Fuzzy Description Logics and the Semantic Web

Umberto Straccia

ISTI - CNR, Pisa ITALY straccia@isti.cnr.it

Milano 2006

"Calla is a very large, long white flower on thick stalks"

1/84

Outline

- 1 The Semantic Web and Ontologies
 - The Semantic Web Vision
 - Ontologies
- 2 Description Logics
 - DLs Basics
- Fuzzy Description Logics
 - A clarification: Uncertainty v.s. Imprecision
 - Examples of applications
 - Top-k retrieval in DLs
 - Propositional Fuzzy Logics Basics
 - Predicate Fuzzy Logics Basics
 - Fuzzy DLs Basics
 - Towards fuzzy OWL Lite and OWL DL

The Semantic Web and Ontologies (excerpt)

The Semantic Web Vision

- The WWW as we know it now
 - 1st generation web mostly handwritten HTML pages
 - 2nd generation (current) web often machine generated/active
 - Both intended for direct human processing/interaction
- In next generation web, resources should be more accessible to automated processes
 - To be achieved via semantic markup
 - Metadata annotations that describe content/function

Ontologies

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of precisely defined terms (vocabulary)
 - Can be shared across applications (and humans)
- Ontology typically consists of:
 - Hierarchical description of important concepts in domain
 - Descriptions of properties of instances of each concept
- Ontologies can be used, e.g.
 - To facilitate agent-agent communication in e-commerce
 - In semantic based search
 - To provide richer service descriptions that can be more flexibly interpreted by intelligent agents

Example Ontology

- Vocabulary and meaning ("definitions")
 - Elephant is a concept whose members are a kind of animal
 - Herbivore is a concept whose members are exactly those animals who eat only plants or parts of plants
 - Adult_Elephant is a concept whose members are exactly those elephants whose age is greater than 20 years
- Background knowledge/constraints on the domain ("general axioms")
 - Adult_Elephants weigh at least 2,000 kg
 - All Elephants are either African_Elephants or Indian_Elephants
 - No individual can be both a Herbivore and a Carnivore

Example Ontology (Protégé)

4 D > 4 B > 4 B > 4 B >

Ontology Description Languages

- Should be sufficiently expressive to capture most useful aspects of domain knowledge representation
- Reasoning in it should be decidable and efficient
- Many different languages has been proposed: RDF, RDFS, OIL, DAML+OIL
- OWL (Ontology Web Language) is the current emerging language. There are three species of OWL
 - OWL full is union of OWL syntax and RDF (but, undecidable)
 - OWL DL restricted to FOL fragment (reasoning problem in NEXPTIME)
 - ★ based on SHIQ Description Logic $(ALCHIQR_+)$
 - OWL Lite is "easier to implement" subset of OWL DL (reasoning problem in EXPTIME)
 - * based on \mathcal{SHIF} Description Logic ($\mathcal{ALCHIFR}_+$)
- SWRL, a Semantic Web Rule Language combines OWL and RuleML (not addressed here)

8 / 84

Description Logics (excerpt)

Description Logics Basics

(the logics behind OWL, http://dl.kr.org/)

- Concept/Class: names are equivalent to unary predicates
 - ▶ In general, concepts equiv to formulae with one free variable
- Role or attribute: names are equivalent to binary predicates
 - ▶ In general, roles equiv to formulae with two free variables
- Taxonomy: Concept and role hierarchies can be expressed
- Individual: names are equivalent to constants
- Operators: restricted so that:
 - Language is decidable and, if possible, of low complexity
 - No need for explicit use of variables
 - ★ Restricted form of ∃ and ∀
 - Features such as counting can be succinctly expressed

10 / 84

The DL Family

- A given DL is defined by set of concept and role forming operators
- Basic language: $\mathcal{ALC}(Attributive \ \mathcal{L}$ anguage with \mathcal{C} omplement)

Syntax	Semantics	Example
$C,D \rightarrow \top$	T(x)	
	$\perp (x)$	
Α	A(x)	Human
$C\sqcap D$	$ C(x) \wedge D(x)$	Human □ Male
$C \sqcup D$	$C(x) \vee D(x)$	Nice □ Rich
$\neg C$	$\neg C(x)$	<i>¬Meat</i>
∃R.C	$\exists y.R(x,y) \wedge C(y)$	∃has_child.Blond
∀R.C	$\forall y.R(x,y) \Rightarrow C(y)$	∀has_child.Human
$C \sqsubseteq D$	$\forall x. C(x) \Rightarrow D(x)$	Happy_Father ☐ Man □ ∃has_child.Female
a:C	C(a)	John:Happy_Father

DLs Semantics

- Interpretation: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is the domain (a non-empty set), $\cdot^{\mathcal{I}}$ is an interpretation function that maps:
 - ▶ Concept (class) name *A* into a function $A^{\mathcal{I}}: \Delta^{\mathcal{I}} \to \{0, 1\}$
 - ▶ Role (property) name *R* into a function $R^{\mathcal{I}}: \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to \{0,1\}$
 - ▶ Individual name a into an element of $\Delta^{\mathcal{I}}$
- \mathcal{ALC} mapping to FOL:

Description Logic System

13 / 84

Note on DL naming

- \mathcal{AL} : $C, D \longrightarrow \top \mid \bot \mid A \mid C \sqcap D \mid \neg A \mid \exists R. \top \mid \forall R. C$
 - \mathcal{C} : Concept negation, $\neg C$. Thus, $\mathcal{ALC} = \mathcal{AL} + \mathcal{C}$
 - \mathcal{S} : Used for \mathcal{ALC} with transitive roles \mathcal{R}_+
 - \mathcal{U} : Concept disjunction, $C_1 \sqcup C_2$
 - \mathcal{E} : Existential quantification, $\exists R.C$
 - \mathcal{H} : Role inclusion axioms, $R_1 \sqsubseteq R_2$, e.g. $is_component_of \sqsubseteq is_part_of$
 - \mathcal{N} : Number restrictions, ($\geq n$ R) and ($\leq n$ R), e.g. (\geq 3 has_Child) (has at least 3 children)
 - Q: Qualified number restrictions, $(\geq n \, R.C)$ and $(\leq n \, R.C)$, e.g. $(\leq 2 \, has_Child.Adult)$ (has at most 2 adult children)
 - \mathcal{O} : Nominals (singleton class), $\{a\}$, e.g. $\exists has_child.\{mary\}$. **Note**: a:C equiv to $\{a\} \sqsubseteq C$ and (a,b):R equiv to $\{a\} \sqsubseteq \exists R.\{b\}$
 - \mathcal{I} : Inverse role, R^- , e.g. $isPartOf = hasPart^-$
 - F: Functional role, f, e.g. functional(hasAge)
- \mathcal{R}_+ : transitive role, e.g. *transitive*(*isPartOf*)

For instance,

$$\mathcal{SHIF} = \mathcal{S} + \mathcal{H} + \mathcal{I} + \mathcal{F} = \mathcal{ALCR}_{+}\mathcal{HIF}$$

 $\mathcal{SHOTN} = \mathcal{S} + \mathcal{H} + \mathcal{O} + \mathcal{I} + \mathcal{N} = \mathcal{ALCR}_{+}\mathcal{HOIN}$

OWL-Lite (EXPTIME)
OWL-DL (NEXPTIME)

Excerpt of pizza ontology ... (according to University of Manchester)

PizzaFruttiDiMare Pizza □∃hasTopping.MixedSeafoodTopping □ ∃hasTopping.GarlicTopping □ ∃hasTopping. TomatoTopping □ ∀hasTopping.(MixedSeafoodTopping □ GarlicTopping □ TomatoTopping) □ ∃hasBase PizzaBase PizzaBase DeepPanBase

☐ ThinAndCrispyBase MixedSeafoodTopping FishTopping FishToppina PizzaTopping □ ∃hasSpiceness.Mild disjoint(FishTopping, MeatTopping, HerbSpiceTopping) functional(hasSpiciness) Topping \forall hasSpiciness.(Hot \sqcup Medium \sqcup Mild)

Concrete domains

- Concrete domains: integers, strings, . . .
- Clean separation between "object" classes and concrete domains
 - $D = \langle \Delta_D, \Phi_D \rangle$
 - $ightharpoonup \Delta_D$ is an interpretation domain
 - ▶ Φ_D is the set of concrete domain predicates d with a predefined arity n and fixed interpretation $d^D : \Delta_D^n \to \{0, 1\}$
 - ▶ Concrete properties: $R^{\mathcal{I}}$: $\Delta^{\mathcal{I}} \times \Delta_{\mathcal{D}} \rightarrow \{0,1\}$

```
(tim, 14):hasAge
(sf, "SoftComputing"):hasAcronym
(source1, "ComputerScience"):isAbout
(service2, "InformationRetrievalTool"):Matches
```

- Philosophical reasons: concrete domains structured by built-in predicates
- Practical reasons:
 - language remains simple and compact
 - Semantic integrity of language not compromised
 - Implementability not compromised can use hybrid reasoner
 - ★ Only need sound and complete decision procedure for $d_1^{\mathcal{I}} \wedge \ldots \wedge d_n^{\mathcal{I}}$, where d_i is a (posssibly negated) concrete property
- Notation: (D). E.g., $\mathcal{ALC}(D)$ is \mathcal{ALC} + concrete domains

OWL DL

Abstract Syntax		DL Syntax	Example
Descriptions (C)			
Α	(URI reference)	Α	Conference
owl:Thing		Т	
owl:Nothin	ıg	Τ.	
intersecti	onOf(C ₁ C ₂)	$C_1 \sqcap C_2$	Reference∏Journal
unionOf(C_1	$C_2 \ldots$	$C_1 \sqcup C_2$	Organization 🛮 Institution
complement	of(C)	$\neg c$	¬ MasterThesis
oneOf(01)	$\{o_1, \ldots\}$	{"WISE","ISWC",}
restrictio	$\operatorname{cn}(R \operatorname{someValuesFrom}(C))$	∃R.C	∃parts.InCollection
restrictio	$\operatorname{cn}(R \text{ allValuesFrom}(C))$	∀R.C	∀date.Date
restrictio	$\operatorname{on}(R \operatorname{hasValue}(o))$	R : 0	date : 2005
restriction(R minCardinality(n))		$(\geq nR)$	≥ 1 location
restrictio	$\operatorname{cn}(R \operatorname{maxCardinality}(n))$	$(\leq nR)$	≤ 1 publisher
restrictio	$\operatorname{on}(U \operatorname{someValuesFrom}(D))$	∃U.D	∃issue.integer
restrictio	$\operatorname{on}(U \operatorname{allValuesFrom}(D))$	∀U.D	∀name.string
restrictio	$\operatorname{on}(U \operatorname{hasValue}(v))$	U : v	series : "LNCS"
restrictio	$\operatorname{cn}(U \operatorname{minCardinality}(n))$	(≥ n U)	<pre> ≥ 1 title</pre>
restriction $(U \max Cardinality(n))$		(≤ n U)	

Abstract Syntax	DL Syntax	Example
Axioms		
Class(A partial $C_1 \dots C_n$) Class(A complete $C_1 \dots C_n$) EnumeratedClass($A \circ c_1 \dots c_n$) SubclassOf($C_1 \circ C_2$)	$A \sqsubseteq C_1 \sqcap \ldots \sqcap C_n$ $A = C_1 \sqcap \ldots \sqcap C_n$ $A = \{o_1\} \sqcup \ldots \sqcup \{o_n\}$ $C_1 \sqsubseteq C_2$	$Human \sqsubseteq Animal \sqcap Biped$ $Man = Human \sqcap Male$ $RGB = \{r\} \sqcup \{g\} \sqcup \{b\}$
EquivalentClasses $(C_1\ldots C_n)$ DisjointClasses $(C_1\ldots C_n)$	$C_1 = \ldots = C_n$ $C_i \sqcap C_j = \perp, i \neq j$	Male ⊑ ¬Female
ObjectProperty(R super (R_1) super (R_n)) domain(C_1)domain(C_n) range(C_1)range(C_n)	$ \begin{array}{c} R \sqsubseteq R_i \\ (\geq 1 R) \sqsubseteq C_i \\ \top \sqsubseteq \forall R.D_i \end{array} $	HasDaughter ☐ hasChild (≥ 1 hasChild) ☐ Human ⊤ ☐ ∀hasChild.Human
$[inverseof(R_0)]$ $[symmetric]$ $[functional]$	$R = R_0^-$ $R = R^-$ $\top \sqsubseteq (\le 1 R)$	hasChild = hasParent [¬] similar = similar [¬]
[Inverse functional] [Transitive] SubPropertyOf(R_1R_2)	$ \begin{array}{c} \top \sqsubseteq (\leq 1 R^{-}) \\ Tr(R) \\ R_{1} \sqsubseteq R_{2} \end{array} $	Tr(ancestor)
EquivalentProperties $(R_1 \dots R_n)$ AnnotationProperty (S)	$R_1 = \ldots = R_n$	cost = price

Abstract Syntax	DL Syntax	Example
DatatypeProperty(U super $(U_1) \dots$ super (U_n)) $domain(C_1) \dots domain(C_n)$ $range(D_1) \dots range(D_n)$ $[functional]$ SubPropertyOf(U_1U_2) EquivalentProperties($U_1 \dots U_n$)	$U \sqsubseteq U_{i}$ $(\geq 1 \ U) \sqsubseteq C_{i}$ $\top \sqsubseteq \forall U.D_{i}$ $\top \sqsubseteq (\leq 1 \ U)$ $U_{1} \sqsubseteq U_{2}$ $U_{1} = \dots = U_{n}$	(≥ 1 hasAge)
Individuals		
$ \begin{array}{c} \text{Individual}(o \text{ type } (C_1) \dots \text{ type } (C_n)) \\ \text{value}(R_1 o_1) \dots \text{value}(R_n o_n) \\ \text{value}(U_1 v_1) \dots \text{value}(U_n v_n) \\ \text{SameIndividual}(o_1 \dots o_n) \\ \text{DifferentIndividuals}(o_1 \dots o_n) \end{array} $	$ \begin{array}{c} o: C_{j} \\ (o, o_{i}): R_{j} \\ (o, v_{1}): U_{j} \\ o_{1} = \ldots = o_{n} \\ o_{i} \neq o_{j}, i \neq j \end{array} $	tim:Human (tim, mary):hasChild (tim, 14):hasAge president_Bush = G.W.Bush john ≠ peter

XML representation of OWL statements

E.g., $Person \sqcap \forall hasChild.(Doctor \sqcup \exists hasChild.Doctor)$:

```
<owl:Class>
  <owl:intersectionOf rdf:parseTvpe=" collection">
    <owl:Class rdf:about="#Person"/>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasChild"/>
      <owl:allValuesFrom>
        <owl:unionOf rdf:parseType=" collection">
          <owl:Class rdf:about="#Doctor"/>
          <owl:Restriction>
            <owl:onProperty rdf:resource="#hasChild"/>
            <owl:someValuesFrom rdf:resource="#Doctor"/>
          </owl:Restriction>
        </owl:unionOf>
      </owl:allValuesFrom>
    </owl:Restriction>
  </owl:intersectionOf>
</owl:Class>
```

Fuzzy Description Logics

Objective

- To extend classical DLs and LPs towards the representation of and reasoning with vague concepts
- To show some applications
- Development of practical reasoning algorithms

A clarification: Uncertainty v.s. Imprecision

- Uncertainty theory: statements rather than being either true or false, are true or false to some probability or possibility/necessity
 - E.g., "It is possible that it will rain tomorrow"
 - Usually we have a possible world semantics with a distribution over possible worlds:

$$\begin{split} \textit{W} = & \{\textit{I} \text{ classical interpretation}\}, \quad \textit{I}(\varphi) \in \{0,1\} \\ & \mu \colon \textit{W} \to [0,1], \quad \mu(\textit{I}) \in [0,1] \\ \textit{e.g. } \textit{Pr}(\phi) = \sum_{\textit{I} \models \phi} \mu(\textit{I}), \quad \textit{Poss}(\phi) = \sup_{\textit{I} \models \phi} \mu(\textit{I}) \end{split}$$

- Imprecision theory: statements are true to some degree which is taken from a truth space
 - ► E.g., "Chinese items are cheap"
 - ► Truth space: set of truth values L and an partial order ≤
 - ▶ Many-valued Interpretation: a function I mapping formulae into L, i.e. $I(\varphi) \in L$
 - Fuzzy Logic: L = [0, 1]
- Uncertainty and imprecision theory: "It is possible that it will be hot tomorrow"
- In this work we deal with imprecision and, thus, statements have a degree of truth.

Examples of applications (Ontology mediated data access)

Example (Top-k retrieval)

Hotel □ ∃hasLoc
Conference □ ∃hasLoc
Hotel □ ¬Conference

HoteIID	hasLoc	ConferenceID	hasLoc
h1	h/1	c1	c/1
h2	hl2	c2	cl2
1 -		II •	·

ha	sLoc	hasLoc	distance	hasLoc	hasLoc	close
hl1	l	c/1	300	h/1	c/1	0.7
hl1	l	cl2	500	h/1	cl2	0.5
hl2	2	c/1	750	hl2	c/1	0.25
hl2	2	cl2	800	hl2	cl2	0.2
Γ.)[.		
				•		
				<u> </u>		

"Find hotels close to the university of Bari"

 $q(h) \leftarrow hasLocation(h, hl) \land hasLocation(uniba, cl) \land close(hl, cl)$

Top-*k* Fuzzy Retrieval: Retrieve the top-*k* ranked tuples that instantiate the query *q* w.r.t. the best truth value bound

Note: retrieving all tuples, ranking them and then selecting the top-k ones is not feasible in practice (millions of tuples in the database)

Example (Logic-based information retrieval model, Top-k retrieval)

Bird		Animal
Dog		Animal
snoopy	:	Dog
woodstock	:	Bird

ImageRegion	Object ID	isAbout
01	snoopy	0.8
<i>o</i> 2	woodstock	0.7
		1

"Find image regions about animals"

 $Query(ir) \leftarrow ImageRegion(ir) \land isAbout(ir, x) \land Animal(x)$

←□ → ←∅ → ← □ → ←□ → □

Example (Graded Entailment)

Car	speed
audi_tt	243
mg	≤ 170
ferrari_enzo	≥ 350

```
SportsCar = Car \sqcap \exists hasSpeed.very(High)
```

 $\begin{array}{lll} \mathcal{K} & \models & \langle \textit{ferrari_enzo:SportsCar}, 1 \rangle \\ \mathcal{K} & \models & \langle \textit{audi_tt:SportsCar}, 0.92 \rangle \\ \mathcal{K} & \models & \langle \textit{audi_tt:\negSportsCar}, 0.72 \rangle \end{array}$

Example (Graded Subsumption)


```
Minor = Person \sqcap \exists hasAge. \leq_{18}  YoungPerson = Person \sqcap \exists hasAge. Young
```

$$\mathcal{K} \models \langle \textit{Minor} \sqsubseteq \textit{YoungPerson}, 0.2 \rangle$$

Note: without an explicit membership function of *Young*, this inference cannot be drawn

Example (Distributed Information Retrieval)

Then the agent has to perform automatically the following steps:

- the agent has to select a subset of relevant resources $\mathscr{S}' \subseteq \mathscr{S}$, as it is not reasonable to assume to access to and query all resources (resource selection/resource discovery);
- ② for every selected source $S_i \in \mathscr{S}'$ the agent has to reformulate its information need Q_A into the query language \mathcal{L}_i provided by the resource (schema mapping/ontology alignment);
- the results from the selected resources have to be merged together (data fusion/rank aggregation)

- Resource selection/resource discovery:
 - Use techniques from Distributed Information Retrieval, e.g. CORI
- Schema mapping/ontology alignment:
 - Use machine learning techniques, (implemented in oMap)
 - Learns automatically weighted rules, like (aligning Google- Yahoo directories)

```
Mechanical\_and\_Aerospace\_Engineering(d) \leftarrow 0.81 \cdot Aeronautics\_and\_Astronautics(d)
```

Data fusion/rank aggregation:

U. Straccia (ISTI - CNR)

▶ Use techniques from Information Retrieval and/or Voting Systems, e.g. CombMNZ or Borda count

Milano 2006

30/84

Example (Negotiation)

- a car seller sells an Audi TT for \$31500, as from the catalog price.
- a buyer is looking for a sports-car, but wants to to pay not more than around \$30000
- classical DLs: the problem relies on the crisp conditions on price
- more fine grained approach: to consider prices as fuzzy sets (as usual in negotiation)
 - seller may consider optimal to sell above \$31500, but can go down to \$30500
 - ▶ the buyer prefers to spend less than \$30000, but can go up to \$32000

$$\begin{array}{lll} \textit{AudiTT} & = & \textit{SportsCar} \sqcap \exists \textit{hasPrice}.R(x;30500,31500) \\ \textit{Query} & = & \textit{SportsCar} \sqcap \exists \textit{hasPrice}.L(x;30000,32000) \\ \end{array}$$

highest degree to which the concept

$$C = AudiTT \sqcap Query$$

is satisfiable is 0.75 (the possibility that the Audi TT and the query matches is 0.75)

the car may be sold at \$31250

Example (Health-care: diagnosis of pneumonia)

- E.g., Temp = 37.5, Pulse = 98, RespiratoryRate = 18 are in the "danger zone" already
- Temperature, Pulse and Respiratory rate, . . . : these constraints are rather fuzzy than crisp

CriticalTempPatient = Patient $\sqcap \exists$ hasTemp.R(x; 37.5, 37.8)CriticalPulsePatient = Patient $\sqcap \exists$ hasPulse.R(x; 95, 100)

Top-k retrieval in DLs: the case of DL-Lite

- DL-Lite: a simple, but interesting DL
- Captures important subset of UML/ER diagrams
- Computationally tractable DL to guery large databases
- Sub-linear, i.e. LOGSpace in data complexity
 - (same cost as for SQL)
- Good for very large database tables, with limited declarative schema design

- Knowledge base: $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$, where \mathcal{T} and \mathcal{A} are finite sets of axioms and assertions
- Axiom: $Cl \sqsubseteq Cr$ (inclusion axiom) fun(R) (functionality axiom)
- Note for inclusion axioms: the language for left hand side is different from the one for right hand side
- DL-Lite_{core}:

► Concepts:
$$CI \rightarrow A \mid \exists R$$

 $Cr \rightarrow A \mid \exists R \mid \neg A \mid \neg \exists R$
 $R \rightarrow P \mid P^-$

- Assertion: a:A, (a, b):P
- DLR-Lite_{core}: (n-ary roles)

► Concepts:
$$CI \rightarrow A \mid \exists P[i]$$

 $Cr \rightarrow A \mid \exists P[i] \mid \neg A \mid \neg \exists P[i]$

- ▶ $\exists P[i]$ is the projection on *i*-th column
- ▶ Assertion: a:A, $\langle a_1, \ldots, a_n \rangle:P$
- Assertions are stored in relational tables
- Conjunctive query: $q(\mathbf{x}) \leftarrow \exists \mathbf{y}.conj(\mathbf{x},\mathbf{y})$ conj is an aggregation of expressions of the form B(z) or $P(z_1, z_2)$,

Examples: isa Catalo

isa CatalogueBook ⊑ Book disjointness Book ⊏ ¬Author

 ${\it constraints} \qquad {\it CatalogueBook} \sqsubseteq \exists {\it positioned_In}$

role - typing ∃positioned_In \sqsubseteq Container

functionalfun(positioned_In)constraintsAuthor □ ∃written_By⁻

 $\exists written_By \sqsubseteq CatalogueBook$

assertion Romeo and Juliet:CatalogueBook

(Romeo_and_Juliet, Shakespeare):written_By

query $q(x, y) \leftarrow CataloguedBook(x), Ordered_to(x, y)$

- Consistency check is linear time in the size of the KB
- Query answering in linear in in the size of the number of assertions

Top-*k* retrieval in DL-Lite

- We extend the query formalism:
 - conjunctive queries, where fuzzy predicates may appear
- conjunctive query

$$q(\mathbf{x}, s) \leftarrow \exists \mathbf{y}.conj(\mathbf{x}, \mathbf{y}), s = f(p_1(\mathbf{z}_1), \dots, p_n(\mathbf{z}_n))$$

- **1 x** are the distinguished variables;
- 2 s is the score variable, taking values in [0, 1];
- y are existentially quantified variables, called non-distinguished variables;
- **3** $conj(\mathbf{x}, \mathbf{y})$ is a conjunction of atoms of the form A(z), or P(z, z'), where A and P are respectively an atomic concept and a role (but, not inverse role) in \mathcal{K} ;
- $\mathbf{5}$ z, z' are constants in \mathcal{K} or variables in **x** or **y**;
- **5** $\mathbf{z_i}$ are tuples of constants in \mathcal{K} or variables in \mathbf{x} or \mathbf{y} ;
- $oldsymbol{o}$ p_i is an n_i -ary fuzzy predicate assigning to each n_i -ary tuple \mathbf{c}_i the score $p_i(\mathbf{c}_i) \in [0, 1]$;
- § f is a monotone scoring function $f: [0,1]^n \to [0,1]$, which combines the scores of the n fuzzy predicates $p_i(\mathbf{c}_i)$

Example:

HasHLoc		Has	CLoc	HasHPrice		
HoteIID	HasLoc	ConfID	HasLoc	HoteIID	Price	
<i>h</i> 1	h/1	<i>c</i> 1	<i>c</i> /1	<i>h</i> 1	150	
h2	hl2	c2	cl2	h2	200	
:	:	:	:	:	:	

$$q(h, s) \leftarrow HasHLoc(h, hl), HasHPrice(h, p),$$

 $HasCLoc(c1, cl), s = cheap(p) \cdot close(hl, cl)$.

where the fuzzy predicates cheap and close are defined as

$$\begin{array}{lcl} \textit{close}(\textit{hl},\textit{cl}) & = & \max(0,1-\frac{\textit{distance}(\textit{hl},\textit{cl})}{2000}) \\ \textit{cheap}(\textit{price}) & = & \max(0,1-\frac{\textit{price}}{300}) \end{array}$$

Semantics informally:

a conjunctive query

$$q(\mathbf{x}, s) \leftarrow \exists \mathbf{y}.conj(\mathbf{x}, \mathbf{y}), s = f(p_1(\mathbf{z}_1), \dots, p_n(\mathbf{z}_n))$$

is interpreted in an interpretation $\ensuremath{\mathcal{I}}$ as the set

$$q^{\mathcal{I}} = \{ \langle \mathbf{c}, \mathbf{v} \rangle \in \Delta \times \ldots \times \Delta \times [0, 1] \mid \ldots \}$$

such that when we consider the substitution

$$\theta = \{\mathbf{x}/\mathbf{c}, \mathbf{s}/\mathbf{v}\}$$

the formula

$$\exists \mathbf{y}.conj(\mathbf{x},\mathbf{y}) \land s = f(p_1(\mathbf{z}_1),\ldots,p_n(\mathbf{z}_n))$$

evaluates to true in \mathcal{I} .

- Model of a query: $\mathcal{I} \models q(\mathbf{c}, v)$ iff $\langle \mathbf{c}, v \rangle \in q^{\mathcal{I}}$
- Entailment: $\mathcal{K} \models q(\mathbf{c}, v)$ iff $\mathcal{I} \models \mathcal{K}$ implies $\mathcal{I} \models q(\mathbf{c}, v)$
- Top-k retrieval: $ans_{top-k}(\mathcal{K},q) = Top_k\{\langle \mathbf{c}, \mathbf{v} \rangle \mid \mathcal{K} \models q(\mathbf{c}, \mathbf{v})\}$

How to determine the top-*k* answers of a query?

- Overall strategy: three steps
 - ① Check if \mathcal{K} is satisfiable, as querying a non-satisfiable KB is meaningless (checkable in linear time)
 - ② Query q is *reformulated* into a set of conjunctive queries r(q,T)
 - Basic idea: reformulation procedure closely resembles a top-down resolution procedure for logic programming

$$q(x,s) \leftarrow B(x), A(x), s = f(x)$$

$$B_1 \sqsubseteq A$$

$$B_2 \sqsubseteq A$$

$$q(x,s) \leftarrow B(x), B_1(x), s = f(x)$$

$$q(x,s) \leftarrow B(x), B_2(x), s = f(x)$$

- **3** The reformulated queries in r(q, T) are evaluated over A (seen as a database) using standard top-k techniques for DBs
 - * for all $q_i \in r(q, T)$, $ans_{top-k}(q_i, A) = top-k$ SQL query over A database
 - * $ans_{top-k}(KB,q) = Top_k(\bigcup_{q_i \in r(q,T)} ans_k(q_i,A))$

U. Straccia (ISTI - CNR)

$$\begin{array}{c|c} P_2 \\ \hline 0 & s \\ \hline 3 & t \\ \hline 4 & q \\ \hline 6 & q \\ \end{array}$$

$$\mathcal{T} = \{\exists P_2^- \sqsubseteq A, A \sqsubseteq \exists P_1, B \sqsubseteq \exists P_2\}$$

$$q(x, s) \leftarrow P_2(x, y), P_1(y, z), s = \max(0, 1 - x/10)$$

$$\mathcal{T} = \{\exists P_2^- \sqsubseteq A, A \sqsubseteq \exists P_1, B \sqsubseteq \exists P_2\}$$

$$q(x,s) \leftarrow P_2(x,y), P_1(y,z), s = \max(0,1-x/10)$$

$$\begin{array}{c|cccc} P_2 & & B \\ \hline 0 & s & \\ 3 & t & \\ 4 & q & \\ \hline 6 & q & \\ \end{array}$$

$$\mathcal{T} = \{\exists P_2^- \sqsubseteq A, A \sqsubseteq \exists P_1, B \sqsubseteq \exists P_2\}$$

$$q(x, s) \leftarrow P_2(x, y), P_1(y, z), s = \max(0, 1 - x/10)$$

$$T = \{\exists P_2^- \sqsubseteq A, \mathbf{A} \sqsubseteq \exists P_1, B \sqsubseteq \exists P_2\}$$

$$q(x,s) \leftarrow P_2(x,y), P_1(y,z), s = \max(0,1-x/10)$$

$$q(x,s) \leftarrow P_2(x,y), A(y), s = \max(0,1-x/10)$$

$$\begin{array}{c|cccc} P_2 & & B \\ \hline 0 & s & \\ \hline 3 & t & \\ \hline 4 & q & \\ \hline 6 & q & \\ \hline \end{array}$$

$$T = \{\exists P_2^- \sqsubseteq A, A \sqsubseteq \exists P_1, B \sqsubseteq \exists P_2\}$$

$$q(x,s) \leftarrow P_2(x,y), P_1(y,z), s = \max(0, 1 - x/10)$$

$$q(x,s) \leftarrow P_2(x,y), A(y), s = \max(0, 1 - x/10)$$

$$q(x,s) \leftarrow P_2(x,y), P_2(z,y), s = \max(0, 1 - x/10)$$

$$\begin{array}{c|c} P_2 \\ \hline 0 & s \\ \hline 3 & t \\ \hline 4 & q \\ \hline 6 & q \\ \end{array}$$

$$T = \{\exists P_2^- \sqsubseteq A, A \sqsubseteq \exists P_1, B \sqsubseteq \exists P_2\}$$

$$q(x,s) \leftarrow P_2(x,y), P_1(y,z), s = \max(0, 1 - x/10)$$

$$q(x,s) \leftarrow P_2(x,y), A(y), s = \max(0, 1 - x/10)$$

$$q(x,s) \leftarrow P_2(x,y), P_2(z,y), s = \max(0, 1 - x/10)$$

$$q(x,s) \leftarrow P_2(x,y), s = \max(0, 1 - x/10)$$

F	2	В
0	s	1
3	t	2
4	q	5
6	q	7

$$T = \{\exists P_2^- \sqsubseteq A, A \sqsubseteq \exists P_1, B \sqsubseteq \exists P_2\}$$

$$q(x, s) \leftarrow P_2(x, y), P_1(y, z), s = \max(0, 1 - x/10)$$

$$q(x, s) \leftarrow P_2(x, y), A(y), s = \max(0, 1 - x/10)$$

$$q(x, s) \leftarrow P_2(x, y), P_2(z, y), s = \max(0, 1 - x/10)$$

$$q(x, s) \leftarrow P_2(x, y), s = \max(0, 1 - x/10)$$

$$q(x, s) \leftarrow B(x), s = \max(0, 1 - x/10)$$

F	2		В
0	s		1
3	3 t		2
4	q		5
6	q		7

$$T = \{\exists P_2^- \sqsubseteq A, A \sqsubseteq \exists P_1, B \sqsubseteq \exists P_2\}$$

$$q(x,s) \leftarrow P_2(x,y), P_1(y,z), s = \max(0, 1 - x/10)$$

$$q(x,s) \leftarrow P_2(x,y), A(y), s = \max(0, 1 - x/10)$$

$$q(x,s) \leftarrow P_2(x,y), P_2(z,y), s = \max(0, 1 - x/10)$$

$$q(x,s) \leftarrow P_2(x,y), s = \max(0, 1 - x/10)$$

$$q(x,s) \leftarrow B(x), s = \max(0, 1 - x/10)$$

$$q_1(x,s) \leftarrow P_2(x,y), s = \max(0, 1 - x/10)$$

$$q_2(x,s) \leftarrow B(x), s = \max(0, 1 - x/10)$$

F	2	В
0	s	1
3	t	2
4	q	5
6	q	7

$$T = \{\exists P_2^- \sqsubseteq A, A \sqsubseteq \exists P_1, B \sqsubseteq \exists P_2\} \\ q(x, s) \leftarrow P_2(x, y), P_1(y, z), s = \max(0, 1 - x/10) \\ q(x, s) \leftarrow P_2(x, y), A(y), s = \max(0, 1 - x/10) \\ q(x, s) \leftarrow P_2(x, y), P_2(z, y), s = \max(0, 1 - x/10) \\ q(x, s) \leftarrow P_2(x, y), s = \max(0, 1 - x/10) \\ q(x, s) \leftarrow B(x), s = \max(0, 1 - x/10) \\ q_1(x, s) \leftarrow P_2(x, y), s = \max(0, 1 - x/10) \\ q_2(x, s) \leftarrow B(x), s = \max(0, 1 - x/10) \\ q_2(x, s) \leftarrow B(x), s = \max(0, 1 - x/10) \\ ans_{lop-3}(A, q_1) = [\langle 0, 1.0 \rangle, \langle 3, 0.7 \rangle, \langle 4, 0.6 \rangle] \\ ans_{lop-3}(A, q_2) = [\langle 1, 0.9 \rangle, \langle 2, 0.8 \rangle, \langle 5, 0.5 \rangle]$$

	F) 2		В			
	0	s	ÌÌ	1			
	3	t	1	2			
	4	q	<u> </u>	5			
	6	q		7			
$\mathcal{T} = \{\exists P_2^- \sqsubseteq A, A \sqsubseteq \exists P_1, B \sqsubseteq \exists P_2\}$							
$q(x,s) \leftarrow P_2(x,y)$	$), P_{1}$	(y, x)	z),	s =	$\max(0, 1 - x/10)$		
$q(x,s) \leftarrow P_2(x,y)$), <i>A</i> (y), :	s =	ma	ax(0, 1 - x/10)		
$q(x,s) \leftarrow P_2(x,y)$	$), P_{2}$	(z, j)	y),	s =	$\max(0, 1 - x/10)$		
$q(x,s) \leftarrow P_2(x,y), s = \max(0,1-x/10)$							
$q(x, s) \leftarrow B(x), s = \max(0, 1 - x/10)$							

$$q_{1}(x,s) \leftarrow P_{2}(x,y), s = \max(0, 1 - x/10)$$

$$q_{2}(x,s) \leftarrow B(x), s = \max(0, 1 - x/10)$$

$$ans_{top-3}(A, q_{1}) = [\langle 0, 1.0 \rangle, \langle 3, 0.7 \rangle, \langle 4, 0.6 \rangle]$$

$$ans_{top-3}(A, q_{2}) = [\langle 1, 0.9 \rangle, \langle 2, 0.8 \rangle, \langle 5, 0.5 \rangle]$$

$$ans_{top-k}(\mathcal{K},q) = [\langle 0, 1.0 \rangle, \langle 1, 0.9 \rangle, \langle 2, 0.8 \rangle]$$

Proposition

Given a DL-Lite KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ and a query q then we can compute ans_{top-k}(\mathcal{K}, \mathbf{q}) in (sub) linear time w.r.t. the size of A. The same holds for the description logic DLR-Lite.

Propositional Fuzzy Logics Basics

- Formulae: propositional formulae
- Truth space is [0, 1]
- Formulae have a a degree of truth in [0, 1]
- Interpretation: is a mapping I: Atoms → [0, 1]
- Interpretations are extended to formulae using norms to interpret connectives

```
negation
                                                t-norm (conjunction)
            n(0) = 1
                                                     t(a, 1) = a
  a < b \text{ implies } n(b) < n(a)
                                          b \le c implies t(a, b) \le t(a, c)
                                                  t(a, b) = t(b, a)
                                            t(a, t(b, c)) = t(t(a, b), c)
      s-norm (disjunction)
                                                i-norm (implication)
                                          a < b implies i(a, c) > i(b, c)
          s(a, 0) = a
b < c implies s(a, b) < s(a, c)
                                          b < c implies i(a, b) < i(a, c)
       s(a,b) = s(b,a)
                                                     i(0, b) = 1
 s(a, s(b, c)) = s(s(a, b), c)
                                                     i(a, 1) = 1
                                                      Usually.
```

 $i(a, b) = \sup\{c: t(a, c) < b\}$ is called r-implication and depends on the t-norm only

 $i(a,b) = \sup\{c: t(a,c) < b\}$

Typical norms

	Lukasiewicz Logic	Gödel Logic	Product Logic	Zadeh	
, v	1 – <i>x</i>	if $x = 0$ then 1	if $x = 0$ then 1	1 – x	
$\neg x$	1-x	else 0	else 0	1 - x	
$x \wedge y$	$\max(x + y - 1, 0)$	min(x, y)	<i>x</i> · <i>y</i>	min(x, y)	
$x \vee y$	min(x+y,1)	$\max(x, y)$	$x + y - x \cdot y$	$\max(x, y)$	
$x \Rightarrow y$	if $x \leq y$ then 1	if $x \le y$ then 1	if $x \le y$ then 1	$\max(1-x,y)$	
\ \rightarrow \qua	else 1 $-x + y$	else y	else y/x		

Note: for Lukasiewicz Logic and Zadeh, $x \Rightarrow y \equiv \neg x \lor y$

$$\begin{split} \mathcal{I}(\phi \wedge \psi) &= \quad \mathcal{I}(\phi) \wedge \mathcal{I}(\psi) \\ \mathcal{I}(\phi \vee \psi) &= \quad \mathcal{I}(\phi) \vee \mathcal{I}(\psi) \\ \\ \mathcal{I}(\phi \to \psi) &= \quad \mathcal{I}(\phi) \to \mathcal{I}(\psi) \\ \\ \mathcal{I} \models \phi & \text{iff} \quad \mathcal{I}(\phi) = 1 \quad \text{iff } \phi \text{ satisfiable} \\ \\ \mathcal{I} \models \mathcal{T} & \text{iff} \quad \mathcal{I} \models \phi \text{ for all } \phi \in \mathcal{T} \\ \\ \models \phi & \text{iff} \quad \text{for all } \mathcal{I} . \mathcal{I} \models \phi \\ \\ \mathcal{T} \models \phi & \text{iff} \quad \text{for all } \mathcal{I} . \text{if } \mathcal{I} \models \mathcal{T} \text{ then } \mathcal{I} \models \phi \end{split}$$

Note:

$$\begin{array}{lll} \neg \phi & \text{is} & \phi \rightarrow 0 \\ \phi \bar{\wedge} \psi & \text{is} & \phi \wedge (\phi \rightarrow \psi) \\ \phi \bar{\vee} \psi & \text{is} & ((\phi \rightarrow \psi) \rightarrow \psi) \bar{\wedge} ((\psi \rightarrow \phi) \rightarrow \phi) \\ \mathcal{I}(\phi \bar{\wedge} \psi) & = & \min(\mathcal{I}(\phi), \mathcal{I}(\psi)) \\ \mathcal{I}(\phi \bar{\vee} \psi) & = & \max(\mathcal{I}(\phi), \mathcal{I}(\psi)) \end{array}$$

 Zadeh semantics: not interesting for fuzzy logicians: its a sub-logic of Łukasiewicz

$$\begin{array}{rcl}
\neg_{Z}\phi & = & \neg_{\underline{\mathsf{L}}}\phi \\
\phi \wedge_{Z}\psi & = & \phi \wedge_{\underline{\mathsf{L}}}(\phi \to_{\underline{\mathsf{L}}}\psi) \\
\phi \to \psi & = & \neg_{\underline{\mathsf{L}}}\phi \vee_{\underline{\mathsf{L}}}\psi
\end{array}$$

Hence, rarely considered by fuzzy logicians

51 / 84

U. Straccia (ISTI - CNR) Fuzzy DLs Milano 2006

Axioms of logic BL (Basic Fuzzy Logic)

Fix arbitray t-norm and r-implication.

(A1)
$$(\phi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow \phi \rightarrow \chi)$$

(A2)
$$(\phi \wedge \psi) \rightarrow \phi$$

(A3)
$$(\phi \wedge \psi) \rightarrow (\psi \wedge \phi)$$

(A4)
$$(\phi \land (\phi \rightarrow \psi)) \rightarrow (\psi \land (\psi \rightarrow \phi))$$

(A5a)
$$(\phi \land (\psi \rightarrow \chi)) \rightarrow ((\psi \land \psi) \rightarrow \chi))$$

(A5b)
$$((\psi \land \psi) \rightarrow \chi)) \rightarrow (\phi \land (\psi \rightarrow \chi))$$

(A6)
$$(\phi \land (\psi \rightarrow \chi)) \rightarrow (((\psi \rightarrow \phi) \rightarrow \chi)) \rightarrow \chi)$$

(A7)
$$0 \rightarrow \phi$$

(Deduction rule) Modus ponens: from ϕ and $\phi \rightarrow \psi$ infer ψ

Proposition

 $\mathcal{T} \vdash_{BL} \phi \text{ iff } \mathcal{T} \models_{BL} \phi. \text{ Also, if } \mathcal{T} \vdash_{BL} \phi \text{ then } \mathcal{T} \models_{BL2} \phi, \text{ but not vice-versa (e.g.} \models_{BL2} \phi \lor \neg \phi, \text{ but } \not\models_{BL} \phi \lor \neg \phi).$

- $\bullet \models_{BI} \phi \land \neg \phi \rightarrow 0$
- $\models_{BL} \phi \to \neg \neg \phi$, but $\not\models_{BL} \neg \neg \phi \to \phi$, e.g. $\phi = p \lor \neg p$, t-norm is Gödel
- $\bullet \models_{BL} (\phi \to \psi) \to (\neg \psi \to \neg \phi)$, but not vice-versa

illi

Axioms of Łukasiewicz logic Ł

Fix Łukasiewicz t-norm and r-implication.

(Axioms) Axioms of BL

(Ł)
$$\neg \neg \phi \rightarrow \phi$$

(Deduction rule) Modus ponens: from ϕ and $\phi \rightarrow \psi$ infer ψ

Proposition

$$\mathcal{T} \vdash_{\mathbf{\ell}} \phi \text{ iff } \mathcal{T} \models_{\mathbf{\ell}} \phi.$$

- $\models_{\mathbf{L}} \phi \to \psi \equiv \neg \psi \to \neg \phi$
- $\models_{\mathbf{L}} \neg (\phi \land \psi) \equiv \neg \phi \lor \neg \psi$
- $\models_{\mathbf{k}} \phi \to \psi \equiv \neg(\phi \land \neg \psi)$
- $\bullet \models_{\mathbf{k}} \phi \to \psi \equiv \neg \phi \lor \neg \psi$
- $\models_{\mathbf{V}} \neg (\phi \rightarrow \psi) \equiv \phi \land \neg \psi$
- Recall that "Zadeh logic" is a sub-logic of Ł

53 / 84

Axioms of Product logic Π

Fix product t-norm and r-implication.

(Axioms) Axioms of BL

$$(\Pi 1) \neg \neg \chi \rightarrow ((\phi \land \chi \rightarrow \psi \land \chi) \rightarrow (\phi \rightarrow \psi))$$

(
$$\Pi$$
2) $(\phi \bar{\wedge} \neg \phi) \rightarrow 0$

(Deduction rule) Modus ponens: from ϕ and $\phi \rightarrow \psi$ infer ψ

Proposition

 $\mathcal{T} \vdash_{\Pi} \phi \text{ iff } \mathcal{T} \models_{\Pi} \phi.$

- $\bullet \models_{\mathsf{\Pi}} \neg (\phi \land \psi) \rightarrow \neg (\phi \bar{\land} \psi)$
- $\bullet \models_{\Pi} (\phi \rightarrow \neg \phi) \rightarrow \neg \phi$
- $\bullet \models_{\Pi} \neg \phi \nabla \neg \neg \phi$

Axioms of Gödel logic G

Fix Gödel t-norm and r-implication.

(Axioms) Axioms of BL

(G)
$$\phi \rightarrow (\phi \land \phi)$$

(Deduction rule) Modus ponens: from ϕ and $\phi \rightarrow \psi$ infer ψ

Proposition

 $\mathcal{T} \vdash_{\mathsf{G}} \phi \text{ iff } \mathcal{T} \models_{\mathsf{G}} \phi.$

- $\bullet \models_{\mathsf{G}} (\phi \wedge \psi) \equiv (\phi \bar{\wedge} \psi)$
- Gödel logic proves all axioms of intuitionistic logic I, vice-versa I + (A6) proves all axioms of Gödel logic

Axioms of Boolean logic

Fix interpretations to be boolean.

(Axioms) Axioms of BL (BL2)
$$\phi \bar{\vee} \neg \phi$$

(Deduction rule) Modus ponens: from ϕ and $\phi \rightarrow \psi$ infer ψ

Proposition

$$T \vdash_{\mathsf{BL2}} \phi \text{ iff } T \models_{\mathsf{BL2}} \phi.$$

- $\models_{BL2} \phi \rightarrow (\phi \land \phi)$ (BL2 extends G)
- Ł + G is equivalent to BL2
- Ł + Π is equivalent to BL2
- G + Π is equivalent to BL2

Axioms of Rational Pavelka Logic (RPL)

- Fix Łukasiewicz t-norm and r-implication
- Rational $r \in [0, 1]$ may appear as atom in formula. $\mathcal{I}(r) = r$
- Note: $\mathcal{I}(r \to \phi) = 1$ iff $\mathcal{I}(\phi) \ge r$. Also, $\mathcal{I}(\phi \to r) = 1$ iff $\mathcal{I}(\phi) \le r$ (Axioms) Axioms of Ł

(Deduction rule) Modus ponens: from ϕ and $\phi \to \psi$ infer ψ

Proposition

 $\mathcal{T} \vdash_{\mathsf{RPL}} \phi \mathsf{iff} \, \mathcal{T} \models_{\mathsf{RPL}} \phi.$

- RPL proves the derived deduction rule: from $r \to \phi$ and $s \to (\phi \to \psi)$ infer $(r \land s) \to \psi$
- Let

$$||\phi||_{\mathcal{T}} = \inf \{ \mathcal{I}(\phi) \mid \mathcal{I} \models \mathcal{T} \}$$
 (truth degree)
 $|\phi|_{\mathcal{T}} = \sup \{ r \mid \mathcal{T} \vdash r \rightarrow \phi \}$ (provability degree)

then $||\phi||_{\mathcal{T}} = |\phi|_{\mathcal{T}}$

Also,

$$\begin{aligned} |\neg \phi|_{\mathcal{T}} &= 1 - |\phi|_{\mathcal{T}}| \\ |\phi|_{\mathcal{T}}| &= \sup\{r \mid \mathcal{T} \vdash r \to \phi\} &= \inf\{s \mid \mathcal{T} \vdash \phi \to s\} \end{aligned}$$

Tableaux for Rational Pavelka Logic using MILP

Proposition

 $|\phi|_{\mathcal{T}} = \min x$. such that $\mathcal{T} \cup \{\phi \rightarrow x\}$ satisfiable.

- We use MILP (Mixed Integer Linear Programming) to compute $|\phi|_{\mathcal{T}}$
- Let r be rational, variable or expresson 1 r' (r' variable), both admitting solution in [0, 1], $\neg r = 1 r$, $\neg \neg r = r$

• After applying all the rules to $\mathcal{T} \cup \{\phi \to x\}$ (x variable), we have to solve a MILP problem of the form

$$\min \mathbf{c} \cdot \mathbf{x} \text{ s.t. } A\mathbf{x} + B\mathbf{y} \geq \mathbf{h}$$

where a_{ij} , b_{ij} , c_l , $h_k \in [0, 1]$, x_i admits solutions in [0, 1], while y_j admits solutions in $\{0, 1\}$

D

Example

- Onsider $\mathcal{T} = \{0.6 \rightarrow p, 0.7 \rightarrow (p \rightarrow q)\}\$
- Let us show that $|q|_{\mathcal{T}} = 0.6 \land 0.7 = \max(1, 0.6 + 0.7 1) = 0.3$
- Recall that $|q|_{\mathcal{T}} = \min x$. such that $\mathcal{T} \cup \{q \to x\}$

$$\mathcal{T} \cup \{q \to x\} = \{0.6 \to p, 0.7 \to (p \to q), q \to x, x \in [0, 1]\}$$

$$\mapsto \{x_p \ge 0.6, x_q \le x, 0.7 \to (p \to q), \{x, x_p\} \subseteq [0, 1]\}$$

$$\mapsto \{x_p \ge 0.6, x_q \le x, p \to x_1, x_2 \to q, 0.7 + x_1 - x_2 = 1, \{x, x_p, x_i\} \subseteq [0, 1]\}$$

$$\mapsto \{x_p \ge 0.6, x_q \le x, x_p \le x_1, x_p \ge x_2, 0.7 + x_1 - x_2 = 1, \{x, x_p, x_i\} \subseteq [0, 1]\} = S$$

It follows that $0.3 = \min x$. such that Sat(S)

 Note: A similar technique can be used for logic G and Π, but mixed integer non-linear programming is needed in place of MILP

Predicate Fuzzy Logics Basics

- Formulae: First-Order Logic formulae, terms are either variables or constants
 - we may introduce functions symbols as well, with crisp semantics (but uninteresting), or we need to discuss also fuzzy equality (which we leave out here)
- Truth space is [0, 1]
- Formulae have a a degree of truth in [0, 1]
- Interpretation: is a mapping $\mathcal{I}: Atoms \rightarrow [0, 1]$
- Interpretations are extended to formulae as follows:

$$\begin{array}{rcl} (\neg\phi & = & \phi \rightarrow \mathbf{0}) \\ \mathcal{I}(\phi \wedge \psi) & = & \mathcal{I}(\phi) \wedge \mathcal{I}(\psi) \\ \mathcal{I}(\phi \rightarrow \psi) & = & \mathcal{I}(\phi) \rightarrow \mathcal{I}(\psi) \\ \mathcal{I}(\exists x\phi) & = & \sup_{c \in \Delta^{\mathcal{I}}} \mathcal{I}_{x}^{c}(\phi) \\ \mathcal{I}(\forall x\phi) & = & \inf_{c \in \Delta^{\mathcal{I}}} \mathcal{I}_{x}^{c}(\phi) \end{array}$$

where \mathcal{I}_{x}^{c} is as \mathcal{I} , except that variable x is mapped into individual c

• Definitions of $\mathcal{I} \models \phi, \mathcal{I} \models \mathcal{T}, \models \phi, \mathcal{T} \models \phi, ||\phi||_{\mathcal{T}}$ and $|\phi|_{\mathcal{T}}$ are as for the propositional case

Axioms of logic $C\forall$, where $C \in \{BL, L, \Pi, G\}$

(Axioms) Axioms of $\mathcal C$

- $(\forall 1) \ \forall x \phi(x) \rightarrow \phi(t) \ (t \text{ substitutable for } x \text{ in } \phi(x))$
- $(\exists 1) \ \phi(t) \rightarrow \exists x \phi(x) \ (t \text{ substitutable for } x \text{ in } \phi(x))$
- (\forall 2) \forall $x(\psi \rightarrow \phi) \rightarrow (\psi \rightarrow \forall x\phi)$ (x not free in ψ)
- (\exists 2) $\forall x(\phi \rightarrow \psi) \rightarrow (\exists x\phi \rightarrow \psi)$ (x not free in ψ)
- (\forall 3) \forall $x(\phi \nabla \psi) \rightarrow (\forall x \phi) \nabla \psi$ (x not free in ψ)

(Modus ponens) from ϕ and $\phi \to \psi$ infer ψ

(Generalization) from ϕ infer $\forall x \phi$

Proposition

 $\mathcal{T} \vdash_{\mathcal{C}} \phi \text{ iff } \mathcal{T} \models_{\mathcal{C}} \phi.$

- if \rightarrow is an r-implication then $||\psi||_{\mathcal{T}} \geq ||\phi||_{\mathcal{T}} \wedge ||\phi \rightarrow \psi||_{\mathcal{T}}$
- $\bullet \models_{BL\forall} \exists x \phi \rightarrow \neg \forall x \neg \phi$
- $\bullet \models_{BL\forall} \neg \exists x \phi \equiv \forall x \neg \phi$
- $\bullet \models_{\mathbf{k}\forall} \exists x \phi \equiv \neg \forall x \neg \phi$

• $(\neg \forall x p(x)) \land (\neg \exists x \neg p(x))$ has no classical model. In Gödel logic it has no finite model, but has an infinite model: for integer $n \ge 1$, let \mathcal{I} such that $p^{\mathcal{I}}(n) = 1/n$

$$(\forall x p(x))^{\mathcal{I}} = \inf_{n} 1/n = 0$$
$$(\exists x \neg p(x))^{\mathcal{I}} = \sup_{n} \neg 1/n = \sup_{n} 0 = 0$$

• Note: If $\mathcal{I} \models \exists x \phi(x)$ then not necessarily there is $c \in \Delta^{\mathcal{I}}$ such that $\mathcal{I} \models \phi(c)$.

$$\begin{array}{rcl} \Delta^{\mathcal{I}} & = & \{n \mid \text{ integer } n \geq 1\} \\ p^{\mathcal{I}}(n) & = & 1 - 1/n < 1, \text{ for all } n \\ (\exists x p(x))^{\mathcal{I}} & = & \sup_{n} 1 - 1/n = 1 \end{array}$$

- Witnessed formula: $\exists x \phi(x)$ is witnessed in \mathcal{I} iff there is $c \in \Delta^{\mathcal{I}}$ such that $(\exists x \phi(x))^{\mathcal{I}} = (\phi(c))^{\mathcal{I}}$ (similarly for $\forall x \phi(x)$)
- Witnessed interpretation: \mathcal{I} witnessed if all quantified formulae are witnessed in \mathcal{I}

Proposition

In &, ϕ is satisfiable iff there is a witnessed model of ϕ .

The proposition does not hold for logic G and Π

62 / 84

U. Straccia (ISTI - CNR) Fuzzy DLs Milano 2006

Predicate Rational Pavelka Logic (RPL∀)

- Fix Łukasiewicz t-norm and r-implication
- Formulae are as for $\forall \forall$, where rationals $r \in [0, 1]$ may appear as atoms

(Axioms and rules) As for Ł∀

Proposition

 $\mathcal{T} \vdash_{RPL\forall} \phi \text{ iff } \mathcal{T} \models_{RPL\forall} \phi.$

Fuzzy DLs Basics

- In classical DLs, a concept C is interpreted by an interpretation \mathcal{I} as a set of individuals
- In fuzzy DLs, a concept C is interpreted by I as a fuzzy set of individuals
- Each individual is instance of a concept to a degree in [0,1]
- Each pair of individuals is instance of a role to a degree in [0, 1]

Fuzzy ALC

The semantics is an immediate consequence of the First-Order-Logic translation of DLs expressions

Syntax

Interpretation:

C,D -	\longrightarrow			=	1
		_	$\perp^{\mathcal{I}}(x)$	=	0
		<i>A</i>	$A^{\mathcal{I}}(x)$		[0, 1]
		$C \sqcap D \mid$	$(C_1 \sqcap C_2)^{\mathcal{I}}(x)$	=	$C_1^{\mathcal{I}}(x) \wedge C_2^{\mathcal{I}}(x)$
		$C \sqcup D \mid$	$(C_1 \sqcup C_2)^{\mathcal{I}}(x)$	=	$C_1^{\mathcal{I}}(x) \vee C_2^{\mathcal{I}}(x)$
					$\neg C^{\mathcal{I}}(x)$
		∃ <i>R</i> . <i>C</i>	$(\exists R.C)^{\mathcal{I}}(x)$	=	$\sup_{y\in\Delta^{\mathcal{I}}}R^{\mathcal{I}}(x,y)\wedge C^{\mathcal{I}}(y)$
				=	$\inf_{y\in\Delta^{\mathcal{I}}}R^{\mathcal{I}}(x,y)\to C^{\mathcal{I}}(y)$
	<i>C</i> , <i>D</i>	$C,D \longrightarrow$	⊥	$\begin{array}{c c} \bot & \parallel \bot^{\mathcal{I}}(x) \\ A & \parallel A^{\mathcal{I}}(x) \end{array}$	$ \begin{array}{c cccc} & \bot & & \bot^{\mathcal{I}}(x) & = \\ & A \mid & A^{\mathcal{I}}(x) & \in \\ & C \sqcap D \mid & (C_1 \sqcap C_2)^{\mathcal{I}}(x) & = \\ & C \sqcup D \mid & (C_1 \sqcup C_2)^{\mathcal{I}}(x) & = \\ & \neg C \mid & (\neg C)^{\mathcal{I}}(x) & = \\ & \exists R.C \mid & (\exists R.C)^{\mathcal{I}}(x) & = \\ \end{array} $

Semantics

Assertions:
$$\langle a:C,r\rangle$$
, $\mathcal{I}\models\langle a:C,r\rangle$ iff $C^{\mathcal{I}}(a^{\mathcal{I}})\geq r$ (similarly for roles)

• individual a is instance of concept C at least to degree $r, r \in [0, 1] \cap \mathbb{Q}$

Inclusion axioms: $C \sqsubseteq D$,

•
$$\mathcal{I} \models C \sqsubseteq D \text{ iff } \forall x \in \Delta^{\mathcal{I}}.C^{\mathcal{I}}(x) \leq D^{\mathcal{I}}(x)$$

• this is equivalent to, $\forall x \in \Delta^{\mathcal{I}} . (\overline{C^{\mathcal{I}}}(x) \to D^{\mathcal{I}}(x)) = 1$, if \to is an r-implication

Basic Inference Problems

Consistency: Check if knowledge is meaningful

Is K consistent, i.e. satisfiable?

Subsumption: structure knowledge, compute taxonomy

•
$$\mathcal{K} \models C \sqsubseteq D$$
?

Equivalence: check if two fuzzy concepts are the same

•
$$\mathcal{K} \models C = D$$
?

Graded instantiation: Check if individual a instance of class C to degree at least r

•
$$\mathcal{K} \models \langle a:C,r \rangle$$
 ?

BTVB: Best Truth Value Bound problem

•
$$|a:C|_{\mathcal{K}} = \sup\{r \mid \mathcal{K} \models \langle a:C,r \rangle\}$$
 ?

Top-k retrieval: Retrieve the top-k individuals that instantiate *C* w.r.t. best truth value bound

•
$$ans_{top-k}(\mathcal{K}, C) = Top_k\{\langle a, v \rangle \mid v = |a:C)|_{\mathcal{K}}\}$$

66 / 84

Some Notes on ...

- Value restrictions:
 - ▶ In classical DLs, $\forall R.C \equiv \neg \exists R. \neg C$
 - The same is not true, in general, in fuzzy DLs (depends on the operators' semantics, true for Łukasiewicz, but not true in Gödel logic)
 - ▶ Is it acceptable that \forall hasParent.Human $\not\equiv \neg \exists$ hasParent. \neg Human? Recall that in \bot and Zadeh, $\forall x.\phi \equiv \neg \exists x \neg \phi$
- Models:
 - ▶ In classical DLs $\top \sqsubseteq \neg(\forall R.A) \sqcap (\neg \exists R.\neg A)$ has no classical model
 - ▶ In Gödel logic it has no finite model, but has an infinite model
- The choice of the appropriate semantics of the logical connectives is important.
 - Should have reasonable logical properties
 - Certainly it must have efficient algorithms solving basic inference problems
- Łukasiewicz Logic seems the best compromise, though Zadeh semantics has been considered historically in DLs (we recall that Zadeh semantics is not considered by fuzzy logicians)
- For disjointness it is better to use $C \sqcap D \sqsubseteq \bot$ rather than $C \sqsubseteq \neg D$
 - ▶ they are not the same, e.g. $A \sqsubseteq \neg A$ says that $A^{\mathcal{I}}(x) \leq 0.5$ holds, for all \mathcal{I} and for all $x \in \Delta^{\mathcal{I}}$ (under Łukasiewicz Logic)

Towards fuzzy OWL Lite and OWL DL

- Recall that OWL Lite and OWL DL relate to SHIF(D) and SHOIN(D), respectively
- We need to extend the semantics of fuzzy \mathcal{ALC} to fuzzy $\mathcal{SHOIN}(D) = \mathcal{ALCHOINR}_{+}(D)$
- Additionally, we add
 - modifiers (e.g., very)
 - concrete fuzzy concepts (e.g., Young)
 - both additions have explicit membership functions

Number Restrictions, Inverse and Transitive roles

• The semantics of the concept $(\geq n S)$ is:

$$(\geq n R)^{\mathcal{I}}(x) = \sup_{\{y_1,\dots,y_n\}\subseteq\Delta^{\mathcal{I}}} \bigwedge_{i=1}^n R^{\mathcal{I}}(x,y_i)$$

• It is the result of viewing $(\geq n R)$ as the open first order formula

$$\exists y_1,\ldots,y_n. \bigwedge_{i=1}^n R(x,y_i) \wedge \bigwedge_{1\leq i < j \leq n} y_i \neq y_j.$$

• The semantics of the concept $(\leq n R)$ is:

$$(\leq n R)^{\mathcal{I}}(x) = \neg(\geq n+1 R)^{\mathcal{I}}(x)$$

- Note: (≥ 1 R) ≡ ∃R.⊤
- For transitive roles we have for all $x, y \in \Delta^{\mathcal{I}}$

$$R^{\mathcal{I}}(x,y) = R^{\mathcal{I}}(y,x)$$

• For transitive roles *R* we impose: for all $x, y \in \Delta^{\mathcal{I}}$

$$R^{\mathcal{I}}(x,y) \geq \sup_{z \in \Lambda^{\mathcal{I}}} \min(R^{\mathcal{I}}(x,z), R^{\mathcal{I}}(z,y))$$

Concrete fuzzy concepts

- E.g., Small, Young, High, etc. with explicit membership function
- Use the idea of concrete domains:
 - $D = \langle \Delta_D, \Phi_D \rangle$
 - $ightharpoonup \Delta_D$ is an interpretation domain
 - ▶ Φ_D is the set of concrete fuzzy domain predicates d with a predefined arity n = 1, 2 and fixed interpretation $d^D : \Delta_D^n \to [0, 1]$
 - For instance,

 $Minor = Person \sqcap \exists hasAge. \leq_{18}$ $YoungPerson = Person \sqcap \exists hasAge. Young$ functional(hasAge)

Modifiers

- Very, moreOrLess, slightly, etc.
- Apply to fuzzy sets to change their membership function
 - \triangleright very $(x) = x^2$
 - $slightly(x) = \sqrt{x}$
- For instance,

 $SportsCar = Car \sqcap \exists speed.very(High)$

Fuzzy SHOIN(D)

Concepts:

Syntax	Semantics
$\begin{array}{cccc} C,D &\longrightarrow & \top & \\ & \bot & \\ & A & \\ & (C\sqcap D) & \\ & (C\sqcup D) & \\ & (\neg C) & \\ & (\exists R.C) & \\ & (\forall R.C) & \\ & \{a\} & \\ & (\geq nR) & \\ & (\leq nR) & \\ & FCC & \\ & M(C) & \\ \end{array}$	$ \begin{array}{l} \top(x) \\ \bot(x) \\ A(x) \\ C_1(x) \wedge C_2(x) \\ C_1(x) \vee C_2(x) \\ \neg C(x) \\ \exists x \ R(x,y) \wedge C(y) \\ \forall x \ R(x,y) \to C(y) \\ x = a \\ \exists y_1, \dots, y_n, \bigwedge_{i=1}^n \ R(x,y_i) \wedge \bigwedge_{1 \leq i < j \leq n} y_i \neq y_j \\ \neg (\geq n+1 \ R)(x) \\ \mu_{HCC}(x) \\ \mu_{M}(C(x)) \end{array} $
$egin{array}{cccc} R & \longrightarrow & P & & & & & P & & & & & & & & & &$	$ \begin{array}{c} P(x,y) \\ P(y,x) \end{array} $

Assertions:

Syntax			Semantics
α	\longrightarrow	$\langle a:C,r\rangle$	$r \rightarrow C(a)$
		$\langle (a,b):R,r\rangle$	$r \rightarrow R(a, b)$

Axioms:

Syntax	Semantics
$egin{array}{cccc} au & \longrightarrow & C \sqsubseteq D \mid & & & & & & & & & & & \\ & & & & & & &$	$\forall x \ C(x) \rightarrow D(x) = 1$, where \rightarrow is r-implication $\forall x \forall y \forall z \ R(x, y) \land R(x, z) \rightarrow y = z$ $(\exists z \ R(x, z) \land R(z, y)) \rightarrow R(x, y)$

Reasoning

Depends on the semantics and reasoning method (tableau-based or MILP-based)

Tableaux method: under Zadeh semantics

- a tableau exists for fuzzy SHIN, solving the satisfiability problem
- classical blocking methods apply similarly in the fuzzy variant
- the management of General concept inclusions (GCl's) is more complicated compared to the crisp case
- a translation of fuzzy SHOIN to crisp SHOIN also exists (not addressed here)
- the tableaux method is not suitable to deal with fuzzy concrete concepts and modifiers
- the BTVB can be solved, but not efficiently

MILP based method: under Zadeh semantics. Łukasiewicz semantics, and classical semantics

- exists for fuzzy ALC + linear modifiers + fuzzy concrete concepts (published)
- exists for fuzzy SHIF + linear modifiers + fuzzy concrete concepts (implemented, but not
 published yet)
- solves the BTVB as primary problem

73 / 84

U. Straccia (ISTI - CNR) Fuzzy DLs Milano 2006

Fuzzy tableaux-based method

- Tableau algorithm is similar to classical DL tableaux
- Most problems can be reduced to satisfiability problem, e.g.
- Assertions are extended to $\langle a:C \geq n \rangle$, $\langle a:C \leq n \rangle$, $\langle a:C > n \rangle$ and $\langle a:C < n \rangle$
- $\mathcal{K} \models \langle a : C, n \rangle$ iff $\mathcal{K} \cup \{\langle a : C < n \rangle\}$ not satisfiable
 - ▶ All models of \mathcal{K} do not satisfy $\langle a:C < n \rangle$, i.e. do satisfy $\langle a:C \geq n \rangle$
- Let's see a tableaux algorithm for satisfiability checking, where

$$x \wedge y = \min(x, y)$$

 $x \vee y = \max(x, y)$
 $\neg x = 1 - x$
 $x \rightarrow y = \max(1 - x, y)$

Tableaux for ALC KB

- Works on a tree forest (semantics through viewing tree as an ABox)
 - Nodes represent elements of $\Delta^{\mathcal{I}}$, labelled with sub-concepts of C and their weights
 - ▶ Edges represent role-successorships between elements of $\Delta^{\mathcal{I}}$ and their weights
- Works on concepts in negation normal form: push negation inside using de Morgan' laws and

$$\neg(\exists R.C) \mapsto \forall R.\neg C$$
$$\neg(\forall R.C) \mapsto \exists R.\neg C$$

- It is initialised with a tree forest consisting of root nodes a, for all individuals appearing in the KB:
 - ▶ If $\langle a:C\bowtie n\rangle \in \mathcal{K}$ then $\langle C,\bowtie,n\rangle \in \mathcal{L}(a)$
 - ▶ If $\langle (a,b):R\bowtie n\rangle \in \mathcal{K}$ then $\langle \langle a,b\rangle,\bowtie,n\rangle \in \mathcal{E}(R)$
- A tree forest T contains a clash if for a tree T in the forest there is a node x in T, containing a conjugated pair $\{\langle A, \triangleright, n \rangle, \langle C, \triangleleft, m \rangle\} \subseteq \mathcal{L}(x)$, e.g. $\langle A, \geq, 0.6 \rangle, \langle A, <, 0.3 \rangle$
- Returns "K is satisfiable" if rules can be applied s.t. they yield a clash-free, complete (no more rules apply) tree forest

ALC Tableau rules (excerpt)

$X \bullet \{\langle C_1 \sqcap C_2, \geq, n \rangle, \ldots\}$	—→⊓	$X \bullet \{\langle C_1 \sqcap C_2, \geq, n \rangle, \langle C_1, \geq, n \rangle, \langle C_2, \geq, n \rangle, \ldots\}$
$x \bullet \{\langle C_1 \sqcup C_2, \geq, n \rangle, \ldots\}$	⊔	$x \bullet \{\langle C_1 \sqcup C_2, \geq, n \rangle, \langle C, \geq, n \rangle, \ldots\}$
		for $C \in \{C_1, C_2\}$
$x \bullet \{\langle \exists R.C, \geq, n \rangle, \ldots \}$	>∃	$x \bullet \{\langle \exists R.C, \geq, n \rangle, \ldots \}$
		$\langle R, \geq, n \rangle \downarrow$
		$y \bullet \{\langle C, \geq, n \rangle\}$
$x \bullet \{\langle \forall R.C, \geq, n \rangle, \ldots \}$	\longrightarrow \forall	$x \bullet \{\langle \forall R.C, \geq, n \rangle, \ldots \}$
$\langle R, \geq, m \rangle \downarrow \qquad (m > 1 - n)$		$\langle R, \geq, m \rangle \downarrow$
<i>y</i> • {}		$y \bullet \{\ldots, \langle C, \geq, n \rangle \}$
$x \bullet \{C \sqsubseteq D, \ldots\}$		$x \bullet \{C \sqsubseteq D, \overline{E}, \ldots\}$
		for $E \in \{\langle C, <, n \rangle, \langle D, \geq, n \rangle\}, n \in N^{\mathcal{A}}$
:	:	:

$$\begin{array}{rcl} \mathcal{K} & = & \langle \mathcal{T}, \mathcal{A} \rangle \\ \mathcal{X}^{\mathcal{A}} & = & \{0, 0.5, 1\} \cup \{n \mid \langle \alpha \bowtie n \rangle \in \mathcal{A}\} \\ \mathcal{N}^{\mathcal{A}} & = & \mathcal{X}^{\mathcal{A}} \cup \{1 - n \mid n \in \mathcal{X}^{\mathcal{A}}\} \end{array}$$

Theorem

Let $\mathcal K$ be an $\mathcal A\mathcal L\mathcal C$ KB and F obtained by applying the tableau rules to $\mathcal K$. Then

- 1 The rule application terminates,
- 2 If F is clash-free and complete, then F defines a (canonical) (tree forest) model for K, and
- If K has a model \mathcal{I} , then the rules can be applied such that they yield a clash-free and complete forest F.

It is expected that the tableau can be modified to a decision procedure for

ullet \mathcal{SHOIN} $(\equiv \mathcal{ALCHOINR}_+)$

Problem with fuzzy tableau

- Usual fuzzy tableaux calculus does not work anymore with
 - modifiers and concrete fuzzy concepts
 - Łukasiewicz Logic
- Usual fuzzy tableaux calculus does not solve the BTVB problem
- New algorithm uses bounded Mixed Integer Programming oracle, as for Many Valued Logics
 - ▶ Recall: the general MILP problem is to find

$$ar{\mathbf{x}} \in \mathbb{Q}^k, ar{\mathbf{y}} \in \mathbb{Z}^m$$
 $f(ar{\mathbf{x}}, ar{\mathbf{y}}) = \min\{f(\mathbf{x}, \mathbf{y}) \colon A\mathbf{x} + B\mathbf{y} \ge \mathbf{h}\}$
 $A, B \text{ integer matrixes}$

Requirements

- Works for usual fuzzy DL semantics (Zadeh semantics) and Lukasiewicz logic
- Modifiers are definable as linear in-equations over \mathbb{Q}, \mathbb{Z} (e.g., linear hedges), for instance, linear hedges, Im(a, b), e.g. very = Im(0.7, 0.49)
- Fuzzy concrete concepts are definable as linear in-equations over \mathbb{Q} , \mathbb{Z} (e.g., crisp, triangular, trapezoidal, left shoulder and right shoulder membership functions)

• Example:


```
Minor = Person \sqcap \exists hasAge. \leq_{18}

YoungPerson = Person \sqcap \exists hasAge. Young

Young = Is(10,30)

<_{18} = cr(0,18)
```

Then

$$|a:C|_{\mathcal{K}} = \min\{x \mid \mathcal{K} \cup \{\langle a:C \leq x \rangle \text{ satisfiable}\}\$$

 $|C \sqsubseteq D|_{\mathcal{K}} = \min\{x \mid \mathcal{K} \cup \{\langle a:C \sqcap \neg D \geq 1 - x \rangle \text{ satisfiable}\}\$

 Apply (deterministic) tableaux calculus, then use bounded Mixed Integer Programming oracle

ALC MILP Tableau rules under Zadeh semantics

(excerpt)

(CAUCIPI)		
$x \bullet \{\langle C_1 \sqcap C_2, \geq, I \rangle, \ldots\}$	→□	$x \bullet \{\langle C_1 \sqcap C_2, \geq, l \rangle, \langle C_1, \geq, l \rangle, \langle C_2, \geq, l \rangle, \ldots\}$
$x \bullet \{\langle C_1 \sqcup C_2, \geq, I \rangle, \ldots\}$		$x \bullet \{\langle C_1 \sqcup C_2, \geq, I \rangle, \langle C_1, \geq, x_1 \rangle, \langle C_2, \geq, x_2 \rangle,$
		$x_1 + x_2 = l, x_1 \leq y, x_2 \leq 1 - y,$
		$x_i \in [0, 1], y \in \{0, 1\}, \ldots\}$
$x \bullet \{\langle \exists R.C, \geq, I \rangle, \ldots \}$	∃	$x \bullet \{\langle \exists R.C, \geq, l \rangle, \ldots \}$
		$\langle R, \geq, I \rangle \downarrow$
		$y \bullet \{\langle C, \geq, I \rangle\}$
$x \bullet \{\langle \forall R.C, \geq, l_1 \rangle, \ldots \}$	∀	$X \bullet \{\langle \forall R.C, \geq, l_1 \rangle, \ldots \}$
$\langle R, \geq, l_2 \rangle \downarrow$		$\langle R, \geq, l_2 \rangle \downarrow$
y • {}		$y \bullet \{\ldots, \langle C, \geq, x \rangle$
		$x + y \ge l_1, x \le y, l_1 + l_2 \le 2 - y,$
		$x \in [0, 1], y \in \{0, 1\}\}$
$x \bullet \{A \sqsubseteq C, \langle A, \geq, I \rangle, \ldots\}$	_→ _{⊑1}	$x \bullet \{A \sqsubseteq C, \langle C, \geq, I \rangle, \ldots\}$
$x \bullet \{C \sqsubseteq A, \langle A, \leq, I \rangle, \ldots\}$		$x \bullet \{C \sqsubseteq A, \langle C, \leq, I \rangle, \ldots\}$
$x \bullet \{C \sqsubseteq D, \ldots\}$	—→ <u></u> _	$x \bullet \{C \sqsubseteq D, \langle C, \leq, x \rangle, \langle D, \geq, x \rangle, x \in [0, 1], \ldots\}$
$x \bullet \{\langle ls(k_1, k_2, a, b), \geq, l \rangle, \ldots \}$	_→_	$x \bullet \{ls(k_1, k_2, a, b), y_1 + y_2 + y_3 = 1, y_i \in \{0, 1\},$
	_	$x + (k_2 - a) \cdot y_1 \le k_2, x + (k_1 - a) \cdot y_2 \ge k_1,$
		$x+(k_2-b)\cdot y_2\geq k_2,$
		$x + (b - a) \cdot l + (k_2 - a) \cdot y_2 \le k_2 - a + b,$
		$x + (k_1 - b) \cdot y_3 \le k_1, l + y_3 \le 1, \ldots$
1:	1 :	
1 :		1 *

81 / 84

Example

$$\mathcal{K} = \begin{cases} A \sqcap B \sqsubseteq C \\ \langle a : A \geq 0.3 \rangle \\ \langle a : B \geq 0.4 \rangle \end{cases}$$
 Suppose

Query : = $|a:C|_{\mathcal{K}} = \min\{x \mid \mathcal{K} \cup \{\langle a:C \leq x \rangle \text{ satisfiable}\}\$

Step	Tree	
1.	$a \bullet \{\langle A, \geq, 0.3 \rangle, \langle B, \geq, 0.4 \rangle, \langle C, \leq, x \rangle\}$	(Hypothesis)
2.	$\cup \{\langle A \cap B, \leq, x \rangle\}$	$(\rightarrow_{\sqsubseteq_2})$
3.	$\cup \{\langle A, \leq, x_1 \rangle, \langle B, \leq, x_2 \rangle\}$	$(\rightarrow_{\sqcap_{\leq}})$
	$\cup \{x = x_1 + x_2 - 1, 1 - y \le x_1, y \le x_2\}$	_
	$\cup \{x_i \in [0,1], y \in \{0,1\}\}$	
4.	find min{ $x \mid \langle a:A \geq 0.3 \rangle, \langle a:B \geq 0.4 \rangle,$	(MILP Oracle)
	$\langle a:C\leq x\rangle,\langle a:A\leq x_1\rangle,\langle a:B\leq x_2\rangle,$	
	$x = x_1 + x_2 - 1, 1 - y \le x_1, y \le x_2,$	
	$x_i \in [0,1], y \in \{0,1\}\}$	
5.	MILP oracle: $\mathbf{x} = 0.3$	

Implementation issues

- Several options exists:
 - Try to map fuzzy DLs to classical DLs
 - ★ but, does not work with modifiers and concrete fuzzy concepts
 - Try to map fuzzy DLs to some fuzzy logic programming framework
 - $\,\star\,$ A lot of work exists about mappings among classical DLs and LPs
 - ★ But, needs a theorem prover for fuzzy LPs (not addressed here)
 - ★ To be used then e.g. in the axiomatic approach to fuzzy DLPs (Description Logic Programs)
 - Build an ad-hoc theorem prover for fuzzy DLs, using e.g., MILP
 - ★ To be used then separately e.g. in the DL-log approach to fuzzy DLPs
- A theorem prover for fuzzy SHIF + linear hedges + concrete fuzzy concepts, using MILP, has been implemented

(http://gaia.isti.cnr.it/~straccia)

U. Straccia (ISTI - CNR)

Future Work on fuzzy DLs

Research directions:

- Computational complexity of the fuzzy DLs family
- Design of efficient reasoning algorithms
- Combining fuzzy DLs with fuzzy Logic Programming
- Language extensions: e.g. fuzzy quantifiers

```
TopCustomer = Customer \sqcap (Usually)buys.ExpensiveItemExpensiveItem = Item \sqcap \exists price.High
```

- Conjunctive query answering (top-k query answering) for more expressive DLs
- Developing systems, extending fuzzyDL system, . . .
- Applications, e.g. Ontology mediated data access ((distributed) multimedia information retrieval, resource selection, ...),
 Negotiation, Health-Care, ...
- **.** . . .

