ ⧵ℳ𝑖,  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) and 𝑝 is c-exceptional w.r.t. 𝑖

min𝐺 ;

• for all  ∈ℳ ⧵ℳ𝑖,  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) and 𝑝 is c-exceptional w.r.t. 𝑅∗
𝑖

(by Lemma 3.16);

• 𝑝 is c-exceptional w.r.t. 𝐺𝑖 (by Lemma 3.15);

• ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺𝑖) (by Corollary 3.13).

For 𝑖 = 𝑛, the following statements are equivalent:

• ℎ𝖼
𝐺
(𝑝) =∞;

• for all the  ∈ℳ ⧵ℳ∞,  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝);
• for all the  ∈ℳ ⧵ℳ𝑛,  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) and 𝑝 is c-exceptional w.r.t. 𝑛

min𝐺 ;

• for all the  ∈ℳ ⧵ℳ𝑛,  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) and 𝑝 is c-exceptional w.r.t. 𝑅∗
𝑖

(by Lemma 3.16);

• 𝑝 is c-exceptional w.r.t. 𝐺𝑛 (by Lemma 3.15);

• ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺𝑛) (by Corollary 3.13).

This proves the first half of the proposition.

For triples ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈𝐺𝑑𝑒𝑓 the proof is analogous, which concludes. □

Lemma 3.18. Let 𝐺 be a defeasible graph, with 𝑛 being the height of its minimal model. Then, for every 𝑖 ⩽ 𝑛, 𝐺𝑖 =𝐺𝙳
𝑖
.

Proof. We prove it by induction on the value of 𝑖. If 𝑖 = 0, then 𝐺𝑑𝑒𝑓

0 =𝐺𝑑𝑒𝑓 = 𝙳0, that is, 𝐺0 =𝐺𝙳
0 . Now, assume that 𝐺𝑖 =𝐺𝙳

𝑖
holds 

for all 𝑖 < 𝑛, which implies also 𝐺𝑑𝑒𝑓

𝑖
= 𝙳𝑖. By Lemma 3.17, for every ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈𝐺

𝑑𝑒𝑓

𝑖
, ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈𝐺

𝑑𝑒𝑓

𝑖+1 iff ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺𝑖)
iff ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙲(𝐺𝙳

𝑖
), that in turn is equivalent to ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳𝑖+1.

Analogously, by Lemma 3.17, we have that for every ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝐺
𝑑𝑒𝑓

𝑖
, ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝐺

𝑑𝑒𝑓

𝑖+1 iff ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺𝑖) iff ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗𝚊𝚕𝙿(𝐺𝙳
𝑖
), that in turn is equivalent to ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙳𝑖+1, which concludes. □

Lemma 3.21. Let 𝐺 = 𝐺𝑠𝑡𝑟 ∪ 𝐺𝑑𝑒𝑓 be a defeasible graph, 𝚛(𝐺) = {𝙳0, … , 𝙳𝑛, 𝙳∞} its ranking, and min𝐺 = (ℳ, 𝑟) its minimal model, with 
 ∈ℳ. Then  ∈ℳℕ iff  ⊩𝜌df⊥ 𝐺

𝑠𝑡𝑟 ∪ {(𝑝, ⊥𝖼, 𝑝) ∣ ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳∞} ∪ {(𝑝, ⊥𝗉, 𝑝) ∣ ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙳∞}.

Proof. ⇒) From the construction of 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 and Proposition 3.19, it is obvious that if  ∈ℳℕ then  ⊩𝜌df⊥ 𝐺
𝑠𝑡𝑟 ∪ {(𝑝, ⊥𝖼, 𝑝) ∣⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳∞} ∪ {(𝑝, ⊥𝗉, 𝑝) ∣ ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙳∞}.

⇐) We proceed by contradiction. Assume there is a 𝜌df⊥-interpretation ′ ∈ℳ s.t. 𝑟(′) =∞ and ′ ⊩𝜌df⊥ 𝐺
𝑠𝑡𝑟∪{(𝑝, ⊥𝖼, 𝑝) ∣ ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈

𝙳∞} ∪ {(𝑝, ⊥𝗉, 𝑝) ∣ ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙳∞}.

Assume ℎ(min𝐺) = 𝑛 (see Definition 3.7), and let ′ = (ℳ, 𝑟′) be a ranked interpretation where 𝑟′ is defined in the following 
43

way:
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𝑟′() =
⎧⎪⎨⎪⎩
𝑟() if  ∈ℳℕ
𝑛+ 1 if  = ′

∞ otherwise.

Informally, ′ has been obtained from min𝐺 simply by moving ′ from rank ∞ to the top of ℳℕ. Clearly ′ ≺min𝐺 , since for 
every  ∈ℳ, 𝑟′() ⩽ 𝑟(), and 𝑟′(′) < 𝑟(′).
It is easy to check that ′ is a model of 𝐺: every model with a finite rank satisfies 𝐺𝑠𝑡𝑟; for every ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳𝑖, for 𝑖 < ∞, 
𝖼_min(𝑝, ′) = 𝖼_min(𝑝, min𝐺), and consequently ′ ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩. Analogously for every ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙳𝑖, for 𝑖 <∞. For every ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳∞, every model with a finite rank satisfies (𝑝, ⊥𝗉, 𝑝); analogously for every ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳∞. Hence ′ is a model of 𝐺
and ′ ≺min𝐺 , against the assumption that min𝐺 is the minimal model of 𝐺.

As a consequently for every ,  ⊩𝜌df⊥ 𝐺
𝑠𝑡𝑟 ∪ {(𝑝, ⊥𝖼, 𝑝) ∣ ⟨𝑝, 𝚜𝚌, 𝑞⟩ ∈ 𝙳∞} ∪ {(𝑝, ⊥𝗉, 𝑝) ∣ ⟨𝑝, 𝚜𝚙, 𝑞⟩ ∈ 𝙳∞} implies  ∈ℳℕ. □

Lemma 3.23. Let 𝑇 be a proof tree from a graph 𝐻 to a triple (𝑝, 𝚜𝚌, 𝑞), and let  be a model of 𝐻 . If  ⊩𝜌df⊥ (𝑠, ⊥𝖼, 𝑠) for some triple 
(𝑠, 𝚜𝚌, 𝑜) ∈𝐻 , then  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).

Proof. The proof proceeds by induction on the depth of the proof tree 𝑇 .

Case 𝑑(𝑇 ) = 0. In this case, 𝐻 = {(𝑝, 𝚜𝚌, 𝑞)}. Consequently  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) obviously implies  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).
Case 𝑑(𝑇 ) = 1. The only way of deriving a triple of form (𝑝, 𝚜𝚌, 𝑞) is using the rule (3a), as shown in the proof of Lemma 3.4. Hence 

the proof tree consists of an instantiation of rule (3a) with (𝑝, 𝗌𝖼, 𝑞) as root.

(3𝑎) (𝑝, 𝗌𝖼, 𝑡), (𝑡, 𝗌𝖼, 𝑞)
(𝑝, 𝗌𝖼, 𝑞)

Now, assume that  ⊩𝜌df⊥ (𝐴, ⊥𝖼, 𝐴) holds for the antecedent of at least one of the two premises, i.e.,  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) or  ⊩𝜌df⊥
(𝑡, ⊥𝖼, 𝑡) holds. We have to prove that  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).
Case (1).  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝). The result is immediate.

Case (2).  ⊩𝜌df⊥ (𝑡, ⊥𝖼, 𝑡). Then together with  ⊩𝜌df⊥ (𝑝, 𝚜𝚌, 𝑡) we derive  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝), by the soundness of rule (5b).

Case 𝑑(𝑇 ) = 𝑛+ 1. Assume that the proposition holds for all the proof trees with depth 𝑚 ⩽ 𝑛, with 𝑛 > 1. Let us show that it holds 
also for trees of depth 𝑛 + 1. So, let 𝑇 be a proof tree from 𝐻 to (𝑝, 𝗌𝖼, 𝑞) with depth 𝑛 + 1. The last step in 𝑇 must correspond to 
an instantiation of the rule (3a) with (𝑝, 𝗌𝖼, 𝑞) as root:

(3𝑎) (𝑝, 𝗌𝖼, 𝑡), (𝑡, 𝗌𝖼, 𝑞)
(𝑝, 𝗌𝖼, 𝑞)

Hence 𝑇 has two immediate subtrees: 𝑇 ′, having (𝑝, 𝗌𝖼, 𝑡) as root, and 𝑇 ′′, having (𝑡, 𝗌𝖼, 𝑞) as root; each of them has a depth of at 
most 𝑛. Since we assume that the proposition holds for trees of depth at most 𝑛, if  ⊩𝜌df⊥ (𝑠, ⊥𝖼, 𝑠) for some (𝑠, 𝚜𝚌, 𝑜) ∈𝐻 , then 
by induction hypothesis either  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) (if (𝑠, 𝚜𝚌, 𝑜) appears as a leaf in 𝑇 ′) or  ⊩𝜌df⊥ (𝑡, ⊥𝖼, 𝑡) (if (𝑠, 𝚜𝚌, 𝑜) appears as a 
leaf in 𝑇 ′′). Likewise case 𝑑(𝑇 ) = 1, in both the cases we can conclude  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝), which concludes the proof. □

Lemma 3.24. Let 𝐺 = 𝐺𝑠𝑡𝑟 ∪ 𝐺𝑑𝑒𝑓 be a defeasible graph, and let 𝚛(𝐺) = {𝙳0, … , 𝙳𝑛, 𝙳∞} be its ranking. For any pair of terms 𝑝, 𝑞 s.t. 
ℎ𝖼
𝐺
(𝑝) ⩽ 𝑛,

𝐺 ⊧min ⟨𝑝,𝚜𝚌, 𝑞⟩ iff 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝,𝚜𝚌, 𝑞) ,

where 𝙳𝑝 is defined as in the 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 procedure.

Proof. Consider 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 and let min𝐺 = (ℳ, 𝑟) be its minimal model. Let ℎ𝖼
𝐺
(𝑝) = 𝑘, with 𝑘 ⩽ 𝑛. From Corollary 3.20 we can 

conclude that in the 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 procedure, 𝐺′ ⊬𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) for 𝑗 = 𝑘, and 𝙳𝑝 = {⟨𝑟, 𝚜𝚌, 𝑠⟩ ∣ ⟨𝑟, 𝚜𝚌, 𝑠⟩ ∈ 𝙳𝑘 ⧵ 𝙳𝑘+1}.

We have to prove that 𝐺 ⊧min ⟨𝑝, 𝚜𝚌, 𝑞⟩ iff 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞).

⇐ .) Let us show that 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞) implies 𝐺 ⊧min ⟨𝑝, 𝚜𝚌, 𝑞⟩. Assume 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞). In order to prove 𝐺 ⊧min⟨𝑝, 𝚜𝚌, 𝑞⟩ we need to show that for every  ∈ 𝖼_min(𝑝, min𝐺),  ⊩𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞) holds.

We proceed by contradiction. So, assume that  ∈ 𝖼_min(𝑝, min𝐺) and  ⊮𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞).  ∈ 𝖼_min(𝑝, min𝐺) implies  ⊮𝜌df⊥
(𝑝, ⊥𝖼, 𝑝). Also, since ℎ𝖼

𝐺
(𝑝) = 𝑘, 𝑟() = 𝑘 follows. Since 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞),  ⊮𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) and  ⊩𝜌df⊥ 𝐺

𝑠𝑡𝑟 (Lemma 3.21), 
then there is at least a triple in (𝙳𝑝)𝑠 that is not satisfied by . By Lemma 3.4 such a triple must be of the kind (𝑠, 𝚜𝚌, 𝑡). In 
particular, 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞) implies that there must be a graph 𝐻 ⊆ 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 s.t. there is a proof tree 𝑇 proving 
(𝑝, 𝚜𝚌, 𝑞) from 𝐻 , and there is some triple (𝑠, 𝚜𝚌, 𝑡) ∈𝐻 ∩ (𝙳𝑝)𝑠 s.t.  ⊮𝜌df⊥ (𝑠, 𝚜𝚌, 𝑡). As ⟨𝑠, 𝚜𝚌, 𝑡⟩ ∈ 𝙳𝑘 ⧵ 𝙳𝑘+1, by Proposition 3.19

we have ℎ𝖼
𝐺
(𝑠) = 𝑘. ℎ𝖼

𝐺
(𝑠) = 𝑘 and 𝑟() = 𝑘 imply that if  ⊮𝜌df⊥ (𝑠, 𝚜𝚌, 𝑡), then  ⊩𝜌df⊥ (𝑠, ⊥𝖼, 𝑠) ( ∉ 𝖼_min(𝑠, min𝐺)), otherwise 

min𝐺 would not be a model of 𝐺. However, by Lemma 3.23,  ⊩𝜌df⊥ (𝑠, ⊥𝖼, 𝑠) implies  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝), against the hypothesis 
that  ∈ 𝖼_min(𝑝, min𝐺). Therefore, we must conclude that  ⊩𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞).

⇒ .) Let us show that 𝐺 ⊧min ⟨𝑝, 𝚜𝚌, 𝑞⟩ implies 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞). Let ℎ𝖼
𝐺
(𝑝) = 𝑘, with 𝑘 ⩽ 𝑛. 𝐺 ⊧min ⟨𝑝, 𝚜𝚌, 𝑞⟩ means that, given 
44

the minimal model min𝐺 = (ℳ, 𝑟), for  ∈ℳ s.t. 𝑟() = 𝑘 and  ⊮𝜌df⊥ (𝑝, ⊥𝖼, 𝑝),  ∈ 𝖼_min(𝑝, min𝐺) and  ⊩𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞).
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Now, consider the graph 𝐺∗ ∶=𝐺𝑠𝑡𝑟 ∪ (𝙳𝑘 ⧵ 𝙳𝑘+1)𝑠 ∪ {(𝑟⊥𝖼𝑟) ∣ ⟨𝑟, 𝚜𝚌, 𝑡⟩ ∈ 𝙳𝑘+1} ∪ {(𝑟⊥𝗉𝑟) ∣ ⟨𝑟, 𝚜𝚙, 𝑡⟩ ∈ 𝙳𝑘+1}. That is, 𝐺∗ contains all the 
strict triples in 𝐺, 𝐺𝑠𝑡𝑟, all the defeasible triples that are satisfied at height 𝑘, that is, 𝙳𝑘 ⧵ 𝙳𝑘+1, and for all the triples that are 
exceptional in 𝑘, the set {(𝑟⊥𝖼𝑟) ∣ ⟨𝑟, 𝚜𝚌, 𝑡⟩ ∈ 𝙳𝑘+1} ∪ {(𝑟⊥𝗉𝑟) ∣ ⟨𝑟, 𝚜𝚙, 𝑡⟩ ∈ 𝙳𝑘+1}.

Let 𝐺∗ be the characteristic 𝜌df⊥ model of 𝐺∗, built as defined in Lemma 2.3. We know that 𝐺∗ satisfies exactly 𝖢𝗅(𝐺∗). Also, 
𝐺∗ ∈ℳ, as it can be checked by the definition in Section 3.2 of the ranked interpretations in ℜ𝐺 .

Since 𝐺∗ satisfies  ⊩𝜌df⊥ 𝐺
𝑠𝑡𝑟∪{(𝑟, ⊥𝖼, 𝑟) ∣ ⟨𝑟, 𝚜𝚌, 𝑡⟩ ∈ 𝙳∞} ∪{(𝑟, ⊥𝗉, 𝑟) ∣ ⟨𝑟, 𝚜𝚙, 𝑡⟩ ∈ 𝙳∞}, by Lemma 3.21 it must be in ℳℕ. Moreover, 

it must hold that 𝑟(𝐺∗ ) = 𝑘, since:

• for every triple ⟨𝑠, 𝚜𝚌, 𝑡⟩ ∈ 𝙳𝑘 ⧵ 𝙳𝑘+1 (resp., ⟨𝑠, 𝚜𝚙, 𝑡⟩ ∈ 𝙳𝑘 ⧵ 𝙳𝑘+1) 𝐺∗ does not satisfy (𝑠, ⊥𝖼, 𝑠) (resp., (𝑠, ⊥𝗉, 𝑠)), while ℎ𝖼
𝐺
(𝑠) = 𝑘

(resp., ℎ𝗉
𝐺
(𝑠) = 𝑘). Hence it cannot be 𝑟(𝐺∗ ) < 𝑘.

• 𝐺∗ is compatible with 𝑟(𝐺∗ ) = 𝑘, since it satisfies all the triples in 𝙳𝑘 ⧵ 𝙳𝑘+1 and for every ⟨𝑠, 𝚜𝚌, 𝑡⟩ ∈ 𝙳𝑘+1, 𝐺∗ ⊩𝜌df⊥ (𝑠, ⊥𝖼, 𝑠)
(resp., for every ⟨𝑠, 𝚜𝚙, 𝑡⟩ ∈ 𝙳𝑘+1, 𝐺∗ ⊩𝜌df⊥ (𝑠, ⊥𝗉, 𝑠)).

• min𝐺 assigns the minimal rank to every 𝜌df⊥ interpretation, and since 𝐺∗ is compatible with 𝑟(𝐺∗ ) = 𝑘 and not with 
𝑟(𝐺∗ ) < 𝑘, we can conclude 𝑟(𝐺∗ ) = 𝑘.

ℎ𝖼
𝐺
(𝑝) = 𝑘 implies that 𝐺𝙳

𝑘
⊭𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) (Corollary 3.20). Since 𝐺𝙳

𝑘
⊨𝜌df⊥ 𝐺

∗, 𝐺∗ ⊭𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).
In summary, we have the following situation:

• 𝑟(𝐺∗ ) = 𝑘;

• ℎ𝖼
𝐺
(𝑝) = 𝑘;

• since 𝐺∗ ⊭𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) and 𝐺∗ is the characteristic model of 𝐺∗, 𝐺∗ ⊮𝜌df⊥ (𝑝, ⊥𝖼, 𝑝).
Hence 𝐺∗ ∈ 𝖼_min(𝑝). This, together with 𝐺 ⊧min ⟨𝑝, 𝚜𝚌, 𝑞⟩, implies 𝐺∗ ⊩𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞). Being 𝐺∗ the characteristic model of 𝐺∗, 
𝐺∗ satisfies a triple (𝑠, 𝚜𝚌, 𝑡) iff (𝑠, 𝚜𝚌, 𝑡) ∈ 𝖢𝗅(𝐺∗). Hence 𝐺∗ ⊩𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞) implies 𝐺∗ ⊢𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞).
By Lemma 3.4, we know that to derive a triple of form (𝐴, 𝚜𝚌, 𝐵) from a graph it is sufficient to consider only the triples in the 
same graph with the same form, and in 𝐺∗ all such triples are in 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑘 ⧵ 𝙳𝑘+1)𝑠, that is, 𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠. Hence 𝐺∗ ⊢𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞)
implies

𝐺𝑠𝑡𝑟 ∪ (𝙳𝑝)𝑠 ⊢𝜌df⊥ (𝑝,𝚜𝚌, 𝑞) ,

which concludes. □

Theorem 3.25. Let 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 be a defeasible graph and let ⟨𝑝, 𝚜𝚌, 𝑞⟩ be a defeasible triple. Then,

𝐺 ⊧min ⟨𝑝,𝚜𝚌, 𝑞⟩ iff 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐺,𝚛(𝐺), ⟨𝑝,𝚜𝚌, 𝑞⟩) .
Proof. Let min𝐺 be the minimal model of 𝐺, with ℎ(min𝐺) = 𝑛. Given ⟨𝑝, 𝚜𝚌, 𝑞⟩ we have two possible cases:

Case ℎ𝖼
𝐺
(𝑝)⩽𝑛. The result is guaranteed by Lemma 3.24.

Case ℎ𝖼
𝐺
(𝑝) =∞. By Definition 3.4, min𝐺 ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑞⟩. At the same time, if ℎ𝖼

𝐺
(𝑝) = ∞, then by definition of the procedure, 

𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲(𝐺, 𝚛(𝐺), ⟨𝑝, 𝚜𝚌, 𝑞⟩) must be the case. □

Proposition 3.31. ⊧min satisfies (𝐿𝐿𝐸𝑐 ), (𝑅𝑊𝑐), (𝐿𝐿𝐸𝑝), and (𝑅𝑊𝑝).

Proof. We prove (𝐿𝐿𝐸𝑐 ) and (𝑅𝑊𝑐). The proofs for (𝐿𝐿𝐸𝑝) and (𝑅𝑊𝑝) are analogous.

(𝐿𝐿𝐸𝑐 ). Let 𝐺 ⊧min (𝑝, 𝚜𝚌, 𝑞), 𝐺 ⊧min (𝑞, 𝚜𝚌, 𝑝), and 𝐺 ⊧min ⟨𝑝, 𝚜𝚌, 𝑟⟩. 𝐺 ⊧min (𝑝, 𝚜𝚌, 𝑞) and 𝐺 ⊧min (𝑞, 𝚜𝚌, 𝑝) imply that every 𝜌df⊥-interpretation

in min𝐺 satisfies (𝑝, 𝚜𝚌, 𝑞) and (𝑞, 𝚜𝚌, 𝑝). Since the semantics is sound w.r.t. the derivation rules, by rule (5𝑏) we have that for 
every 𝜌df⊥-interpretation  in min𝐺 ,  ⊩𝜌df⊥ (𝑝, ⊥𝖼, 𝑝) iff  ⊩𝜌df⊥ (𝑞, ⊥𝖼, 𝑞). Consequently 𝖼_min(𝑝, min𝐺) = 𝖼_min(𝑞, min𝐺).
Let  be in 𝖼_min(𝑝, min𝐺). Since 𝐺 ⊧min ⟨𝑝, 𝚜𝚌, 𝑟⟩,  ⊩𝜌df⊥ (𝑝, 𝚜𝚌, 𝑟). We also have  ⊩𝜌df⊥ (𝑞, 𝚜𝚌, 𝑝), and, being  sound w.r.t. rule 
(3𝑎), we conclude  ⊩𝜌df⊥ (𝑞, 𝚜𝚌, 𝑟). 𝖼_min(𝑝, min𝐺) = 𝖼_min(𝑞, min𝐺) implies min𝐺 ⊩𝜌df⊥ ⟨𝑞, 𝚜𝚌, 𝑟⟩, that is, 𝐺 ⊧min ⟨𝑞, 𝚜𝚌, 𝑟⟩.

(𝑅𝑊𝑐). 𝐺 ⊧min (𝑞, 𝚜𝚌, 𝑟) implies that every 𝜌df⊥-interpretation in min𝐺 satisfies (𝑞, 𝚜𝚌, 𝑟). Let  be in 𝖼_min(𝑝, min𝐺). Since 𝐺 ⊧min⟨𝑝, 𝚜𝚌, 𝑞⟩,  ⊩𝜌df⊥ (𝑝, 𝚜𝚌, 𝑞). Hence  ⊩𝜌df⊥ (𝑝, 𝚜𝚌, 𝑟), that implies min𝐺 ⊩𝜌df⊥ ⟨𝑝, 𝚜𝚌, 𝑟⟩, that is, 𝐺 ⊧min ⟨𝑝, 𝚜𝚌, 𝑟⟩. □

Appendix C. Proofs for Section 4

Proposition 4.5. 𝖢𝗅𝑖𝑛 does not satisfy Idempotence. That is, there is a graph 𝐺 such that

𝖢𝗅𝑖𝑛(𝖢𝗅𝑖𝑛(𝐺)) ≠ 𝖢𝗅𝑖𝑛(𝐺) .

Proof. To prove Proposition 4.5 it is sufficient to consider the following example, in which we apply the operator 𝖢𝗅𝑖𝑛 to a graph 𝐺, 
and then we show that applying the inheritance completion to 𝖢𝗅𝑖𝑛(𝐺) we obtain new defeasible triples, so (𝖢𝗅𝑖𝑛(𝐺))𝑖𝑛 ≠ 𝖢𝗅𝑖𝑛(𝐺), which 
45

implies the proposition.
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Fig. C.2. The graph 𝐺.

So, consider the following graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 with

𝐺𝑠𝑡𝑟 = {(𝑎,𝚜𝚌, 𝑏), (𝑐,𝚜𝚌, 𝑑), (𝑐,⊥𝖼, 𝑔), (𝑙,⊥𝖼,𝑚), (𝑒,⊥𝖼, 𝑖), (𝑛,⊥𝖼, 𝑜)}

𝐺𝑑𝑒𝑓 = {⟨𝑎,𝚜𝚌, 𝑓 ⟩, ⟨𝑓,𝚜𝚌, 𝑔⟩, ⟨𝑏,𝚜𝚌, 𝑐⟩, ⟨𝑏,𝚜𝚌, 𝑙⟩, ⟨𝑐,𝚜𝚌,𝑚⟩, ⟨𝑐,𝚜𝚌, ℎ⟩, ⟨ℎ,𝚜𝚌, 𝑖⟩, ⟨𝑑,𝚜𝚌, 𝑒⟩,
⟨𝑑,𝚜𝚌, 𝑛⟩, ⟨𝑒,𝚜𝚌, 𝑜⟩ } .

The graph is represented in Fig. C.2. In order for 𝐺𝑠𝑡𝑟 to be closed under 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝 it is sufficient to add the symmetric 
version of the triples (𝐴, ⊥𝖼, 𝐵), obtained through the application of rule (5a).

At first, we proceed to determine 𝖢𝗅𝑖𝑛(𝐺). As a first step we determine 𝐺𝑖𝑛 by applying the procedure 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺), 
and obtaining the following completion:

𝐺𝑖𝑛 =𝐺 ∪ {⟨𝑎,𝚜𝚌, 𝑙⟩, ⟨𝑏,𝚜𝚌, ℎ⟩, ⟨𝑏,𝚜𝚌, 𝑑⟩, ⟨𝑏,𝚜𝚌, 𝑛⟩, ⟨𝑐,𝚜𝚌, 𝑛⟩} .
The new triples in 𝐺𝑖𝑛 are represented in orange in Fig. C.3. Please note that ⟨𝑎, 𝗌𝖼, 𝑒⟩ is not in 𝐺𝑖𝑛: Δ𝑎,𝑒 = {⟨𝑎, 𝚜𝚌, 𝑓 ⟩, ⟨𝑓, 𝚜𝚌, 𝑔⟩, ⟨𝑏, 𝚜𝚌, 𝑐⟩,⟨𝑐, 𝚜𝚌, ℎ⟩, ⟨ℎ, 𝚜𝚌, 𝑖⟩, ⟨𝑑, 𝚜𝚌, 𝑒⟩}, and 𝐺𝑠𝑡𝑟 ∪Δ𝑎,𝑒 ̸⊧min ⟨𝑎, 𝗌𝖼, 𝑒⟩.

Determining 𝖢𝗅𝑖𝑛(𝐺) corresponds to determine 𝖢𝗅min(𝐺𝑖𝑛). The latter, represented in Fig. C.4, is

𝖢𝗅𝑖𝑛(𝐺) =𝐺𝑖𝑛 ∪ {⟨𝑎,𝚜𝚌, 𝑐⟩, ⟨𝑐,𝚜𝚌, 𝑒⟩} .
⟨𝑎, 𝗌𝖼, 𝑒⟩ is still not derivable, since 𝐺𝑖𝑛 ̸⊧min ⟨𝑎, 𝗌𝖼, 𝑒⟩.

Now, if 𝖢𝗅𝑖𝑛 satisfies Idempotence, we would have 𝖢𝗅𝑖𝑛(𝖢𝗅𝑖𝑛(𝐺)) = 𝖢𝗅𝑖𝑛(𝐺), that implies that the inheritance completion of 𝖢𝗅𝑖𝑛(𝐺), 
namely (𝖢𝗅𝑖𝑛(𝐺))𝑖𝑛, does not add any new triples to (𝖢𝗅𝑖𝑛(𝐺)), i.e., (𝖢𝗅𝑖𝑛(𝐺))𝑖𝑛 = 𝖢𝗅𝑖𝑛(𝐺). However, once we determine (𝖢𝗅𝑖𝑛(𝐺))𝑖𝑛, we 
obtain a new defeasible triple, as indicated in Fig. C.5:

(𝖢𝗅𝑖𝑛(𝐺))𝑖𝑛 = 𝖢𝗅𝑖𝑛(𝐺) ∪ {⟨𝑎,𝚜𝚌, 𝑒⟩} ,
which concludes. □

Lemma 4.7. Consider a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 and two nodes, 𝑝 and 𝑞, in 𝐺. Δ𝑝,𝑞 can be determined in 𝑂(|𝐺|2) time.

Proof. In order to determine the set Δ𝑝,𝑞 , given any two nodes 𝑝, 𝑞 in a graph 𝐺, we adapt the analogous method presented for ducts 
in [14, Section 3.1.6] to our case.

Specifically, given that the construction of paths is independent w.r.t. the kind of triples that are involved, we can analyse the 
problem using simple directed graphs. Given a graph 𝐺, it is sufficient to define the correspondent directed graph  = ⟨𝑉 , 𝐸⟩ in the 
46

following way:
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Fig. C.3. The inheritance completion of the graph 𝐺.

Fig. C.4. The inheritance based closure of the graph 𝐺.

• 𝑉 is the set of terms that appear in the first or third position in the triples in 𝐺;

• 𝐸 is a set of directed links ⟨𝑠, 𝑡⟩, with 𝑠, 𝑡 ∈ 𝑉 , s.t. ⟨𝑠, 𝑡⟩ ∈𝐸 iff �𝑠, 𝑟, 𝑡� ∈𝐺, for any 𝑟.

Once we have defined , let us recall a well-known result in graph theory saying that in a directed graph, given two nodes 𝑝 and 𝑞, 
determining if there is a path from 𝑝 to 𝑞 can be determined in time (|𝑉 | + |𝐸|), e.g., using BFS (Breadth First Search) [17]. Now, 
47

the following argument shows that indeed Δ𝑝,𝑞 can be determined in polynomial time.
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Fig. C.5. An extra inheritance completion of the graph 𝖢𝗅𝑖𝑛(𝐺).

At first, we check if there is a path between 𝑝 and 𝑞. If not, then Δ𝑝,𝑞 = ∅. Otherwise, we call the procedure Delta(𝑝) below:

Delta(𝑝): for each outgoing edge ⟨𝑝, 𝑥⟩ of 𝑝, such that both ⟨𝑝, 𝑥⟩ and 𝑥 are not marked, do: if there is a path between 𝑥 and 𝑞 then 
mark both ⟨𝑝, 𝑥⟩ and 𝑥, and recursively, call Delta(𝑥).

Once finished, Δ𝑝,𝑞 can immediately be built from the marked edges.

Note that each edge is marked once and each node is marked (i.e., explored) once and, thus, the algorithm is bounded polynomially 
by the size of the graph : the procedure Delta(𝑝) needs to be called at most |𝐸| times, hence the entire construction of Δ𝑝,𝑞 requires 
(|𝐸|(|𝑉 | + |𝐸|)). Since |𝑉 | ⩽ 2|𝐸| and |𝐸| ⩽ |𝐺|, |𝐸|(|𝑉 | + |𝐸|) ⩽ |𝐺|(3|𝐺|) = 3|𝐺|2. Hence the construction of Δ𝑝,𝑞 runs in time 
(|𝐺|2). □

Proposition 4.8. Consider a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 . Assume that 𝐺𝑠𝑡𝑟 is closed under 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝. Then the procedure 
𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺) runs in time 𝑂(|𝐺𝑑𝑒𝑓 ||𝐺|4).
Proof. First, we analyse the cost of computing the lines 3-8 in 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺). That is, given a graph 𝐺 and a pair ⟨𝑝, 𝑞⟩
of nodes in 𝐺, what is the cost of calculating whether ⟨𝑝, 𝚜𝚌, 𝑞⟩ or ⟨𝑝, 𝚜𝚙, 𝑞⟩ need to be added in 𝐺𝑖𝑛. We proceed first by calculat-

ing Δ𝑝,𝑞 ((|𝐺|2), see Lemma 4.7), followed by 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲 (𝑂(|𝐺𝑑𝑒𝑓 ||𝐺|2), see Proposition 3.43) and 𝙳𝚎𝚏𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝𝙲
(𝑂(|𝐺𝑑𝑒𝑓 ||𝐺|2), see Proposition 3.44). Hence, combining these 3 procedures, these lines can be computed in time 𝑂(|𝐺𝑑𝑒𝑓 ||𝐺|2).

We have to repeat such lines for every pair 𝑝, 𝑞 ∈𝐺. Therefore, 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺) runs in time 𝑂(|𝐺𝑑𝑒𝑓 ||𝐺|4). □

Corollary 4.9. Consider a defeasible graph 𝐺 =𝐺𝑠𝑡𝑟 ∪𝐺𝑑𝑒𝑓 . Then 𝐺 ⊢𝑖𝑛 �𝑝, 𝑜, 𝑞� can be decided in polynomial time.

Proof. The claim follows from the facts that: (𝑖) by Proposition 3.39, the closure of 𝐺𝑠𝑡𝑟 under procedure 𝚂𝚝𝚛𝚒𝚌𝚝𝙼𝚒𝚗𝙴𝚗𝚝𝚊𝚒𝚕𝚖𝚎𝚗𝚝 can 
be computed in polynomial time; (𝑖𝑖) 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺) needs to be run only once for any graph 𝐺 and, thus, requires poly-

nomial time (see Proposition 4.8)); and (𝑖𝑖𝑖) once we have obtained 𝐺𝑖𝑛 from 𝙸𝚗𝚑𝚎𝚛𝚒𝚝𝚊𝚗𝚌𝚎𝙲𝚘𝚖𝚙𝚕𝚎𝚝𝚒𝚘𝚗(𝐺), following Definition 4.2, 
deciding whether 𝐺 ⊢𝑖𝑛 �𝑝, 𝑜, 𝑞� corresponds to deciding whether 𝐺𝑖𝑛 ⊧min �𝑝, 𝑜, 𝑞�, which is tractable (see Corollary 3.45). Combining 
the three facts above, 𝐺 ⊢𝑖𝑛 �𝑝, 𝑜, 𝑞� can be decided in polynomial time, which concludes. □
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