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The Semantic Web Vision

@ The WWW as we know it now

» 1st generation web mostly handwritten HTML pages
» 2nd generation (current) web often machine generated/active
» Both intended for direct human processing/interaction

@ In next generation web, resources should be more accessible to
automated processes

» To be achieved via semantic markup
» Metadata annotations that describe content/function

W
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Ontologies

@ Semantic markup must be meaningful to automated processes
@ Ontologies will play a key role
» Source of precisely defined terms (vocabulary)
» Can be shared across applications (and humans)
@ Ontology typically consists of:
» Hierarchical description of important concepts in domain
» Descriptions of properties of instances of each concept
@ Ontologies can be used, e.g.

» To facilitate agent-agent communication in e-commerce

» In semantic based search

» To provide richer service descriptions that can be more flexibly
interpreted by intelligent agents
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Example Ontology

@ Vocabulary and meaning (“definitions”)
» Elephant is a concept whose members are a kind of animal
» Herbivore is a concept whose members are exactly those animals

who eat only plants or parts of plants
» Adult_Elephant is a concept whose members are exactly those

elephants whose age is greater than 20 years
@ Background knowledge/constraints on the domain (“general
axioms”)
» Adult_Elephants weigh at least 2,000 kg
» All Elephants are either African_Elephants or Indian_Elephants
» No individual can be both a Herbivore and a Carnivore

W
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Example Ontology (Protégé)

000 elephants Protégé 3.0  (file:/Users/horrocks/Software/OilEd/ontologies/elephants.pprj, OWL Files (.owl or .rdf))

File Edit Project OWL Wizards Code Window Help

[a]es]m] (& w]o] [#]w] EEEIDE CIERES <@|protége
| <)) OWLClasses | (¢l Properties | = Forms | = Individuals | &> Metadata |
For Project: @ elephants For Class: o nsO:giraffe  (instance of owl:Class)
Asserted Hierarchy % I 2 2 "mmm [J Annotations 3 =
1< owl:Thing = InsO:qiraffe @ Property ‘ Value La...l
v ©ns0:animal Drdfs:comment "Funny looking...
- b . rdfs:comment @)
© nsO.afr_]can_ammaI "Funny looking things with long
‘©ns0:asian_animal necks®
©ns0:carnivore
v ©ns0:elephant ||| Asserted | Inferred | [Ell Prope i Gi g2 B & %
‘©ns0:adult_elephant 7 e s v @ ns0:eats
©nsO:african Asserted Conditions J @@ l @ns0loal
‘©ns0:indian_elephant e M:F:‘: [ ns0:gnaws
‘©ns0:kenyan_elephant ©ns0:animal
‘©ns0:giraffe V'Y ns0:eats ns0:leaf =
» ©ns0:herbivore L
» ©ns0:large_animal i (D Disjoints T © £2 52 X
» ©ns0lion ]
‘©ns0:branch
(©ns0:continent L =
[ 8- | & # © Logic View © Properties View |
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Ontology Description Languages

Should be sufficiently expressive to capture most useful aspects of domain
knowledge representation

Reasoning in it should be decidable and efficient
Many different languages has been proposed: RDF, RDFS, OIL, DAML+OIL

OWL (Ontology Web Language) is the current emerging language. There are
three species of OWL
» OWL full is union of OWL syntax and RDF (but, undecidable)

» OWL DL restricted to FOL fragment (reasoning problem in
NEXPTIME)

* based on SHZ QO Description Logic (ALCHZOR+)

» OWL Lite is “easier to implement” subset of OWL DL (reasoning
problem in EXPTIME)

* based on SHZF Description Logic (ALCHZFR+)

SWRL, a Semantic Web Rule Language combines OWL and RuleML (not
addressed here)

W
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Description Logics Basics
(the logics behind OWL, http://dl.kr.org/)

@ Concept/Class: names are equivalent to unary predicates
» In general, concepts equiv to formulae with one free variable
@ Role or attribute: names are equivalent to binary predicates
» In general, roles equiv to formulae with two free variables
@ Taxonomy: Concept and role hierarchies can be expressed

@ Individual: names are equivalent to constants
@ Operators: restricted so that:

» Language is decidable and, if possible, of low complexity
» No need for explicit use of variables

* Restricted form of 3 and vV
» Features such as counting can be succinctly expressed
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The DL Family

@ A given DL is defined by set of concept and role forming operators
@ Basic language: ALC(Attributive £Language with Complement)

Syntax Semantics Example
C,D — T [ T(x)

€L | L(x)

A | Ax) Human
cnbD | C(x) A D(x) Human 1 Male
cub | C(x) Vv D(x) Nice M Rich

-C | =C(x) —Meat
3R.C | 3y.R(x,y) A C(y) Jhas_child.Blond
VR.C Vy.R(x,y) = C(y) Vhas_child. Human
CCD Vx.C(x) = D(x) Happy_Father C Man 1 3has_child. Female
acC C(a) John:Happy_Father
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DLs Semantics

@ Interpretation: Z = (A%, -7), where A” is the domain (a non-empty set), - is an
interpretation function that maps:

» Concept (class) name A into a function AZ: AT — {0,1}

» Role (property) name R into a function RZ: AT x AT — {0,1}
» Individual name ainto an element of AZ

@ ALC mapping to FOL:

T(x)

A(x)

(C1 U Ce)(x)
(3R.C)(x)

cch
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1
A(x)
Cy (X) Vv Cz(X)
3y.R(x,y) A C(y)

Vx.C(x) = D(x)
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0
Ci(x) A Ca(x)
~C(x)

Vy.R(x,y) = C(y)

c(a)
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Description Logic System

‘ Inference System ‘(:)\ User Interface

i}

Knowledge Base

TBox
“Defines terminology of the application domain”
Man = Human ™ Male
Happy_Father = Man 1 3has_child.Female

ABox
“States facts about a specific world"
John:Happy_Father
(John, Mary):has_child

W
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Note on DL naming
AL: C,D — T |L |A|CND |-A|3RT |VRC
Concept negation, =C. Thus, ALC = AL +C
Used for ALC with transitive roles R+
Concept disjunction, Cy U Co
Existential quantification, 3R.C
Role inclusion axioms, Ry C Ry, e.g. is_component_of C is_part_of

Number restrictions, (> n R) and (< n R), e.g. (> 3 has_Child) (has at least 3
children)

Qualified number restrictions, (> n R.C) and (< n R.C),
e.g. (< 2 has_Child.Adult) (has at most 2 adult children)

O: Nominals (singleton class), {a}, e.g. 3has_child.{mary}.
Note: a:C equiv to {a} C C and (a, b):R equiv to {a} C 3IR.{b}
Inverse role, R—, e.g. isPartOf = hasPart~
F: Functional role, f, e.g. functional(hasAge)
R+ transitive role, e.g. transitive(isPartOf)

L Z 2o v

8

For instance,

SHIF = S+H+I+F=ALCRHIF OWL-Lite (EXPTIME)
SHOIN = S+H+O+I+N=ALCRLHOIN OWL-DL (NEXPTIME)

W
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Excerpt of pizza ontology ... (according to University of Manchester)

PizzaFruttiDiMare =
PizzaBase

MixedSeafoodTopping T
FishTopping [

Pizza

M3hasTopping . MixedSeafood Topping

M JhasTopping. GarlicTopping

M 3hasTopping. Tomato Topping

M VhasTopping.(MixedSeafoodTopping LI GarlicTopping LI TomatoTopping)
M JhasBase. PizzaBase

DeepPanBase LI ThinAndCrispyBase
FishTopping

PizzaTopping M 3hasSpiceness.Mild

disjoint(FishTopping, MeatTopping, HerbSpice Topping)

functional( hasSpiciness)

Topping c

U. Straccia (ISTI - CNR)
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Concrete domains

@ Concrete domains: integers, strings, ...
@ Clean separation between “object” classes and concrete domains
» D= <AD7 ¢D>
» Apis an interpretation domain
®p is the set of concrete domain predicates d with a predefined
arity n and fixed interpretation d?: A% — {0,1}
Concrete properties: RY: AT x Ap — {0,1}
(tim,14):hasAge
sf, “SoftComputing" ) :hasAcronym

(
(sourcel, “ComputerScience” ) :isAbout
(service2, "InformationRetrievalTool” ) :Matches

v

v

@ Philosophical reasons: concrete domains structured by built-in predicates
@ Practical reasons:

» language remains simple and compact

» Semantic integrity of language not compromised

» Implementability not compromised — can use hybrid reasoner

* Only need sound and complete decision procedure for
diT A ... AdE, where d) is a (posssibly negated) concrete property o

@ Notation: (D). E.g., ALC(D) is ALC + concrete domains

U. Straccia (ISTI- CNR) Fuzzy DLs Milano 2006 16/84



OWL DL

Abstract Syntax DL Syntax Example
Descriptions (C)
A (URI reference) A Conference
owl:Thing T
owl:Nothing €
intersectionOf(Cy Co...) Ci 1 Cy Reference M Journal
unionof(Cy Gy .. .) Ci UGy Organization U Institution
complementO£f(C) -C — MasterThesis
oneOf(0q ...) {oy,...} {"WISE","ISWC", ...}
restriction(R someValuesFrom(C)) 3R.C Jparts.InCollection
restriction(R allValuesFrom(C)) VR.C Vdate.Date
restriction(R hasValue(0)) R:o date 2005
restriction(RminCardinality(n)) (> nR) > 1location
restriction(RmaxCardinality(n)) (< nR) < 1publisher
restriction(U someValuesFrom(D)) 3U.D Jissue.integer
restriction(U allvaluesFrom(D)) vU.D Vname.string
restriction(U hasvalue(Vv)) U:v series "LNCS"
restriction(UminCardinality(n)) (>nU) > 1title
restriction(UmaxCardinality(n)) (< nU) < 1author
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Abstract Syntax DL Syntax Example
Axioms [
Class(A partial Cy... Cp) ACCin...MCy Human T Animal ™ Biped
Class(A complete Cy...Cp) A=Cin...NCp Man = Human 1 Male
EnumeratedClass(A0q...0p) A={oi}u...u{on} RGB = {r} u {g} u {b}
SubClass0O£(CyCp) Ci C G
EquivalentClasses(Cy ... Cp) Ci=...=0Cp
DisjointClasses(Cy ... Cp) Cin Cj =1,i#j Male C —Female
ObjectProperty(R super (Ry)... super (Rp)) RLC R; HasDaughter T hasChild
domain(Cy) ...domain(Cp) (>1R C G (> 1 hasChild) © Human
range(Cy) ...range(Cp) T C VR.D; T C VhasChild.Human
[inverseof(Ry)] R=R" hasChild = hasParent™
[symmetric] R=R" similar = similar—
[functional] TC(L1R) T C (< 1 hasMother)
[Inversefunctional] TC(<K1R7)
[Transitive] Tr(R) Tr(ancestor)
SubPropertyOf(RyRy) Ri C Ry
EquivalentProperties(Ry ... Rp) Ri=...=hRp cost = price
AnnotationProperty(S)
U. Straccia (ISTI- CNR) Fuzzy DLs Milano 2006
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Abstract Syntax DL Syntax Example

DatatypeProperty(U super (U;y)... super (Up)) ULC U;
domain(Cy) ...domain(Cp) (>1U)C G (> 1 hasAge) C Human
range(Dy) ...range(Dp) T CVU.D; T C VhasAge.posinteger
[functional] TC(K10V) T C (L 1 hasAge)

SubProperty0f(U; Us) U C Us hasName T hasFirstName

EquivalentProperties(U; ... Up) U =...=Up

[ Individuals [

Individual(o type (Cy)... type (Cp)) 0:C; tim:Human
value(Ry0q)...value(Rpon) (0, 0j):R; (tim, mary):hasChild
value(Uyvy)...value(Unvp) (0, v1):U; (tim, 14):hasAge

SameIndividual(oq ... 0p) 0y =...=0p president_Bush = G.W.Bush

DifferentIndividuals(0y ... 0pn) 0 #£ 0, #] john # peter
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XML representation of OWL statements
E.g., PersonmYhasChild.(Doctor LI 3hasChild.Doctor):

<owl:Class>
<owl:intersectionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:allValuesFrom>
<owl:unionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:someValuesFrom rdf:resource="#Doctor"/>
</owl:Restriction>
</owl:unionOf>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
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Objective

@ To extend classical DLs and LPs towards the representation of
and reasoning with vague concepts

@ To show some applications
@ Development of practical reasoning algorithms

W
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A clarification: Uncertainty v.s. Imprecision

@ Uncertainty theory: statements rather than being either true or false, are true or false to
some probability or possibility/necessity
» E.g., “It is possible that it will rain tomorrow”
» Usually we have a possible world semantics with a distribution over
possible worlds:

W ={I classical interpretation}, I(p) € {0,1}
p: W—10,1], u(l) €[0,1]

e.g. Pr(¢) = _u(l), Poss(¢)=suppu()
= e

@ Imprecision theory: statements are true to some degree which is taken from a truth space

» E.g., “Chinese items are cheap”
» Truth space: set of truth values L and an partial order <
» Many-valued Interpretation: a function / mapping formuale into L,
ie. l(p) el
» Fuzzy Logic: L =[0,1]
@ Uncertainty and imprecision theory: “It is possible that it will be hot tomorrow”
@ In this work we deal with imprecision and, thus, statements have a degree of truth.

W
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Examples of applications (Ontology mediated data access)
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Example (Top-k retrieval)

Hotel C  3JhaslLoc
Conference LT 3haslLoc
Hotel T —Conference
HotellD | hasLoc ConferencelD | haslLoc
h hi [ cl
h2 hl2 c2 cl2

hasLoc | hasLoc | distance hasLoc | hasLoc | close

hi cl 300 hi cl 0.7
hi cl2 500 hi cl2 0.5
hl2 cl 750 hl2 cl 0.25
hi2 cl2 800 hi2 cl2 0.2

“Find hotels close to the university of Bari”

q(h) —hasLocation(h, hl) A hasLocation(uniba, cl) A close(hl, cl)
Top-k Fuzzy Retrieval: Retrieve the top-k ranked tuples that instantiate the query g
w.r.t. the best truth value bound
Note: retrieving all tuples, ranking them and then selecting the top-k
ones is not feasible in practice (millions of tuples in the database)
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Example (Logic-based information retrieval model,

Top-k retrieval)

media dependent properties

media independent properties

Object features:
- color, shape, texture
- structure

h'd Object Semantics Layer K

01
IsAbout (0l, Snoopy)=.8

024"'"""——_-

- Snoopy

Birds and Dogs
are animals

'oodstock

Object Form Layer J

Woodstock is a bird

T
.

Bird Animal

Imir

Dog Animal ImageRegion | Object ID_| isAbout
snoopy Dog ol snoopy 0.8
woodstock  : Bird 02 woodstock | 0.7

“Find image regions about animals’

Query(ir) < ImageRegion(ir) A isAbout(ir, x) A Animal(x)
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Example (Graded Entailment)

ferrari_enzo

U. Straccia (ISTI - CNR)

Car speed
audi_tt 243

mg <170
ferrari_enzo | > 350

SportsCar
Kk
K E
K E

= Car I 3hasSpeed.very(High)

(ferrari_enzo:SportsCar, 1)
(audi_tt:SportsCar,0.92)
(audi_tt:~SportsCar,0.72)

Fuzzy DLs
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Example (Graded Subsumption)

Minor = Personi JhasAge. <ig
YoungPerson = Person 3hasAge.Young

K = (Minor © YoungPerson, 0.2)

Note: without an explicit membership function of Young, this inference
cannot be drawn

W
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Example (Distributed Information Retrieval)

Query Q

4//\
[T

Then the agent has to perform automatically the following steps:

@ the agent has to select a subset of relevant resources .7’ C .7, as it is
not reasonable to assume to access to and query all resources
(resource selection/resource discovery);

@ for every selected source S; € .’ the agent has to reformulate its
information need Qj into the query language L, provided by the
resource (schema mapping/ontology alignment);

© the results from the selected resources have to be merged together

(data fusion/rank aggregation)
W
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@ Resource selection/resource discovery:
» Use techniques from Distributed Information Retrieval, e.g. CORI
@ Schema mapping/ontology alignment:

» Use machine learning techniques, (implemented in oMap)

* Learns automatically weighted rules, like (aligning Google- Yahoo
directories)

Mechanical_and_Aerospace_Engineering(d) < 0.81 - Aeronautics_and_Astronautics(d)

@ Data fusion/rank aggregation:

» Use techniques from Information Retrieval and/or Voting Systems,
e.g. CombMNZ or Borda count

W
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Example (Negotiation)

Seller's Buyer's
soft constraint soft constraint
30000 31500

30500 31250 32000

°

a car seller sells an Audi TT for $31500, as from the catalog price.
a buyer is looking for a sports-car, but wants to to pay not more than around $30000
classical DLs: the problem relies on the crisp conditions on price

more fine grained approach: to consider prices as fuzzy sets (as usual in negotiation)

> seller may consider optimal to sell above $31500, but can go down to $30500
> the buyer prefers to spend less than $30000, but can go up to $32000

AudiTT = SportsCar M 3hasPrice.R(x; 30500, 31500)
Query = SportsCar 1 3hasPrice.L(x; 30000, 32000)

> highest degree to which the concept
C = AudiTT 1 Query

is satisfiable is 0.75 (the possibility that the Audi TT and the query matches is 0.75) &
> the car may be sold at $31250
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Example (Health-care: diagnosis of pneumonia)

ia in Adults

7~ J Health Care Guideline:
IC S I C ity-Acquired P

INsTITUTE FOR CLINIEAL
SYSTENS INPROVEMENT

Seventh Edition
May 2006

Work Group Leader
John Degelau, MD

Internal Medicine,
HealhPartners Medical Group
‘Work Group Members
Family Medicine

Garett Trobee, MD

Family HealihServices

Pulmonology

Michael Briges, MD

Dakota Clinic

‘Salim Kathawalla, MD.
oler

Pharmacy

Lynn Estes, PharmD
Mayo Clinic
Measurement Advisor

Teresa Hunteman, RRT. CPHQ
1csi

Ey Analyst
Brent Metfessel, MD, MPH.
st

Facilitator
Linda Setterlund, MA
1cst

These clinieal g1
designed to assi

o A guideline wi
rarely establish the only

approach to 3 problem.

@ E.g., Temp = 37.5, Pulse = 98, RespiratoryRate = 18 are in the “danger zone” already
@ Temperature, Pulse and Respiratory rate, ... : these constraints are rather fuzzy than crisp

CriticalTempPatient =
CriticalPulsePatient =

U. Straccia (ISTI - CNR)
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Patient M 3hasTemp.R(x; 37.5,37.8) &
Patient M 3hasPulse.R(x; 95, 100)
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Top-k retrieval in DLs: the case of DL-Lite

DL-Lite: a simple, but interesting DL
Captures important subset of UML/ER diagrams
Computationally tractable DL to query large databases
Sub-linear, i.e. LOGSpace in data complexity

» (same cost as for SQL)

Good for very large database tables, with limited declarative schema
design

W
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Knowledge base: K = (T, A), where 7 and A are finite sets of axioms and assertions

Axiom: CIC Cr (inclusion axiom)
fun(R) (functionality axiom)

Note for inclusion axioms: the language for left hand side is different from the one for right

hand side
DL-Litecore:
» Concepts: CI — A|3R
Cr — A|3R|-A|-3R
R — P | P~
» Assertion: a:A, (a, b):P
DLR-Litecore: (n-ary roles)
» Concepts: CI — A|3P]]
Cr — A|3P[i]|-A| 3P
» 3P[i] is the projection on i-th column
> Assertion: @A, (a1,...,an):P
Assertions are stored in relational tables

Conjunctive query: g(x) < 3y.conj(x,y)
conj is an aggregation of expressions of the form B(z) or P(zy, 22),

U. Straccia (ISTI- CNR) Fuzzy DLs Milano 2006
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@ Examples: isa CatalogueBook T Book
disjointness  Book C —Author
constraints CatalogueBook C 3positioned_In
role — typing 3positioned_In C Container
functional fun(positioned_In)
constraints Author C 3written_By~
written_By C CatalogueBook

assertion Romeo_and_Juliet:CatalogueBook
(Romeo_and_Juliet, Shakespeare):written_By

query q(x,y) < CataloguedBook(x), Ordered_to(x, y)
@ Consistency check is linear time in the size of the KB
@ Query answering in linear in in the size of the number of assertions

W
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Top-k retrieval in DL-Lite

@ We extend the query formalism:
» conjunctive queries, where fuzzy predicates may appear
@ conjunctive query

q(xﬂ S) — E'y.Conj(X, y)7 §= f(p1 (Z1 ), cee apn(ZH))

@ x are the distinguished variables;

@ sis the score variable, taking values in [0, 1];

© vy are existentially quantified variables, called non-distinguished
variables;

© conj(x,y) is a conjunction of atoms of the form A(z), or P(z, Z'),
where A and P are respectively an atomic concept and a role (but,
not inverse role) in IC;

@ 2z, Z are constants in K or variables in x or y;

@ z are tuples of constants in K or variables in x or y;

@ pi is an ni-ary fuzzy predicate assigning to each nj-ary tuple ¢; the
score pi(c;) € [0,1];
f is a monotone scoring function f: [0,1]” — [0, 1], which combines
the scores of the n fuzzy predicates p;(c)) ™
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Example:

Hotel C 3dHasHLoc

Hotel T 3HasHPrice

Conference T 3IHasCLoc

Hotel C —Conference
HasHLoc HasCLoc HasHPrice
HotellD | HasLoc || ConflD | HasLoc || HotellD | Price
h hi ci ci h 150
h2 hi2 c2 cl2 h2 200

q(h, s) «—HasHLoc(h, hl), HasHPrice(h, p),
HasCLoc(c1,cl), s = cheap(p) - close(hl, cl) .

where the fuzzy predicates cheap and close are defined as

close(hl,cl) = max(0,1 - Zsnceli.cl))
cheap(price) = max(0,1 — &

U. Straccia (ISTI- CNR) Fuzzy DLs Milano 2006
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Semantics informally:
@ a conjunctive query
q(x,s) — 3y.conj(x,y), s = f(p1(z1), - .., Pn(2Zn))
is interpreted in an interpretation Z as the set
g ={lc,v)eAx...x Ax[0,1]]...
such that when we consider the substitution
0 ={x/c,s/v}
the formula
3y.conj(x,y) A = £(p1(21), ., Pn(2n))
evaluates to true in Z.
@ Model of a query:  [= g(c, v) iff (¢, v) € g
@ Entailment: K = g(c,v) iff Z = K implies Z = g(c, v)
@ Top-k retrieval: ansip—k(KC, q) = Topk{(c,v) | K = g(c,v)}

U. Straccia (ISTI- CNR) Fuzzy DLs Milano 2006
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How to determine the top-k answers of a query?
@ Overall strategy: three steps

@ Check if K is satisfiable, as querying a non-satisfiable KB is
meaningless (checkable in linear time)
@ Query q is reformulated into a set of conjunctive queries r(q, 7)
* Basic idea: reformulation procedure closely resembles a top-down
resolution procedure for logic programming

q(x,s) «— B(x),A(x),s=f(x)
By C A
B. C A
q(x,s) — B(x),Bi(x),s=f(x)
q(x,s) «— B(x),B:(x),s=f(x)

© The reformulated queries in r(q, 7) are evaluated over A (seen as
a database) using standard top-k techniques for DBs

* forall g € r(q, T), answp—«(qi, A) = top-k SQL query over A
database

* anstﬂp k(KB q) - Topk(Uq e€r(q,T) ansk(qh )) ™
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Small Example:

P

| h|WO

s
t

q
q

q(X,S) — Pz(X,y),P1(y,Z),S: maX(0,1 _X/10)

DA
U. Straccia (ISTI - CNR) Fuzzy DLs



Small Example:

q(X,S) — Pz(X,y),P1(y,Z),S: maX(0,1 _X/10)
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Small Example:

P

| h|WO

s
t

q
q

q(X,S) — Pz(X,y),P1(_y,Z),S: maX(0,1 7X/10)

~3
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N
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Small Example:

P>

AW O

(o]
QQ| ™ ®»

T = {3P; CAAC 3P, BC 3P}
q(X,S) — PZ(X,y),P1(y,Z),S: maX(0,1 _X/10)
q(Xvs) — PZ(va)7A(y)vs: max(0,1 _X/10)

W
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Small Example:

P2

Al WO

»

QQ|—™®»

T = (3P, C AAC 3P, BC 3P}
q(X,S) — P2(X,y),P1(y,Z),S:maX(0,1 _X/1O)

q(x,s) — Px(x,y),A(y),s = max(0,1 — x/10)
q(x,s) — Pa(x,y),P:(z,y),s = max(0,1 — x/10)
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Small Example:

P

AW O

(o2}
QQ|™®»

7T ={3P; CAAC3P;,BC 3P}

q(X,S) — Pg(x,y),P1(y,z),s = max(0,1 - X/10)
q(x,s) — Pax(x,y),A(y),s = max(0,1 — x/10)
q(x,8) — Px(x,y), P2(z,y),s = max(0,1 — x/10)
q(x,s) — Ps(x,y),s =max(0,1 — x/10)

W
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Small Example:

P

AW O

(o]

QQ|™n

7T ={3P; CAAC3P;,BC 3P}
X, 8) «— Pa(x,y),P1(y,z),s = max(0,1 — x/10)

q(
(X S) — PZ(Xay)vA(y)as = maX(0,1 _X/10)
(x,8) — Px(x,y), P2(z,y),s = max(0,1 — x/10)
(x,8) < P2(x,y),s =max(0,1 — x/10)

(

q
q
q(x,s) — B(x),s = max(0,1 — x/10)
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Small Example:

P>

AW O

(2}

QQ|™»

T ={3P; CAAC 3P, BC 3P}
X, 3) — P2(X,y),P1(y,z),s:maX(0,1 _X/10)

X, 8) «— Pa(x,y),A(y), s = max(0,1 — x/10)

X, 8) « Pa(x,y),s = max(0,1 — x/10)
X, 8) < B(x),s = max(0,1 — x/10)

q(
q(
q(x,8) — Px(x,y), P>(z,y),s = max(0,1 — x/10)
a(
q(
gi(x,8) < P2(x,y),s = max(0,1 — x/10)
g2(x,8) «— B(x),s =max(0,1 — x/10)
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Small Example:

P2

Al WO

»

QQ|™®n

T={3P, CAAC3P;,BC 3P}

q(x,s) — Pa(x,y), Pi(y,z),s = max(0,1 — x/10)
q(x,s) — Px(x,y),A(y),s = max(0,1 — x/10)
q(x,s) — Pa(x,y), P:(z,y),s = max(0,1 — x/10)
q(X7 S) — PZ(Xay)vs = max(0,1 - X/10)

q(x, s) — B(x),s = max(0,1 — x/10)

gi(x,8) «— P2(x,y),s = max(0,1 — x/10)

g2(x, 8) «— B(x),s = max(0,1 — x/10)
answop—3(A, g1) = [(0,1.0), (3,0.7), (4,0.6)]
ansip-3(A, g2) = [(1,0.9), (2,0.8), (5,0.5)]
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Small Example:

P

0|s

3|t

41q

6|1q
T ={3P, CA AL 3P,
q(x,s) — Pa(x,y), P (y ax(0,1 —x/10)
q(x,8) — Ps(x,y),A(y), s =max(0,1 — x/10)
q(x,s) — Pa(x,y),P:(z,y),s = max(O 1—x/10)
q(x,s) < Pa(x,y),s =max(0,1 — x/10)

q(x,s) — B(x),s = max(0,1 — x/10)

qi(x,8) «— Pa(x,y),s = max(0,1 — x/10)
g2(x, 8) «— B(x),s = max(0,1 — x/10)

answp—3(A, g1) = [(0,1.0), (3,0.7), (4,0.6)]
ansip-3(A, g) = [(1,0.9), (2,0.8), (5,0.5)]

ansip-«(K, q) = [(0,1.0),(1,0.9), (2,0.8)]

Proposition

Given a DL-Lite KB K = (T, A) and a query q then we can compute ans.p—«(K, q) in
(sub) linear time w.r.t. the size of A. The same holds for the description logic DLR-Lite.
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Propositional Fuzzy Logics Basics

@ Formulae: propositional formulae

@ Truth space is [0, 1]

@ Formulae have a a degree of truth in [0, 1]

@ |Interpretation: is a mapping Z : Atoms — [0, 1]

@ |Interpretations are extended to formulae using norms to interpret connectives

negation t-norm (conjunction)
n(0) =1 t(a,1) =a
a < bimplies n(b) < n(a) b < cimplies t(a, b) < t(a, c)

t(a, b) = t(b, a)
t(a, t(b, ¢)) = t(t(a, b), ¢)

s-norm (disjunction) i-norm (implication)
s(a,0) = a a < bimplies i(a, ¢) > i(b, c)
b < cimplies s(a, b) < s(a, ¢) b < cimplies i(a, b) < i(a, c)
s(a, b) = s(b, a) i(0,b) =1
s(a, s(b, ¢)) = s(s(a, b), ¢) i(a,1) =1
Usually,

i(a, b) = sup{c: t(a,c) < b}

i(a, b) = sup{c: t(a, c) < b} is called r-implication and depends on the t-norm only
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Typical norms

Lukasiewicz Logic Godel Logic Product Logic Zadeh
1—x if x = 0then 1 if x =0then 1 1—x
X B else 0 else 0
XAy max(x +y —1,0) min(x, y) X-y min(x, y)
XVy min(x + y,1) max(x, y) X+y—Xx-y max(x,y)
if x < ythen1 if x <ythen1 if x < ythen1 B
x=y else1 —x+y else y else y/x max(1 - X, y)
Note: for Lukasiewicz Logic and Zadeh, x = y = —-x V y
(oY) = Z(9)AI(Y)
I(pVvy) = ZI(¢) VI(Y)
(o—v) = I(¢) = I(¥)
ITkE¢ iff Z(¢)=1 Iiff ¢ satisfiable
IET ff TEe¢foraleoeT
Eo¢ iff foralZ.ZE¢
TEe¢ |iff foralZ.ifZ|=TthenZ = ¢
w
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@ Note:

—¢
PAY
PV

Z(¢/p)
Z(oVy)

¢—0

oA (P — )

(¢ = ¥) = L)M(Y — @) — ¢)
min(Z(¢), Z(v))
max(Z(¢),Z())

@ Zadeh semantics: not interesting for fuzzy logicians: its a

sub-logic of Lukasiewicz

—z¢p = 3¢
dAzY = oA (@ —y V)
d—Y = oVy

@ Hence, rarely considered by fuzzy logicians
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Axioms of logic BL (Basic Fuzzy Logic)

Fix arbitray t-norm and r-implication.

A) (p—=¥) = (¥ —=x) = d—x)
(A2) (pAY)— o
(A3) (pAY) = (¥ A)
(A4) (pA (=) = (WA — ¢))

(A5a) (¢ A (¥ —x)) = (v AYP) = X))

(ASb) ((¥ A) — X)) = (@A (¥ — X))
(AB) (N (¥ —x)) — (¥ = ¢) = x)) = x)
(A7) 0— ¢

(Deduction rule) Modus ponens: from ¢ and ¢ — 1 infer v

RSN R N sl - N

T gL ¢ iff T |=pL ¢. Also, if T g ¢ then T |=pgi2 ¢, but not vice-versa (e.g. =g ¢ V ¢, but

Proposition
sl ¢V ). J

@ g oA —0
@ =p ¢ — ——¢, but g ~—¢p — ¢, €.9. ¢ = pV —p, t-norm is Gédel
@ =5, (¢ — ) — (—1p — —¢), but not vice-versa m
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Axioms of tukasiewicz logic £
Fix Lukasiewicz t-norm and r-implication.

(Axioms) Axioms of BL
(t) ¢ — 9

(Deduction rule) Modus ponens: from ¢ and ¢ — 1 infer ¢

Proposition
Tty ¢iffT =y ¢.

oy d—v=—v— 0
0 = (pAY)=—pV 1
0= 0= =(dA )
oy d—v=6V-v

0 (p—Y)=dA

@ Recall that “Zadeh logic” is a sub-logic of £

U. Straccia (ISTI- CNR) Fuzzy DLs Milano 2006

53/84



Axioms of Product logic 1

Fix product t-norm and r-implication.
(Axioms) Axioms of BL
(M) =x = ((dAx =¥ AX) = (¢ = ¥))
(N2) ($pA-¢) — 0
(Deduction rule) Modus ponens: from ¢ and ¢ — 1 infer ¢

Proposition
T bn ¢ iff T =n 6.

@ =n ~(¢ A Y) — ~(oAY)
@ =n (¢ — —¢) — ¢
@ =n —¢pV-—¢
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Axioms of Gddel logic G

Fix Gédel t-norm and r-implication.

(Axioms) Axioms of BL

(G) ¢ —(on0)

(Deduction rule) Modus ponens: from ¢ and ¢ — ¢ infer ¢

Proposition
T bg o iff T =g 6. J

° ¢ (¢ NY) = (oAY)
@ Gdodel logic proves all axioms of intuitionistic logic I, vice-versa | +
(AB) proves all axioms of Gddel logic

W
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Axioms of Boolean logic

Fix interpretations to be boolean.
(Axioms) Axioms of BL
(BL2) ¢V—¢
(Deduction rule) Modus ponens: from ¢ and ¢ — 1 infer ¢

Proposition
T b2 ¢ Iff T Epi2 ¢. J

@ =12 ¢ — (¢ A @) (BL2 extends G)
@ L + Gis equivalent to BL2
@ L + s equivalent to BL2
@ G + Nis equivalent to BL2
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Axioms of Rational Pavelka Logic (RPL)

@ Fix Lukasiewicz t-norm and r-implication
@ Rational r € [0, 1] may appear as atom in formula. Z(r) = r
@ Note: Z(r — ¢) = 1iff Z(¢p) > r. Also, Z(¢p — r) =1iff Z(¢) < r

(Axioms) Axioms of £
(Deduction rule) Modus ponens: from ¢ and ¢ — 1 infer v

Proposition
T l_F?PL d) iffT ':FIPL (;5

@ RPL proves the derived deduction rule:
fromr — ¢ and s — (¢ — @) infer (rAs) — ¢

@ Let
l[8llz = in{Z(¢)|Z = T} (truth degree)
|plz = sup{r| 7T+ r— ¢} (provability degree)
then ||¢ll7 = [¢|T
@ Also,
[—¢lr = 1-|ol7]
l¢lr| =sup{r [T +r—¢} = in{s|TF¢— s}

U. Straccia (ISTI- CNR) Fuzzy DLs Milano 2006

57 /84



Tableaux for Rational Pavelka Logic using MILP

Proposition

|¢|7 = min x. such that T U {¢ — x} satisfiable.

@ We use MILP (Mixed Integer Linear Programming) to compute ||+

@ Let r be rational, variable or expresson 1 — r’ (r’ variable), both admitting solution in [0, 1], =r =1 — r, ~=r = r

r—p —  Xp2>r,x €[0,1]
p—r +— Xp < I, xp€[0,1]
r— ¢ — b — —r
¢ =T — -r— @
r—=@Ad) = X —odXo—¢,y<T-rx<T-y,xx+x=r+1—-y,x€l0,1,y € {0,1}
(GAYP)y =T — X{ — —p, X0 — 0, Xy +X=1—r,% €[0,1]
r—=1(@—=v) = é—=X,X—>¢,r+x —x=1x¢€[0,1]
(d—=9)—=r — X1 ==X y—r<0y+txy <T,y<x,y+r+xg —x=1,x€]0,1,y €{0,1

@ After applying all the rules to 7 U {¢ — x} (x variable), we have to solve a MILP problem of the form
minc - xs.t. Ax+ By > h

where aj;, by, ¢/, hx € [0, 1], x; admits solutions in [0, 1], while y; admits solutions in {0, 1}

W
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Example

@ Consider T = {0.6 — p,0.7 — (p — q)}
@ Let us show that |9l =0.6 A 0.7 =max(1,0.6 +0.7 — 1) =0.3
@ Recall that gl = minx. suchthat 7 U {g — x}
Tu{g—x}={06—-p 07— (p—q)q—x,x€c[01]}
— {xp > 0.6,xq < x,0.7 — (p — q), {x. xp} C [0, 1]}
= {xp>06,x < x,p— X1,% — q,0.7+x3 —x2 =1,{x, Xp, ;} C[0,1]}

= {Xp >0.6,Xg < X, Xp < X, Xg > %2,0.7+ X3 — X =1,{X, %, X%} C[0,1]} =85
It follows that 0.3 = min x. such that Sat(S)

@ Note: A similar technique can be used for logic G and I1, but mixed integer non-linear programming is needed in place of
MILP

W
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Predicate Fuzzy Logics Basics

@ Formulae: First-Order Logic formulae, terms are either variables or constants
> we may introduce functions symbols as well, with crisp semantics (but
uninteresting), or we need to discuss also fuzzy equality (which we leave out here)
@ Truth space is [0, 1]
@ Formulae have a a degree of truth in [0, 1]
@ |Interpretation: is a mapping Z : Atoms — [0, 1]
@ |Interpretations are extended to formulae as follows:

(~¢ = ¢—0)

(o AY) = (o) NI(¥)
I(p— ) = I(¢) > Z(¥)
I(3x¢) = sup Z(9)

cenz
I(vx¢) = inf I9(9)
cenZ

where Z¢ is as Z, except that variable x is mapped into individual ¢
@ Definitionsof Z = ¢, T =T, = ¢, T = ¢, ||¢||7 and |¢| 7 are as for the propositional casem
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Axioms of logic CV, where C € {BL,t,1,G}

(Axioms) Axioms of C
(V1) V¥xo¢(x) — ¢(t) (t substitutable for x in ¢(x))
(31) &(t) — Ixe(x) (t substitutable for x in ¢(x))
(V2) ¥Yx(¢p — ¢) — (¢ — ¥x¢) (x not free in v)
(32) Vx(¢ — ¥) — (Ix¢ — ) (x not free in 1)
(V3) Vx(¢Veh) — (Vxp)Vep (x not free in 1)
(Modus ponens) from ¢ and ¢ — 1 infer ¢
(Generalization) from ¢ infer Vx¢

Proposition
Tte ¢ iffT Ec ¢.

@ if — is an r-implication then |||l > ||¢||7 A ll¢ — Y|l
@ =piy Ixp — ~Vx—¢

@ =gy ~Ixp =Vx—g

@ |, Ix¢p = Vx—¢
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@ (—=Vxp(x)) A (—=3x—p(x)) has no classical model. In Gédel logic it has no finite model, but

has an infinite model: for integer n > 1, let Z such that pZ(n) = 1/n

(vxp(x))*

Bx-p(x)* = s%pﬂ/n =sup0=0

|rr17f1/n:0

@ Note: If Z |= 3x¢(x) then not necessarily there is ¢ € AT such that Z |= ¢(c).

AT = {n] integer n> 1}
pf(n) = 1—1/n<1, foralln
Exp(x))* = sup1—1/n=1
n

@ Witnessed formula: Ix¢(x) is witnessed in Z iff there is ¢ € AT such that
(Axa(x))E = (¢(c))T (similarly for Vx¢(x))
@ Witnessed interpretation: Z witnessed if all quantified formulae are witnessed in 7

Proposition

In t, ¢ is satisfiable iff there is a witnessed model of ¢.

The proposition does not hold for logic G and I
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Predicate Rational Pavelka Logic (RPLY)

@ Fix kukasiewicz t-norm and r-implication

@ Formulae are as for LV, where rationals r € [0, 1] may appear as
atoms

(Axioms and rules) As for LV

Proposition
T trey ¢ IffT =RpLy ¢ J
w
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Fuzzy DLs Basics

@ In classical DLs, a concept C is interpreted by an interpretation Z
as a set of individuals

@ In fuzzy DLs, a concept C is interpreted by 7 as a fuzzy set of
individuals

@ Each individual is instance of a concept to a degree in [0, 1]
@ Each pair of individuals is instance of a role to a degree in [0, 1]

W
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Fuzzy ALC

The semantics is an immediate consequence of the First-Order-Logic translation of DLs
expressions

T - AZ A = tnorm
Interpretation: €T : AT —[0,1] Vo= i;engoa:trirc]) N
z . z T - =
R+ AT xA*—[0,1] — = implication
Syntax Semantics
c,D — T 11 TZ(x) = 1
1] L2 (%) =0
Al AZ(x) € [0,1]
Concepts: cnD || (CinC)r(x) = CiE(x)ACE(x)
CUuD | || (CUC) (x) = Ci¥(x)V G (x)
-C | || (=C)*(x) = -C'(x)
3RC | || BRC)(x) = sup,car RE(x,y) A CT(y)
VR.C || (VR.C)X(u) = infyeaz RE(x,y) — CE(y)}

Assertions: (a:C,r), T = (a:C, r) iff CT(aT) > r (similarly for roles)
@ individual a is instance of concept C at least to degree r, r € [0, 1] N Q
Inclusion axioms: CC D,
@ TE CC Diffvx e AT.CT(x) < D¥(x)
@ this is equivalent to, ¥x € AZ.(CT(x) — D¥(x)) =1,if —isan
r-implication w
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Basic Inference Problems

Consistency: Check if knowledge is meaningful
@ Is K consistent, i.e. satisfiable?
Subsumption: structure knowledge, compute taxonomy
@ KECLCD?
Equivalence: check if two fuzzy concepts are the same
@ KEC=D"?
Graded instantiation: Check if individual a instance of class C to degree at least r
@ KE(aC,rr?
BTVB: Best Truth Value Bound problem
@ |a:iClk =sup{r| K E{(aC,nN}?

Top-k retrieval: Retrieve the top-k individuals that instantiate C w.r.t. best truth value
bound

@ ansi,—«(K,C) = Top,{(a,v) | v=|aC)|c}
™
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Some Noteson ...

@ Value restrictions:
» In classical DLs, VR.C = -3R.-C
» The same is not true, in general, in fuzzy DLs (depends on the
operators’ semantics, true for Lukasiewicz, but not true in Godel
logic)
» Is it acceptable that YhasParent.Human # —3hasParent.~Human?
Recall that in £ and Zadeh, Vx.¢ = —-3x —¢
@ Models:
» Inclassical DLs T C —(VR.A) 1 (-3R.—A) has no classical model
» In Godel logic it has no finite model, but has an infinite model
@ The choice of the appropriate semantics of the logical connectives is important.
» Should have reasonable logical properties
» Certainly it must have efficient algorithms solving basic inference
problems
@ ‘tukasiewicz Logic seems the best compromise, though Zadeh semantics has been

considered historically in DLs (we recall that Zadeh semantics is not considered by fuzzy
logicians)

@ For disjointness it is better to use C 1 D C_L rather than C C —D
» they are not the same, e.g. A C -A says that AZ(x) < 0.5 holds, for
all 7 and for all x € AZ (under tukasiewicz Logic) !
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Towards fuzzy OWL Lite and OWL DL

@ Recall that OWL Lite and OWL DL relate to SHZF(D) and
SHOIN (D), respectively
@ We need to extend the semantics of fuzzy ALC to fuzzy
SHOIN (D) = ALCHOINR+(D)
@ Additionally, we add
» modifiers (e.g., very)
» concrete fuzzy concepts (e.g., Young)
» both additions have explicit membership functions
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Number Restrictions, Inverse and Transitive roles
@ The semantics of the concept (> n S) is:
(=nR(x) = SUPyy, ..yn1CAT Aizy RE(x, yi)
@ ltis the result of viewing (> n R) as the open first order formula
3y1,...,yn/\ny, N vi#y.
=1 1<i<j<n
@ The semantics of the concept (< n R) is:
(< n R (x) =—(>n+1R)*(x)
@ Note: (>1 R)=3R.T
@ For transitive roles we have for all x,y € A

R*(x,y) = R*(y,x)
@ For transitive roles R we impose: for all x,y € AT
R*(x,y) > sup min(R*(x,z), R*(z,y))

zeAT
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Concrete fuzzy concepts

@ E.g., Small, Young, High, etc. with explicit membership function
@ Use the idea of concrete domains:
» D= <AD, ¢D>
» Ap is an interpretation domain
» &p is the set of concrete fuzzy domain predicates d with a
predefined arity n = 1,2 and fixed interpretation a?: A7 — [0, 1]
» For instance,

Minor =  PersonmdhasAge. <is

YoungPerson = Person dhasAge.Young
functional(hasAge)

w
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Modifiers

@ Very, moreOrlLess, slightly, etc.

@ Apply to fuzzy sets to change their membership function
> very(x) = x?
» slightly(x) = v/x

@ For instance,

SportsCar = Car 1 3speed.very(High)

W
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Concepts:

Assertions:

Axioms:

U. Straccia (ISTI - CNR)

Fuzzy SHOZN (D)

Syntax Semantics
C,D — T T(x)
Lo L)
Al AM)
(€rmD) ||| Ci(x) A Ca(x)
(CuDb) ||| Ci(x)V Ca(x)
(=C) | || ~Cx)
(3R.C) | 3x R(x,y) A C(y)
(VR.C) | Vx R(x,y) — C(y)
{a} | || x=a
EnR) ||| 3. ¥n ALy ROGY) A Ni<icj<n Vi 2 Y]
(£nR) ||| ~(Zn+1R)(x)
FCC | || mrec(x)
M) | I rm(C(x)
R — P | || P(x,y)
P 1l Plysx)
Syntax Semantics
a  — (a:C,r) | r— C(a)
(@ b):R, ) || r— R(a,b)
Syntax Semantics
T — CLCD| Vx C(x) — D(x) =1, where — is r-implication
fun(R) | VxVyvz R(x,y) NR(x,z) -y =2z
trans(R) (3z R(x, 2z) A R(z,y)) — R(x,y)

Fuzzy DLs
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Reasoning

Depends on the semantics and reasoning method (tableau-based or MILP-based)

Tableaux method: under Zadeh semantics

a tableau exists for fuzzy SHZN, solving the satisfiability problem
classical blocking methods apply similarly in the fuzzy variant

the management of General concept inclusions (GCI’s) is more complicated compared to the
crisp case

a translation of fuzzy SHOZN to crisp SHOZN also exists (not addressed here)
the tableaux method is not suitable to deal with fuzzy concrete concepts and modifiers
the BTVB can be solved, but not efficiently

MILP based method: under Zadeh semantics, tukasiewicz semantics, and classical semantics

U. Straccia (ISTI - CNR)

exists for fuzzy ALC + linear modifiers + fuzzy concrete concepts (published)

exists for fuzzy SHZF + linear modifiers + fuzzy concrete concepts (implemented, but not
published yet)

solves the BTVB as primary problem

W
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Fuzzy tableaux-based method

@ Tableau algorithm is similar to classical DL tableaux
@ Most problems can be reduced to satisfiability problem, e.g.

@ Assertions are extended to (a:C > n), (a:C < n), (a:C > n) and
(a:C < n)

@ K E(a:C,nyiff KU {(a:C < n)} not satisfiable
» All models of K do not satisfy (a:C < n), i.e. do satisfy (a:C > n)

@ Let’s see a tableaux algorithm for satisfiability checking, where

XAy = min(x,y)
xVy = max(x,y)
X = 1-x
x—y = max(1-x,y)
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Tableaux for ALC KB

@ Works on a tree forest (semantics through viewing tree as an ABox)

» Nodes represent elements of AZ, labelled with sub-concepts of C
and their weights
» Edges represent role-successorships between elements of A% and
their weights
@ Works on concepts in negation normal form: push negation inside using de
Morgan’ laws and
-(3R.C) — VR.-C
—~(VR.C) +— 3R-C

@ ltis initialised with a tree forest consisting of root nodes a, for all individuals
appearing in the KB:
» If (a:C < n) € Kthen (C,xq, Ny € L(a)
» If ((a,b):R < n) € K then ({a, b),, n) € E(R)
@ Atree forest T contains a clash if for a tree T in the forest there is a node xin T,
containing a conjugated pair {{A,>, n), (C,<,m)} C L(x),
e.g. (A, >,0.6), (A, <,0.3)
@ Returns “K is satisfiable" if rules can be applied s.t. they yield a clash-free,
complete (no more rules apply) tree forest wm
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ALC Tableau rules (excerpt)

xe{(C1NCp,>,n),...} —n | Xe {(C1NCy,>,n),(Ci,>,n),(Co,>,n),...}
X.{<C1I—’02727n)7"'} —u X.{<C1uCZvan>7<C727n>7"'}
for C € {C1,Cg}
xe {(3R.C,>,n),...} —3 xe {(AR.C,>,n),...}
(R,>,n) |
yeo{(C,> n}
xe {{VR.C,>,n),...} —y xe {{VR.C,>,n),...}
(R,>,m) | (m>1-n) (R,>,m) |
yef..} yef....(C.>n)}
xe{CLCD,...} —r xe{CCD,E,...}
for E € {{C,<,n),(D,>,n},ne NA

K = (T,A)
XA = {0,05,1}u{n]| (axn)c A}
NA = XAu{li—n|ne X}

W
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Theorem
Let K be an ALC KB and F obtained by applying the tableau rules to IC. Then
@ The rule application terminates,
e If F is clash-free and complete, then F defines a (canonical) (tree forest) model for IC, and

@ If K has a model Z, then the rules can be applied such that they yield a clash-free and
complete forest F.

It is expected that the tableau can be modified to a decision procedure
for

® SHOIN (= ALCHOINTR.)

W
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Problem with fuzzy tableau

@ Usual fuzzy tableaux calculus does not work anymore with
» modifiers and concrete fuzzy concepts
» kukasiewicz Logic
@ Usual fuzzy tableaux calculus does not solve the BTVB problem

@ New algorithm uses bounded Mixed Integer Programming oracle,
as for Many Valued Logics

» Recall: the general MILP problem is to find
XxeQkyezm
f(x,y) = min{f(x,y): Ax+ By > h}
A, B integer matrixes

W
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Requirements

@ Works for usual fuzzy DL semantics (Zadeh semantics) and Lukasiewicz logic
@ Modifiers are definable as linear in-equations over Q, Z (e.g., linear hedges), for
instance, linear hedges, Im(a, b), e.g. very = Im(0.7,0.49)

@ Fuzzy concrete concepts are definable as linear in-equations over Q, Z (e.g.,
crisp, triangular, trapezoidal, left shoulder and right shoulder membership
functions)

trz(a,b,c,d) rs(a,b,c)

W
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@ Example:

Minor = Personm 3hasAge. <ig
YoungPerson = Person 3dhasAge.Young
Young = 1s(10,30)

<ig = Cr(o718)
@ Then

|la:Clx = min{x | KU {(a:C < x) satisfiable}
[CED|x = min{x|Ku{(a:Cn-D > 1 — x) satisfiable}

» Apply (deterministic) tableaux calculus, then use bounded Mixed
Integer Programming oracle
m
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ALC MILP Tableau rules under Zadeh semantics

excerpt)
xe{(CiNGCp,>,0),...} —n [ xe{{(CiNC,>1,(C,>01),(Co>.1),...}
xe {(CiUCy, >,1),.. .} —u xe {{CiUCy,>,1),(Ci,>,x),(C2, >, x2),
Xtxo=Lx <y, xp<1-y,
xi €0,1],y € {0,1},...}
Xe [(3RC, >0, .. ] — Xe ({(3RC, >, 1, .1
(R, >, 1) |
ye{(C.> N}
Xe [(VRC, > h),. ] — Xe [(VR.C,> 1), ]
(R, >, k) | (R, >, k) |
ye{...} ye{....,(C = x)
x+y>h,x<yh+h<2-y,
xeo,1],ye{0,1}}
Xe[ACC (A1, —C, [Xs{ACC.(C>.D).. .}
Xe [CCA (AT, J —C, [Xs{CCAC. =D,
xe{CLCD,...} —c xe {CLC D, (C,<,x),(D,>,x)y,x€[0,1],...}
x o {(Is(ky, ko, a,b), >, 1), ...} —rC x o {Is(ki, ko, a,b),y1 +yo +y3 =1,y € {0, T},
X+ (ko —a) -y < ko, x+ (kg —a)-y2 > ke,
X+ (kg = b) - yp > ko,
x+(b—a) I+ (kp—a) yo <k —a+tb,
X+ (ki —b)-yg < ki,l+ys <1,...}
1 y1
y3 |
a¥2b K2 x

Is(ky, ko, a, by is K1
U. Straccia (ISTI - CNR)
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Example

AnNBCC

K = (a:A > 0.3)

@ Suppose (a:B>0.4)
Query : = |aClx =min{x | KU {(a:C < x) satisfiable}

Step | Tree

1. ae {(A,>,0.3),(B,>,0.4),(C,<,x)} (Hypothesis)

2' U{(AﬂB,S,X)} (_’Ez)

3. U{<A7§7X1>7<87§7X2>} (_)l_\s)

U{x=x1+x—1,1-y <X,y < xo}
U{Xi S [071]7}/ € {07 1}}

4. find min{x | (a:A > 0.3), (a:B > 0.4), (MILP Oracle)
(a:C < x),(aA < x1), (@B < Xo),
X=x1+x—1,1-y<x,y <X,
xi€[0,1],y € {0,1}}

5. MILP oracle: x = 0.3

U. Straccia (ISTI- CNR) Fuzzy DLs

Milano 2006

82/84



Implementation issues

@ Several options exists:
» Try to map fuzzy DLs to classical DLs
* but, does not work with modifiers and concrete fuzzy concepts
» Try to map fuzzy DLs to some fuzzy logic programming framework

* A lot of work exists about mappings among classical DLs and LPs
* But, needs a theorem prover for fuzzy LPs (not addressed here)

* To be used then e.g. in the axiomatic approach to fuzzy DLPs
(Description Logic Programs)

» Build an ad-hoc theorem prover for fuzzy DLs, using e.g., MILP
* To be used then separately e.g. in the DL-log approach to fuzzy DLPs

@ A theorem prover for fuzzy SHZF + linear hedges + concrete
fuzzy concepts, using MILP, has been implemented
(http://gaia.isti.cnr.it/~straccia)
™
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Future Work on fuzzy DLs

@ Research directions:

>
>
>
>

Computational complexity of the fuzzy DLs family
Design of efficient reasoning algorithms

Combining fuzzy DLs with fuzzy Logic Programming
Language extensions: e.g. fuzzy quantifiers

TopCustomer = Customer M (Usually)buys.Expensiveltem
Expensiveltem = Item ™M 3price.High

Conjunctive query answering (top-k query answering) for more
expressive DLs

» Developing systems, extending fuzzyDL system, ...
» Applications, e.g. Ontology mediated data access ((distributed)

multimedia information retrieval, resource selection, . ..),
Negotiation, Health-Care, ...

U. Straccia (ISTI- CNR) Fuzzy DLs Milano 2006
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