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On the Existence of Vague Concepts

What are vague concepts and do they exists?
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What are the pictures about?
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About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic

Fuzzy Description Logics and OWL 2

On the Existence of Vague Concepts
On the Existence of Vague Objects
Vague Statements
Sources of Vagueness
Uncertainty vs Vagueness: a clarification

A concept is vague whenever its extension is deemed
lacking in clarity

Aboutness of a picture or piece of text
Tall person
High temperature
Nice weather
Adventurous trip
Similar proof

Vague concepts:
Are abundant in everyday speech and almost inevitable
Their meaning is often subjective and context dependent
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On the Existence of Vague Objects

What are vague objects and do they exists?
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Are there vague objects in the pictures?
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An object is vague whenever its identity is lacking in clarity
Dust
Cloud
Dunes
Sun

Vague objects:
Are not identical to anything, except to themselves
(reflexivity)
Are characterised by a vague identity relation (e.g. a
similarity relation)

BTW: example of uncertain object: “habitable Earth-like
planet in universe"
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Vague Statements

A statement is vague whenever it involves vague concepts
or vague objects

Heavy rain
Tall person
Hot temperature

The truth of a vague statement is a matter of degree, as it
is intrinsically difficult to establish whether the statement is
entirely true or false

There are 33 ◦C. Is it hot?
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Sources of Vagueness: Matchmaking

A car seller sells an Audi TT for 31500e, as from the catalog price.
A buyer is looking for a sports-car, but wants to to pay not more than around
30000e
Classical DLs: the problem relies on the crisp conditions on price.

More fine grained approach: to consider prices as vague constraints (fuzzy sets)
(as usual in negotiation)

Seller would sell above 31500e, but can go down to 30500e
The buyer prefers to spend less than 30000e, but can go up to 32000e
Highest degree of matching is 0.75 . The car may be sold at 31250e.
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Sources of Vagueness: Multimedia information
retrieval

IsAbout
ImageRegion Object ID degree
o1 snoopy 0.8
o2 woodstock 0.7
.
.
.

.

.

.

“Find top-k image regions about animals”
Query(x)← ImageRegion(x) ∧ isAbout(x , y) ∧ Animal(y)
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Sources of Vagueness: Distributed Information
Retrieval

Then the agent has to perform automatically the following steps:
1 The agent has to select a subset of relevant resources S ′ ⊆ S , as it is

not reasonable to assume to access to and query all resources
(resource selection/resource discovery);

2 For every selected source Si ∈ S ′ the agent has to reformulate its
information need QA into the query language Li provided by the
resource (schema mapping/ontology alignment);

3 The results from the selected resources have to be merged together
(data fusion/rank aggregation)All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia
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Sources of Vagueness: Vague database query

HotelID hasLoc
h1 hl1
h2 hl2
.
.
.

.

.

.

ConferenceID hasLoc
c1 cl1
c2 cl2
.
.
.

.

.

.

hasLoc hasLoc distance
hl1 cl1 300
hl1 cl2 500
hl2 cl1 750
hl2 cl2 800
.
.
.

.

.

.

hasLoc hasLoc close cheap
hl1 cl1 0.7 0.3
hl1 cl2 0.5 0.5
hl2 cl1 0.25 0.8
hl2 cl2 0.2 0.9
.
.
.

.

.

.
.
.
.

“Find top-k cheapest hotels close to the train station”

q(h)←hasLocation(h, hl) ∧ hasLocation(train, cl) ∧ close(hl, cl) ∧ cheap(h)
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Sources of Vagueness: Health-care: diagnosis of
pneumonia

E.g., Temp = 37.5, Pulse = 98, RespiratoryRate = 18 are in “danger zone”
already
Temperature, Pulse and Respiratory rate: these constraints are rather vague
than crispAll About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia
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Sources of Vagueness: Ontology alignment (schema
matching)

To which degree are two concepts of two ontologies
similar?
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Sources of Vagueness: Lifezone mapping

To which degree do certain areas have a specific bioclima

Holdridge life zones of USA
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Sources of Vagueness: ARPAT, Air quality in the
province of Lucca

http://www.arpat.toscana.it/
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TripAdvisor: Hotel User Judgments
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Uncertainty vs Vagueness: a clarification

Initial difficulty:
Understand the conceptual differences between uncertainty
and vagueness

Main problem:
Interpreting a degree as a measure of uncertainty rather
than as a measure of vagueness
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Uncertain Statements

A statement is true or false in any world/interpretation
We are “uncertain” about which world to consider
We may have e.g. a probability distribution over possible
worlds

E.g., “it will rain tomorrow”

We cannot exactly establish whether it will rain tomorrow or
not, due to our incomplete knowledge about our world
We can estimate to which degree this is probable
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Consider a propositional statement (formula) φ
Interpretation (world) I ∈ W,

I :W → {0,1}

I(φ) = 1 means φ is true in I, denoted I |= φ

Each interpretation I depicts some concrete world
Given n propositional letters, |W| = 2n

In uncertainty theory, we do not know which interpretation
I is the actual one
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One may construct a probability distribution over the worlds

Pr :W → [0,1]∑
I Pr(I) = 1

Pr(I) indicates the probability that I is the actual world
Probability Pr(φ) of a statement φ in Pr

Pr(φ) =
∑
I|=φ

Pr(I)

Pr(φ) is the probability of the event: "φ is true"
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Vague Statements

A statement is true to some degree, which is taken from a
truth space (usually [0,1])
The convention prescribing that a proposition is either true
or false is changed towards graded propositions
E.g., “heavy rain”

The compatibility of “heavy” in the phrase “heavy rain” is
graded and the degree depends on the amount of rain is
falling

The intensity of precipitation is expressed in terms of a
precipitation rate R: volume flux of precipitation through a
horizontal surface, i.e. m3/m2s = ms−1

It is usually expressed in mm/h
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“Heavy rain” continued...E.g., in weather forecasts one may find:

Rain intensity measured as precipitation rate R: volume flux of
precipitation through a horizontal surface, i.e. m3/m2h = mh−1

Rain. Falling drops of water larger than 0.5 mm in diameter. “Rain” usually implies that the
rain will fall steadily over a period of time;

Light rain. Rain falls at the rate of 2.6 mm or less an hour;
Moderate rain. Rain falls at the rate of 2.7 mm to 7.6 mm an hour;

Heavy rain. Rain falls at the rate of 7.7 mm an hour or more.

Quite harsh distinction: R = 7.7mm/h → heavy rain
R = 7.6mm/h → moderate rain

This is clearly unsatisfactory, as quite naturally

The more rain is falling, the more the sentence “heavy rain”
is true
Vice-versa, the less rain is falling the less the sentence is
true
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In other words, that the sentence “heavy rain” is no longer either
true or false, but is intrinsically graded

Even if we have complete knowledge about the current
world, i.e. exact specification of the precipitation rate

More fine grained approach:
Define the various types of rains as

Light rain, moderate rain and heavy rain are vague
concepts
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Consider a propositional statement φ

A propositional interpretation I maps φ to a truth degree in [0,1]

I(φ) ∈ [0,1]

I.e., we are unable to establish whether a statement is entirely
true or false due the occurrence of vague concept

Vague statements are truth-functional
Degree of truth of a statement can be calculated from the
degrees of truth of its constituents
Note that this is not possible for uncertain statements

Example of truth functional interpretation of vague statements:

I(φ ∧ ψ) = min(I(φ), I(ψ))
I(φ ∨ ψ) = max(I(φ), I(ψ))
I(¬φ) = 1− I(φ)
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Uncertain Vague Statements

Recap:
In a probabilistic setting each statement is either true or
false, but there is e.g. a probability distribution telling us
how probable each interpretation/sentence is

I(φ) ∈ {0,1},Pr(I) ∈ [0,1] and Pr(φ) =
∑
I|=φ

Pr(I) ∈ [0,1]

In vagueness theory instead, sentences are graded

I(φ) ∈ [0,1]

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic

Fuzzy Description Logics and OWL 2

On the Existence of Vague Concepts
On the Existence of Vague Objects
Vague Statements
Sources of Vagueness
Uncertainty vs Vagueness: a clarification

Are there sentences combining the two orthogonal
concepts of uncertainty and vagueness?
Yes, and we use them daily !

E.g. “there will be heavy rain tomorrow"

This type of sentences are called uncertain vague
sentences
Essentially, there is

uncertainty about the world we will have tomorrow
vagueness about the various types of rain
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Consider a propositional statement φ

A model for uncertain vague sentences:
Define probability distribution over worlds I ∈ W, i.e.

Pr(I) ∈ [0,1],
∑
I

Pr(I) = 1

Sentences are graded: each interpretation I ∈W is truth
functional and maps sentences into [0,1]

I(φ) ∈ [0,1]

For a sentence φ, consider the expected truth of φ

ET (φ) =
∑
I

Pr(I) · I(φ) .

Note: if I is bivalent (that is, I(φ) ∈ {0,1}) then ET (φ) = Pr(φ)
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From Fuzzy Sets to Mathematical Fuzzy Logic
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Fuzzy Sets Basics

From Crisp Sets to Fuzzy Sets.
Let X be a universal set of objects
The power set, denoted 2A, of a set A ⊂ X , is the set of
subsets of A, i.e.,

2A = {B | B ⊆ A}

Often sets are defined as

A = {x | P(x)}

P(x) is a statement “x has property P”
P(x) is either true or false for any x ∈ X
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Mathematical Fuzzy Logics Basics

Examples of universe X and subsets A,B ∈ 2X may be

X = {x | x is a day}
A = {x | x is a rainy day}
B = {x | x is a day with precipitation rate R ≥ 7.5mm/h}

In the above case: B ⊆ A ⊆ X
The membership function of a set A ⊆ X :

χA : X → {0,1}

where χA(x) = 1 iff x ∈ A
Note that for sets A,B ∈ 2X

A ⊆ B iff ∀x ∈ X . χA(x) ≤ χB(x)
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Complement of a set A, i.e. Ā = X \ A: ∀x ∈ X :

χĀ(x) = 1− χA(x)

Intersection and union: ∀x ∈ X

χA∩B(x) = min(χA(x), χB(x))

χA∪B(x) = max(χA(x), χB(x))

Cartesian product of two sets A,B ∈ 2X

A× B = {〈a, b〉 | a ∈ A, b ∈ B}

A relation R ⊆ X × X
is reflexive if for all x ∈ X

χR(x , x) = 1

is symmetric if for all x , y ∈ X

χR(x , y) = χR(y , x)

Inverse of R, χR−1 : X × X → {0, 1}: ∀x , y ∈ X :

χR−1 (y , x) = χR(x , y)
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Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

Fuzzy set A: χA : X → [0,1], or simply

A : X → [0,1]

Fuzzy power set over X , is denoted 2̃X , i.e. the set of all
fuzzy sets over X
Example: the fuzzy set

C = {x | x is a day with heavy precipitation rate R}

is defined via the membership function

χC(x) =


1 if R ≥ 7.5
(x − 5)/2.5 if R ∈ [5,7.5)
0 otherwise
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Fuzzy membership functions may depend on the context and
may be subjective
Shape may be quite different
Usually, it is sufficient to consider functions

(a) (b)

(c) (d)
(a) Trapezoidal trz(a, b, c, d); (b) Triangular tri(a, b, c); (c) left-shoulder ls(a, b); (d) right-shoulder rs(a, b)
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Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

Fuzzy Sets Construction

The usefulness of fuzzy sets depends critically on
appropriate membership functions
Methods for fuzzy membership functions construction is
largely addressed in literature
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Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

Easy and typically satisfactory method (numerical domain)
uniform partitioning into 5 fuzzy sets

Fuzzy sets construction using trapezoidal functions

Fuzzy sets construction using triangular functions
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Another popular method is based on clustering
Use Fuzzy C-Means to cluster data into 5 clusters

Fuzzy C-Means extends K-Means to accommodates
graded membership

From the clusters c1, . . . , c5 take the centroids π1, . . . , π5

Build the fuzzy sets from the centroids

Fuzzy sets construction using clustering
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Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

Norm-Based Fuzzy Set Operations

Standard fuzzy set operations are not the only ones
Most notable ones are triangular norms

t-norm ⊗ for set intersection
t-conorm ⊕ (also called s-norm) for set union
negation 	 for set complementation
implication⇒

set inclusion A v B is defined as

inf
x∈X

A(x)⇒ B(x)

⇒ is often defined from ⊗ as r-implication

a⇒ b = sup {c | a⊗ c ≤ b} .

These functions satisfy some properties that one expects
to hold

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic

Fuzzy Description Logics and OWL 2
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Mathematical Fuzzy Logics Basics

Properties for t-norms and s-norms

Axiom Name T-norm S-norm
Taututology/Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b ⊗ a a⊕ b = b ⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b ⊗ c) (a⊕ b)⊕ c = a⊕ (b ⊕ c)
Monotonicity if b ≤ c, then a⊗ b ≤ a⊗ c if b ≤ c, then a⊕ b ≤ a⊕ c
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Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

Properties for implication and negation functions

Axiom Name Implication Function Negation Function
Tautology / Contradiction 0⇒ b = 1, a⇒ 1 = 1, 1⇒ 0 = 0 	 0 = 1, 	 1 = 0
Antitonicity if a ≤ b, then a⇒ c ≥ b ⇒ c if a ≤ b, then 	 a ≥ 	 b
Monotonicity if b ≤ c, then a⇒ b ≤ a⇒ c
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Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

By commutativity, ⊗ and ⊕ are monotone also in the first
argument
⊗ is indempotent if a⊗ a = a, for all a ∈ [0,1]

Megation function 	 is involutive iff 		 a = a, for all
a ∈ [0,1].
Salient negation functions are:
Standard or Łukasiewicz negation: 	la = 1− a;
Gödel negation: 	ga is 1 if a = 0, else is 0.
Łukasiewicz negation is involutive, Gödel negation is not.
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Salient t-norm functions are:
Gödel t-norm: a⊗g b = min(a,b);
Bounded difference or Łukasiewicz t-norm:

a⊗l b = max(0,a + b − 1);
Algebraic product or product t-norm: a⊗p b = a · b;
Drastic product: a⊗d b ={

0 when (a,b) ∈ [0,1[×[0,1[
min(a,b) otherwise
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Salient s-norm functions are:
Gödel s-norm: a⊕g b = max(a,b);
Bounded sum or Łukasiewicz s-norm:

a⊕l b = min(1,a + b);
Algebraic sum or product s-norm: a⊕p b = a + b − ab;
Drastic sum: a⊕d b ={

1 when (a,b) ∈]0,1]×]0,1]
max(a,b) otherwise
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Salient properties of norms:
Ordering among t-norms (⊗ is any t-norm):

⊗d ≤ ⊗ ≤ ⊗g

⊗d ≤ ⊗l ≤ ⊗p ≤ ⊗g .

The only idempotent t-norm is ⊗g .
The only t-norm satisfying a⊗ a = 0 for all a ∈ [0,1[ is ⊗d .
Ordering among s-norms (⊕ is any s-norm):

⊕g ≤ ⊕ ≤ ⊕d

⊕g ≤ ⊕p ≤ ⊕l ≤ ⊕d .
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The only idempotent s-norm is ⊕g .
The only s-norm satisfying a⊕ a = 1 for all a ∈]0,1] is ⊕d .
The dual s-norm of ⊗ is defined as

a⊕ b = 1− (1− a)⊗ (1− b) .

Kleene-Dienes implication: x ⇒ y = max(1− x , y) is called
Fuzzy modus ponens: let a ≥ n and a⇒ b ≥ m

Under Kleene-Dienes implication, we infer that if n > 1−m
then b ≥ m
Under r-implication relative to a t-norm ⊗, we infer that
b ≥ n ⊗m

composition of two fuzzy relations R1 : X × X → [0,1] and
R2 : X × X → [0,1]: for all x , z ∈ X

(R1 ◦ R2)(x , z) = supy∈X R1(x , y)⊗ R2(y , z)

A fuzzy relation R is transitive iff for all x , z ∈ X
R(x , z)≥ (R ◦ R)(x , z)
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Łukasiewicz, Gödel, Product logic and Standard Fuzzy
logic

One distinguishes three different sets of fuzzy set
operations (called fuzzy logics)

Łukasiewicz, Gödel, and Product logic
Standard Fuzzy Logic (SFL) is a sublogic of Łukasiewicz

min(a, b) = a⊗l (a⇒l b), max(a, b) = 1−min(1− a, 1− b)

Łukasiewicz Logic Gödel Logic Product Logic SFL
a⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a⇒ b min(1− a + b, 1)

{
1 if a ≤ b
b otherwise

min(1, b/a) max(1− a, b)

	 a 1− a

{
1 if a = 0
0 otherwise

{
1 if a = 0
0 otherwise

1− a

Mostert–Shields theorem: any continuous t-norm can be
obtained as an ordinal sum of these three
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Some additional properties

Property Łukasiewicz Logic Gödel Logic Product Logic SFL
x ⊗	 x = 0 •
x ⊕	 x = 1 •
x ⊗ x = x • •
x ⊕ x = x • •
		 x = x • •

x ⇒ y = 	 x ⊕ y • •
	 (x ⇒ y) = x ⊗	 y • •
	 (x ⊗ y) = 	 x ⊕	 y • • • •
	 (x ⊕ y) = 	 x ⊗	 y • • • •

Note: If all conditions in the upper part of a column have to
be satisfied then we collapse to classical two-valued logic
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Fuzzy Modifiers

Fuzzy modifiers: interesting feature of fuzzy set theory
A fuzzy modifier apply to fuzzy sets to change their
membership function

Examples: very, more_or_less, and slightly

A fuzzy modifier m represents a function

fm : [0,1]→ [0,1]

Example: fvery(x) = x2, fmore_or_less(x) = tri(0, x , 1), fslightly(x) =
√

x
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Modelling the fuzzy set of very heavy rain:

χvery heavy rain(x) = fvery(χheavyrain(x))

= (χheavyrain(x))2

= (rs(5, 7.5)(x))2

A typical shape of modifiers: linear modifiers lm(a,b)

0 1

1

a

b

x

Note: linear modifiers require one parameter c only

lm(a,b) = lm(c)

where a = c/(c + 1) , b = 1/(c + 1)
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Mathematical Fuzzy Logics Basics

OWL 2 is grounded on Mathematical Logic
Fuzzy OWL 2 is grounded on Mathematical Fuzzy Logic
A statement is no longer either true or false, but is graded
Truth space: set of truth values L with some structure
Given a statement φ

Fuzzy Interpretation: a function I mapping φ into L, i.e.

I(ϕ) ∈ L

Usually

L = [0,1]

Ln = {0, 1
n
, . . . ,

n − 2
n − 1

, . . . ,1} (n≥1)
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Fuzzy statement: for r ∈ [0,1]

〈φ, r〉

The degree of truth of φ is equal or greater than r

Examples:
Fuzzy FOL: 〈RainyDay(d),0.75〉
Fuzzy LPs: 〈RainyDay(d)←,0.75〉
Fuzzy RDFS: 〈〈d , type,RainyDay〉,0.75〉
Fuzzy DLs: 〈d :RainyDay ,0.75〉
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Fuzzy interpretation I:
Maps each basic statement pi into [0,1]
Extended inductively to all statements

I(φ ∧ ψ) = I(φ)⊗ I(ψ)
I(φ ∨ ψ) = I(φ)⊕ I(ψ)
I(φ→ ψ) = I(φ)⇒ I(ψ)
I(φ↔ ψ) = I(φ→ ψ)⊗ I(ψ → φ)
I(¬φ) = 	I(φ)
I(∃x .φ) = supa∈∆I Ia

x (φ)
I(∀x .φ) = infa∈∆I Ia

x (φ) ,

where
∆I is the domain of I
⊗, ⊕,⇒, and 	 are the t-norms, t-conorms, implication
functions, a negation functions
The function Ia

x is as I except that x is interpreted as a
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Example

In Lukasiewicz logic:

ϕ = Cold ∧ Cloudy

I Cold Cloudy I(ϕ)

I1 0 0.1 max(0,0 + 0.1− 1) = 0.0
I2 0.3 0.4 max(0,0.3 + 0.4− 1) = 0.0
I3 0.7 0.8 max(0,0.7 + 0.9− 1) = 0.6
I4 1 1 max(0,1 + 1− 1) = 1.0
...

...
...

...

Note: given m propositional letters
Fuzzy interpretations over L = [0,1] are not recursively
enumerable
There are nm fuzzy interpretations over Ln
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One may also consider the following abbreviations:

φ ∧g ψ
def
= φ ∧ (φ→ ψ)

φ ∨g ψ
def
= (φ→ ψ)→ φ) ∧g (ψ → φ)→ ψ)

¬⊗φ
def
= φ→ 0

〈φ ≤ r〉 def
= 〈¬lφ,1− r〉

In case⇒ is the r-implication based on ⊗, then
∧g is Gödel t-norm
∨g is Gödel s-norm
¬⊗ is interpreted as the negation function related to ⊗
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I satisfies 〈φ, r〉, or I is a model of 〈φ, r〉

I |= 〈φ, r〉 iff I(φ) ≥ r

I is a model of φ if I(φ) = 1
Fuzzy knowledge base K: finite set of fuzzy statements
I satisfies (is a model of) K: I |= K iff it satisfies each
element in it
Best entailment degree of φ w.r.t. K:

bed(K, φ) = sup {r | K |= 〈φ, r〉}

Best satisfiability degree of φ w.r.t. K:

bsd(K, φ) = sup
I
{I(φ) | I |= K}
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Proposition (Fuzzy Modus Ponens )

For r-implication→, for r , s ∈ [0, 1]:

〈φ, r〉, 〈φ→ ψ, s〉 |= 〈ψ, r ⊗ s〉

Proposition

Salient equivalences:

¬¬φ ≡ φ (Ł,SFL)

φ ∧ φ ≡ φ (G,SFL)

¬(φ ∧ ¬φ) ≡ 1 (Ł,G,Π)

φ ∨ ¬φ ≡ 1 (Ł)

∀x .φ ≡ ¬∃x .¬φ (Ł,SFL)
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Proposition
Salient equivalences:

Ł + G ≡ Boolean Logic
Ł + Π ≡ Boolean Logic
G + Π ≡ Boolean Logic
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Proposition (BED)

bed(K, φ) = min x . such that K ∪ {〈ϕ ≤ x〉} satisfiable.

Proposition (BSD)

bsd(K, φ) = max x . such that K ∪ {〈ϕ, x〉} satisfiable.
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On Witnessed Models

Witnessed interpretation I:

I(∃x .φ) = Ia
x (φ), for some a ∈ ∆I (1)

I(∀x .φ) = Ia
x (φ), for some a ∈ ∆I (2)

The supremum (resp. infimum) are attained at some point
Classical interpretations are witnessed
Fuzzy interpretations may not be witnessed
E.g., I is not witnessed as Eq. (1) not satisfied:

∆I = N
In

x (A(x)) = 1− 1/n < 1, for all n

I(∃x .A(x)) = sup
n
In

x (A(x))

= sup
n

1− 1/n = 1
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Proposition (Witnessed model property)

In Łukasiewicz logic and SFL over L = [0,1], or for all cases in
which the truth space L is finite, a fuzzy KB has a witnessed
fuzzy model iff it has a fuzzy model.

Not true for Gödel and product logic over L = [0,1]
¬∀x p(x) ∧ ¬∃x ¬p(x) has no classical model
In Gödel logic it has no finite model, but has an infinite
model: for integer n ≥ 1, let I such that I(p(n)) = 1/n

I(∀x p(x)) = inf
n

1/n = 0

I(∃x ¬p(x)) = sup
n
¬1/n = sup 0 = 0

IMHO: non-witnessed models make little sense in KR
We will always assume that interpretations are witnessed
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Fuzzy Propositional Logic: Reasoning

We need to distinguish if truth space is L = [0,1] or
Ln = {0, 1

n , . . . ,
n−2
n−1 , . . . ,1}

Case Ln easier: given m propositional letters, there are mn

possible interpretations
We may use

Operational Research
Analytic Tableaux, Non-Deterministic Analytic Tableaux
Reduction into Classical Propositional Logic
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Operational Research: Case Łukasiewicz Logic & SFL

Basic idea: translate formulae into equational constraints
about truth degrees
For a formula φ consider a variable xφ

Intuition: xφ will hold the degree of truth of statement φ
Example: constraints under Łukasiewicz for 〈¬φ,0.6〉

x¬φ ∈ [0,1]

xφ ∈ [0,1]

x¬φ = 1− xφ
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We may use Mixed Integer Linear Programming for the encodings of
constraints
For Łukasiewicz:

x1 ⊗l x2 = z
7→ {x1 + x2 − 1 ≤ z, x1 + x2 − 1 ≥ z − y , z ≤ 1− y , y ∈ {0, 1}},
where y is a new variable.
x1 ⊕l x2 = z 7→ {x1 + x2 ≤ z + y , y ≤ z, x1 + x2 ≥ z, y ∈ {0, 1}},
where y is a new variable.
x1 ⇒l x2 = z 7→ {(1− x1)⊕l x2 = z}.

For SFL:

x1 ⊗g x2 = z
7→ {z ≤ x1, z ≤ x2, x1 ≤ z + y , x2 ≤ z + (1− y), y ∈ {0, 1}},
where y is a new variable.
x1 ⊕g x2 = z
7→ {z ≥ x1, z ≥ x2, x1 + y ≥ z, x2 + (1− y) ≥ z, y ∈ {0, 1}},
where y is a new variable.
x1 ⇒kd x2 = z 7→ (1− x1)⊕g x2 = z.
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Negation Normal Form, nnf (φ)

¬ ⊥ = >
¬> = ⊥
¬¬φ 7→ φ

¬(φ ∧ ψ) 7→ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) 7→ ¬φ ∧ ¬ψ
¬(φ→ ψ) 7→ φ ∧ ¬ψ .

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic

Fuzzy Description Logics and OWL 2

Fuzzy Sets Basics
Mathematical Fuzzy Logics Basics

1 TransformK into NNF

2 Initialize the fuzzy theory TK and the initial set of constraints CK by

TK = {φ | 〈φ, n〉 ∈ K}
CK = {xψ ≥ n | 〈φ, n〉 ∈ K}

3 Apply the following inference rules until no more rules can be applied
(var). For variable xφ occurring in CK add xφ ∈ [0, 1] to CK
( ¯var). For variable x¬φ occurring in CK add xφ = 1− x¬φ to CK

(⊥). If⊥∈ TK then CK := CK ∪ {x⊥ = 0}
(>). If> ∈ TK then CK := CK ∪ {x> = 1}

(∧). If φ ∧ ψ ∈ TK , then

1 add φ and ψ to TK

2 CK := CK ∪ {xφ ⊗ xψ = xφ∧ψ}

(∨). If φ ∨ ψ ∈ TK, then

1 add φ and ψ to TK

2 CK := CK ∪ {xφ ⊕ xψ = xφ∧ψ}

(→). If φ→ ψ ∈ TK, then

1 add nnf (¬φ) and ψ to TK

2 CK := CK ∪ {(1− xnnf (¬φ))⇒ xψ = xφ→ψ}
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sat(K): K is satisfiable iff the final set of constraints CK has
a solution

bed(K, φ): Add ¬φ to TK
Add x¬φ ≥ 1− x , x ∈ [0,1] to CK, x new
Compute final set of constraints CK
Then, solve the optimisation problem

bed(K, φ) = min x . such that CK has a solution

bsd(K, φ): Add φ to TK
Add xφ ≥ x , x ∈ [0,1] to CK, x new
Compute final set of constraints CK
Then, solve the optimisation problem

bsd(K, φ) = max x . such that CK has a solution
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Analytical Fuzzy Tableau: Case SFL

Main property the method is based on:
if I is model of 〈φ ∧ ψ,n〉 then I is a model of both 〈φ,n〉
and 〈ψ,n〉;
if I is model of 〈φ ∨ ψ,n〉 then I is a model of either 〈φ,n〉
or 〈ψ,n〉.
I cannot be a model of both 〈p,n〉 and 〈¬p,m〉 if n > 1−m.

A clash is either
a fuzzy statement 〈⊥,n〉 with n > 0; or
a pair of fuzzy statements 〈p,n〉 and 〈¬p,m〉 with n > 1−m

Clash-free: does not contain a clash
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1 Transform K into NNF
2 Initialize the completion SK = K
3 Apply the following inference rules to SK until no more rules can be applied
4 We call a set of fuzzy statements SK complete iff none of the rules below can be

applied to SK
5 Note that rule (∨) is non-deterministic

(∧). If 〈φ ∧ ψ, n〉 ∈ SK and {〈φ, n〉, 〈ψ, n〉} 6⊆ SK , then add both
〈φ, n〉 and 〈ψ, n〉 to SK

(∨). If 〈φ ∨ ψ, n〉 ∈ SK and {〈φ, n〉, 〈ψ, n〉} ∩ SK = ∅, then add
either 〈φ, n〉 or 〈ψ, n〉 to SK

(→). If 〈φ→ ψ, n〉 ∈ SK and 〈nnf (¬φ) ∨ ψ, n〉 6∈ SK, then add
〈nnf (¬φ) ∨ ψ, n〉 to SK

sat(K): K is satisfiable iff we find a complete and
clash-free completion SK of K
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For BED and BSD we need some more work
Given K, define

NK = {0,0.5,1} ∪ {n | 〈φ,n〉 ∈ K}
N̄K = NK ∪ {1− n | n ∈ NK}
ε = min{d/2 | n,m ∈ N̄K,n 6= m,d = |n −m|}

Proposition
Under SFL, given K, then for n > 0

K |= 〈φ,n〉 iff K ∪ {〈¬φ,1− n + ε〉} is not satisfiable .

Moreover, K is satisfiable iff it has a model over N̄K.
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bed(K, φ): Find greatest n ∈ N̄K such that K |= 〈φ,n〉
bsd(K, φ): Find greatest n ∈ N̄K such that K ∪ {〈φ,n〉}

satisfiable
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Non Deterministic Analytic Fuzzy Tableau

Works for finitely-valued fuzzy propositional logic over Ln

Works also for SFL (as in place of [0, 1], we may use N̄K)
Basic idea is as for fuzzy tableau, but now we guess the truth degrees

(∧). If 〈φ ∧ ψ, n〉 ∈ SK, n1, n2 ∈ Ln such that n1 ⊗ n2 = n and
{〈φ, n1〉, 〈ψ, n2〉} 6⊆ SK , then add both 〈φ, n1〉 and 〈ψ, n2〉 to
SK

(∨). If 〈φ ∨ ψ, n〉 ∈ SK, n1, n2 ∈ Ln such that n1 ⊕ n2 = n and
{〈φ, n1〉, 〈ψ, n2〉} 6⊆ SK , then add both 〈φ, n1〉 and 〈ψ, n2〉 to
SK

(→). If 〈φ→ ψ, n〉 ∈ SK, n1, n2 ∈ Ln such that n1 ⇒ n2 = n and
{〈φ, n1〉, 〈ψ, n2〉} 6⊆ SK , then add both 〈φ, n1〉 and 〈ψ, n2〉 to
SK

A clash is either
a fuzzy statement 〈⊥, n〉 with n > 0; or
a pair of fuzzy statements 〈p, n〉 and 〈¬p,m〉 such that

xp ≥ n, 	xp ≥ m, xp ∈ Ln

has no solution
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Reduction to Classical Propositional Logic: Case SFL
over [0,1]

Given K, we know that we can use

Ln = N̄K = {γ1, . . . , γn}

with γi < γi+1,1 ≤ i ≤ n − 1
Basic idea: use atom A≥r to represent

The truth degree of A has to be equal or greater than r

Similarly for A>r , A≤r and A<r
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To start with, build CrispLn

For all atoms A, for all 1 ≤ i ≤ n − 1,2 ≤ j ≤ n − 1

A≥γi+1 → A>γi

A>γj → A≥γj

Build CrispK:

CrispK = {ρ(φ,n) | 〈φ,n〉 ∈ K} ∪
CrispLn ,

x y ρ(x , y)
> c >
⊥ 0 >
⊥ c ⊥ if c > 0
A c A≥c
¬A c ¬A>1−c
φ ∧ ψ c ρ(φ, c) ∧ ρ(ψ, c)
φ ∨ ψ c ρ(φ, c) ∨ ρ(ψ, c)
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Proposition

Given K under SFL over Ln, then K |= 〈φ, c〉 iff
K ∪ {〈¬φ,1− c−〉} is not satisfiable, where c− is the next
smaller value than c in Ln

sat(K): K is satisfiable iff CrispK satisfiable
bed(K, φ): Find greatest c ∈ Ln such that K |= 〈φ, c〉
bsd(K, φ): Find greatest c ∈ Ln such that K ∪ {〈φ, c〉}

satisfiable
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The Semantic Web Family of Languages

Wide variety of languages

RDFS: Triple language, -Resource Description Framework

The logical counterpart is ρdf

RIF: Rule language, -Rule Interchange Format,

Relate to the Logic Programming (LP) paradigm

OWL 2: Conceptual language, -Ontology Web Language

Relate to Description Logics (DLs)
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OWL 2 Profiles

OWL 2 EL Useful for large size of properties and/or classes
Basic reasoning problems solved inpolynomial time
The EL acronym refers to the EL family of DLs

OWL 2 QL Useful for very large volumes of instance data
Conjunctive query answering via via query rewriting and
SQL
OWL 2 QL relates to the DL family DL-Lite

OWL 2 RL Useful for scalable reasoning without sacrificing too
much expressive power
OWL 2 RL maps to Datalog
Computational complexity: same as for Datalog,
polynomial in size of the data, EXPTIME w.r.t. size of
knowledge base
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Description Logics (DLs)

Concept/Class: names are equivalent to unary predicates
In general, concepts equiv to formulae with one free
variable

Role or attribute: names are equivalent to binary predicates
In general, roles equiv to formulae with two free variables

Taxonomy: Concept and role hierarchies can be expressed
Individual: names are equivalent to constants
Operators: restricted so that

Language is decidable and, if possible, of low complexity
No need for explicit use of variables

Restricted form of ∃ and ∀
Features such as counting can be succinctly expressed
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Basic ingredients: descriptions of classes, properties, and
their instances, such as

a:C, meaning that individual a is an instance of
concept/class C

a:Person u ∀hasChild.Femal

(a,b):R, meaning that the pair of individuals 〈a,b〉 is an
instance of the property/role R

(tom,mary):hasChild

C v D, meaning that the class C is a subclass of class D

Person v ∀hasChild.Person
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The DL Family

A given DL is defined by set of concept and role forming operators

Basic language: ALC (Attributive Language with Complement)

Syntax Semantics Example
C,D → > | >(x)

⊥ | ⊥(x)
A | A(x) Human

C u D | C(x) ∧ D(x) Human u Male
C t D | C(x) ∨ D(x) Nice t Rich
¬C | ¬C(x) ¬Meat
∃R.C | ∃y.R(x, y) ∧ C(y) ∃has_child.Blond
∀R.C ∀y.R(x, y)⇒ C(y) ∀has_child.Human

C v D ∀x.C(x)⇒ D(x) Happy_Father v Man u ∃has_child.Female
a:C C(a) John:Happy_Father
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DL Semantics

Semantics is given in terms of an interpretation I = (∆I , ·I ), where

∆I is the domain (a non-empty set)

·I is an interpretation function that maps:

Concept (class) name A into a subset AI of ∆I

Role (property) name R into a subset RI of ∆I × ∆I

Individual name a into an element of ∆I × ∆I s.t. aI 6= bI if a 6= b (UNA)

Interpretation function ·I is extended to concept expressions:

>I = ∆I

⊥I = ∅
(C1 u C2)I = C1

I ∩ C2
I

(C1 t C2)I = C1
I ∪ C2

I

(¬C)I = ∆I \ CI

(∃R.C)I = {x ∈ ∆I | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
(∀R.C)I = {x ∈ ∆I | ∀y.〈x, y〉 ∈ RI ⇒ y ∈ CI}

Finally, we say that

I is a model of C v D, written I |= C v D, iff CI ⊆ DI

I is a model of a:C, written I |= a:C, iff aI ∈ CI

I is a model of (a, b):R, written I |= (a, b):R, iff 〈aI , bI〉 ∈ RI
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Note on DL Naming
AL: C,D −→ > | ⊥ |A |C u D | ¬A | ∃R.> |∀R.C
C: Concept negation, ¬C. Thus, ALC = AL+ C
S: Used for ALC with transitive roles R+

U : Concept disjunction, C1 t C2
E : Existential quantification, ∃R.C
H: Role inclusion axioms, R1 v R2, e.g. is_component_of v is_part_of
N : Number restrictions, (≥ n R) and (≤ n R), e.g. (≥ 3 has_Child) (has

at least 3 children)
Q: Qualified number restrictions, (≥ n R.C) and (≤ n R.C),

e.g. (≤ 2 has_Child .Adult) (has at most 2 adult children)
O: Nominals (singleton class), {a}, e.g. ∃has_child .{mary}.

Note: a:C equiv to {a} v C and (a, b):R equiv to {a} v ∃R.{b}
I: Inverse role, R−, e.g. isPartOf = hasPart−
F : Functional role, f , e.g. functional(hasAge)
R+: transitive role, e.g. transitive(isPartOf )

For instance,

SHIF = S +H+ I + F = ALCR+HIF OWL-Lite
SHOIN = S +H+O + I +N = ALCR+HOIN OWL-DL
SROIQ = S +R+O + I +Q = ALCR+ROIN OWL 2
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Semantics of Additional Constructs

H: Role inclusion axioms, I |= R1 v R2 iff R1
I ⊆ R1

I

N : Number restrictions,
(≥ n R)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI}| ≥ n},
(≤ n R)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI}| ≤ n}

Q: Qualified number restrictions,
(≥ n R.C)I = {x ∈ |{y | 〈x , y〉 ∈ RI ∧ y ∈ CI}| ≥ n},
(≤ n R.C)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI ∧ y ∈ CI}| ≤ n}

O: Nominals (singleton class), {a}I = {aI}

I: Inverse role, (R−)
I

= {〈x , y〉 | 〈y , x〉 ∈ RI}
F : Functional role, I |= fun(f ) iff ∀z∀y∀z if 〈x , y〉 ∈ fI and 〈x , z〉 ∈ fI

the y = z

R+: transitive role,
(R+)I = {〈x , y〉 | ∃z such that 〈x , z〉 ∈ RI ∧ 〈z, y〉 ∈ RI}
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Basics on Concrete Domains

Concrete domains: reals, integers, strings, . . .

(tim, 14):hasAge
(sf , “SoftComputing”):hasAcronym
(source1, “ComputerScience”):isAbout
(service2, “InformationRetrievalTool ′′):Matches
Minor = Person u ∃hasAge. ≤18

Semantics: a clean separation between “object” classes and concrete
domains

D = 〈∆D,ΦD〉
∆D is an interpretation domain
ΦD is the set of concrete domain predicates d with a
predefined arity n and fixed interpretation dD ⊆ ∆n

D
Concrete properties: RI ⊆ ∆I ×∆D

Notation: (D). E.g., ALC(D) is ALC + concrete domains
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DL Knowledge Base

A DL Knowledge Base is a pair K = 〈T ,A〉, where

T is a TBox
containing general inclusion axioms of the form C v D,
concept definitions of the form A = C
primitive concept definitions of the form A v C
role inclusions of the form R v P
role equivalence of the form R = P

A is a ABox
containing assertions of the form a:C
containing assertions of the form (a, b):R

An interpretation I is a model of K, written I |= K iff I |= T and I |= A,
where

I |= T (I is a model of T ) iff I is a model of each element in T
I |= A (I is a model of A) iff I is a model of each element in A
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Basic Inference Problems (Formally)

Consistency: Check if knowledge is meaningful
Is K satisfiability? 7→ Is there some model I of K ?
Is C satisfiability? 7→ CI 6= ∅ for some some model I of
K ?

Subsumption: structure knowledge, compute taxonomy
K |= C v D ? 7→ Is it true that CI ⊆ DI for all models I
of K ?

Equivalence: check if two classes denote same set of instances
K |= C = D ? 7→ Is it true that CI = DI for all models I
of K ?

Instantiation: check if individual a instance of class C
K |= a:C ? 7→ Is it true that aI ∈ CI for all models I of
K ?

Retrieval: retrieve set of individuals that instantiate C
Compute the set {a | K |= a:C}
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Reduction to Satisfiability

Problems are all reducible to KB satisfiability

Subsumption: K |= C v D iff 〈T ,A ∪ {a:C u ¬D}〉 not
satisfiable, where a is a new individual

Equivalence: K |= C = D iff K |= C v D and K |= D v C
Instantiation: K |= a:C iff 〈T ,A ∪ {a:¬C}〉 not satisfiable

Retrieval: The computation of the set {a | K |= a:C} is
reducible to the instance checking problem
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Reasoning in DLs: Basics

OWL 2: tableaux based algorithms
OWL 2 EL: structural based algorithms
OWL 2 QL: query rewriting based algorithms
OWL 2 RL: logic programming based algorithms
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Tableaux: Basics

Tableaux algorithm deciding satisfiability

Try to build a tree-like model I of the KB

Decompose concepts C syntactically

Apply tableau expansion rules
Infer constraints on elements of model

Tableau rules correspond to constructors in logic (u,t, . . . )

Some rules are nondeterministic (e.g., t,≤)
In practice, this means search

Stop when no more rules applicable or clash occurs

Clash is an obvious contradiction, e.g., A(x),¬A(x)

Cycle check (blocking) may be needed for termination
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Negation Normal Form (NNF)

We have to transform concepts into Negation Normal
Form: push negation inside using de Morgan’ laws

¬> 7→ ⊥
¬ ⊥ 7→ >
¬¬C 7→ C

¬(C1 u C2) 7→ ¬C1 t ¬C2
¬(C1 t C2) 7→ ¬C1 u ¬C2

and
¬(∃R.C) 7→ ∀R.¬C
¬(∀R.C) 7→ ∃R.¬C
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Completion-Forest

This is a forest of trees, where
each node x is labelled with a set L(x) of concepts

each edge 〈x, y〉 is labelled with L(〈x, y〉) = {R} for some role R (edges correspond to

relationships between pairs of individuals)

The forest is initialized with
a root node a, labelled L(x) = ∅ for each individual a occurring in the KB

an edge 〈a, b〉 labelled L(〈a, b〉) = {R} for each (a, b):R occurring in the KB

Then, for each a:C occurring in the KB, set L(a)→ L(a) ∪ {C}

The algorithm expands the tree either by extending L(x) for some node x or by adding new leaf nodes.

Edges are added when expanding ∃R.C

A completion-forest contains a clash if, for a node x , {C,¬C} ⊆ L(x)

If nodes x and y are connected by an edge〈x, y〉, then y is called a successor of x and x is called a
predecessor of y . Ancestor is the transitive closure of predecessor.

A node y is called an R-successor of a node x if y is a successor of x and L(〈x, y〉) = {R}.

The algorithm returns “satisfiable" if rules can be applied s.t. they yield a clash-free, complete (no more
rules can be applied) completion forest
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ALC Tableau rules without GCI’s

Rule Description
(u) if 1. C1 u C2 ∈ L(x) and

2. {C1,C2} 6⊆ L(x)
then L(x)→ L(x) ∪ {C1,C2}

(t) if 1. C1 t C2 ∈ L(x) and
2. {C1,C2} ∩ L(x) = ∅

then L(x)→ L(x) ∪ {C} for some C ∈ {C1,C2}

(∃) if 1. ∃R.C ∈ L(x) and
2. x has no R-successor y with C ∈ L(y)

then create a new node y with L(〈x , y〉) = {R} and L(y) = {C}

(∀) if 1. ∀R.C ∈ L(x) and
2. x has an R-successor y with C 6∈ L(y)

then L(y)→ L(y) ∪ {C}
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Example

Is ∃R.C u ∀R.(¬C t ¬D) u ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C u ∀R.(¬C t ¬D) u ∃R.D}
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Example

Is ∃R.C u ∀R.(¬C t ¬D) u ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C t ¬D), ∃R.D}
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�
��	

R

y1

L(y1) = {C}
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Clash
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Example

Is ∃R.C u ∀R.(¬C t ¬D) u ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C, ∀R.(¬C t ¬D), ∃R.D}

�
��	

R

y1

L(y1) = {C,¬C t ¬D,¬D}
@
@@R

R

y2

L(y2) = {D,¬C t ¬D,¬C}

Finished. No more rules applicable and the tableau is complete and clash-free

Hence, the concept is satisfiable

The tree corresponds to a model I = (∆I , ·I )

The nodes are the elements of the domain: ∆I = {x, y1, y2}

For each atomic concept A, set AI = {z | A ∈ L(z)}

CI = {y1}, DI = {y2}

For each role R, set RI = {〈x, y〉 | there is an edge labeled R from x to y}

RI = {〈x, y1〉, 〈x, y2〉}

It can be shown that x ∈ (∃R.C u ∀R.(¬C t ¬D) u ∃R.D)I 6= ∅
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Soundness and Completeness

Theorem
Let A be an ALC ABox and F a completion-forest obtained by
applying the tableau rules to A. Then

1 The rule application terminates;
2 If F is clash-free and complete, then F defines a

(canonical) (tree) model for A; and
3 If A has a model I, then the rules can be applied such that

they yield a clash-free and complete completion-forest.
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KBs with GCIs

We have seen how to test the satisfiability of an ABox A
But, how can we check if a KB K = 〈T ,A〉 is satisfiable with T 6= ∅?

Basic idea: since t(C v D) ≡ ∀x .¬t(C, x) ∨ t(D, x)

we use the rule: for each C v D ∈ T , add ¬C t D to every node

But, termination is not guaranteed
E.g., consider K = 〈T ,A〉

T = {Human v ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human t ∃hasMother.Human}
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KB Satisfiability

We have seen how to test the satisfiability of an ABox A
But, how can we check if a KB K = 〈T ,A〉 is satisfiable?

Basic idea: since t(C v D) ≡ ∀x .¬t(C, x) ∨ t(D, x)

we use the rule: for each C v D ∈ T , add ¬C t D to every node

But, termination is not guaranteed
E.g., consider K = 〈T ,A〉

T = {Human v ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human t ∃hasMother.Human}
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We have seen how to test the satisfiability of an ABox A
But, how can we check if a KB K = 〈T ,A〉 is satisfiable?

Basic idea: since t(C v D) ≡ ∀x .¬t(C, x) ∨ t(D, x)

we use the rule: for each C v D ∈ T , add ¬C t D to every node

But, termination is not guaranteed
E.g., consider K = 〈T ,A〉

T = {Human v ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human t ∃hasMother.Human,¬Human}
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We have seen how to test the satisfiability of an ABox A
But, how can we check if a KB K = 〈T ,A〉 is satisfiable?

Basic idea: since t(C v D) ≡ ∀x .¬t(C, x) ∨ t(D, x)

we use the rule: for each C v D ∈ T , add ¬C t D to every node

But, termination is not guaranteed
E.g., consider K = 〈T ,A〉

T = {Human v ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human t ∃hasMother.Human,¬Human}
Clash
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hasMother

y1
L(y1) = {Human,¬Human t ∃hasMother.Human}
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We have seen how to test the satisfiability of an ABox A
But, how can we check if a KB K = 〈T ,A〉 is satisfiable?

Basic idea: since t(C v D) ≡ ∀x .¬t(C, x) ∨ t(D, x)

we use the rule: for each C v D ∈ T , add ¬C t D to every node

But, termination is not guaranteed
E.g., consider K = 〈T ,A〉

T = {Human v ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human}

?
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L(y1) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human}

?
hasMother

y2L(y2) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human}
.
.
.
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Node Blocking in ALC

When creating new node, check ancestors for equal label set

If such a node is found, new node is blocked

No rule is applied to blocked nodes

umbertoL(umberto) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human}

?
hasMother

y1
L(y1) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human}

?
hasMother

y2L(y2) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human} blocked: L(y1) = L(y2)
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Node Blocking in ALC

When creating new node, check ancestors for equal label set

If such a node is found, new node is blocked

No rule is applied to blocked nodes

umbertoL(umberto) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human}

?
hasMother

y1
L(y1) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human}

?
hasMother

y2L(y2) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human} blocked: L(y1) = L(y2)

IhasMother

Block represents cyclical model
∆I = {umberto, y1, y2}
HumanI = {umberto, y1, y2}
hasMotherI = {〈umberto, y1〉, 〈y1, y2〉, 〈y2, y1〉}
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Blocking in ALC

A non-root node x is blocked if for some ancestor y , y is
blocked or L(x) = L(y), where y is not a root node
A blocked node x is indirectly blocked if its predecessor is
blocked, otherwise it is directly blocked
If x is directly blocked, it has a unique ancestor y such that
L(x) = L(y)

if there existed another ancestor z such that L(x) = L(z)
then either y or z must be blocked
If x is directly blocked and y is the unique ancestor such
that L(x) = L(y), we will say that y blocks x

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic

Fuzzy Description Logics and OWL 2

Crisp DLs
Fuzzy DLs
Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

ALC Tableau rules with GCI’s

Rule Description
(u) if 1. C1 u C2 ∈ L(x), x is not indirectly blocked and

2. {C1,C2} 6⊆ L(x)
then L(x)→ L(x) ∪ {C1,C2}

(t) if 1. C1 t C2 ∈ L(x), x is not indirectly blocked and
2. {C1,C2} ∩ L(x) = ∅

then L(x)→ L(x) ∪ {C} for some C ∈ {C1,C2}

(∃) if 1. ∃R.C ∈ L(x), x is not blocked and
2. x has no R-successor y with C ∈ L(y)

then create a new node y with L(〈x , y〉) = {R} and L(y) = {C}

(∀) if 1. ∀R.C ∈ L(x), x is not indirectly blocked and
2. x has an R-successor y with C 6∈ L(y)

then L(y)→ L(y) ∪ {C}
(v) if 1. C v D ∈ T , x is not indirectly blocked and

2. {nnf (¬C),D} ∩ L(x) = ∅
then L(x)→ L(x) ∪ {E} for some

E ∈ {nnf (¬C),D} (nnf (¬C) is NNF of ¬C)
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Soundness and Completeness

Theorem
Let K be an ALC KB and F a completion-forest obtained by
applying the tableau rules to K. Then

1 The rule application terminates;
2 If F is clash-free and complete, then F defines a

(canonical) (tree) model for K; and
3 If K has a model I, then the rules can be applied such that

they yield a clash-free and complete completion-forest.
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Fuzzy DLs Basics

We have seen how to “fuzzify” classical sets and FOL
Fuzzy statements are of the form 〈φ,n〉, where φ is a
statement and n ∈ [0,1]

The natural extension to fuzzy DLs consists then in
replacing φ with a DL expression
Several fuzzy variants of DLs have been proposed: they
can be classified according to

The DL resp. ontology language that they generalize
The allowed fuzzy constructs
The underlying fuzzy logic
Their reasoning algorithms and computational complexity
results
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In classical DLs, a concept C is interpreted by an
interpretation I as a set of individuals
In fuzzy DLs, a concept C is interpreted by I as a fuzzy set
of individuals
Each individual is instance of a concept to a degree in [0,1]

Each pair of individuals is instance of a role to a degree in
[0,1]
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〈a:C,n〉 states that a is an instance of concept/class C with
degree at least n
〈(a,b):R,n〉 states that 〈a,b〉 is an instance of relation R
with degree at least n
〈C1 v C2,n〉 states a vague subsumption relationship

The FOL statement ∀x .C1(x)→ C2(x) is true to degree at
least n

Note: one may find also fuzzy DL expressions 〈α≥n〉,
〈α≤n〉, 〈α> n〉, 〈α< n〉, and 〈α = n〉
We use the form 〈α,n〉, i.e. 〈α≥n〉 only

Remind that graded axioms are intended to be produced
semi- or automatically
Hardly they may have the form 〈α≤n〉, 〈α> n〉 or 〈α< n〉
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The semantics is an immediate consequence of the First-Order-Logic translation of DLs expressions

Interpretation:
I = ∆I

CI : ∆I → [0, 1]

RI : ∆I × ∆I → [0, 1]

⊗ = t-norm
⊕ = s-norm
¬ = negation
⇒ = implication

Concepts:

Syntax Semantics
C,D −→ > | >I (x) = 1

⊥ | ⊥I (x) = 0
A | AI (x) ∈ [0, 1]

C u D | (C1 u C2)I (x) = C1
I (x)⊗ C2

I (x)

C t D | (C1 t C2)I (x) = C1
I (x)⊕ C2

I (x)

C → D | (C → D)I (x) = CI (x)⇒ DI (x)

¬C | (¬C)I (x) = ¬CI (x)

∃R.C | (∃R.C)I (x) = supy∈∆I RI (x, y)⊗ CI (y)

∀R.C (∀R.C)I (x) = infy∈∆I RI (x, y)⇒ CI (y)}
{a} {a}I (x) = 1 if aI = x, else 0

Assertions: 〈a:C, r〉, I |= 〈a:C, r〉 iff CI (aI ) ≥ r (similarly for roles)

General Inclusion Axioms: 〈C v D, r〉,

I |= 〈C v D, r〉 iff infx∈∆I CI (x)⇒ DI (x) ≥ r
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Some Remarks

Like for fuzzy FOL, ∀ and ∃ are not complementary in
general: i.e. ∀R.C 6≡ ¬∃R.¬C
∀R.C ≡ ¬∃R.¬C under Łukasiewicz logic and SFL
〈C v D,n〉 may be rewritten as 〈> v C → D,n〉
In early works, a fuzzy GCI is of the form C v D with
semantics:

I is a model of C v D iff for every x ∈ ∆I we have that
CI(x) ≤ DI(x)
This is the same of fuzzy axiom 〈> v C →x D,1〉, where
→x is an r -implication

Disjointness: use 〈C u D v⊥,1〉 rather than 〈C v ¬D,1〉
they are not the same, e.g. 〈A v ¬A, 1〉 says that AI (x) ≤ 0.5, for all I and for all x ∈ ∆I
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Witnessed Interpretation

Witnessed Interpretation:
Infima and suprema are attained at some point

(∃R.C)I(x) = RI(x , y)⊗ CI(y) for some y ∈ ∆I

(∀R.C)I(x) = RI(x , y)⇒ CI(y) for some y ∈ ∆I

(C v D)I = CI(x)⇒ DI(x) for some x ∈ ∆I

It is customary to stick to witnessed interpretations only

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic

Fuzzy Description Logics and OWL 2

Crisp DLs
Fuzzy DLs
Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

Fuzzy knowledge base: K = 〈T ,A〉
T is a fuzzy TBox, that is a finite set of fuzzy GCI
A is a fuzzy ABox, that is a finite set of fuzzy assertions

Acyclic fuzzy ontologies: TBox with axioms of the form

A vn C (primitive GCI)
A ṽ C (primitive GCI)
A =̃ C (definitional GCI)

A concept name
A vn C shorthand for 〈> v A→ C,n〉
No nominal {a} occurs in the TBox
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We say that
concept name A directly uses concept name B w.r.t. T , denoted
A→T B, if A is the head of some axiom τ ∈ T such that B occurs
in the body of τ
concept name A uses concept name B w.r.t. T , denoted A T B,
if there exist concept names A1, . . . ,An, such that A1 = A, An = B
and, for every 1 ≤ i < n, it holds that Ai →T Ai+1

TBox T is cyclic (acyclic) if there is (no) A such that
A T A
TBox T is unfoldable if

T is acyclic
If A=̃C ∈ T then A does not occur in the head of any other
axiom
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I satisfies (is a model of) K = 〈T ,A〉 iff it satisfies each
element in A and T
A fuzzy KB K = 〈T ,A〉 entails an axiom E , denoted
K |= E , iff every model of K satisfies E
We say that two concepts C and D are equivalent, denoted
C ≡K D iff in every model I of K and for all x ∈ ∆I ,
CI(x) = DI(x)

Best entailment degree: for assertion of GCI φ

bed(K, φ) = sup {r | K |= 〈φ, r〉}

Best satisfiability degree: for concept C

bsd(K,C) = sup
I|=K

sup
x∈∆I

CI(x) .
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Some Salient Fuzzy Concept Equivalences

Property Łukasiewicz Gödel Product SFL
C u ¬C ≡⊥ • • •
C t ¬C ≡ > •
C u C ≡ C • •
C t C ≡ C • •
¬¬C ≡ C • •

C → D ≡ ¬C t D • •
C → D ≡ ¬D → ¬C • •
¬ (C → D) ≡ C u ¬D • •
¬ (C u D) ≡ ¬C t ¬D • • • •
¬ (C t D) ≡ ¬C u ¬D • • • •

C u (D t E) ≡ (C u D) t (C u E) • •
C t (D u E) ≡ (C t D) u (C t E) • •

∃R.C ≡ ¬∀R.¬C • •
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Towards Fuzzy OWL 2 and its Profiles

Recall that OWL 2 relates to SROIQ(D)

We need to extend the semantics to fuzzy SROIQ(D)

Additionally, we add
modifiers (e.g., very )
concrete fuzzy concepts (e.g., Young)
both additions have explicit membership functions
other extensions:

aggregation functions: weighted sum, OWA, fuzzy integrals
fuzzy rough sets, fuzzy spatial, fuzzy numbers
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Number Restrictions, Inverse, Transitive roles, . . .
The semantics of the concept (≥ n R.C) is: ∧ interpreted as Gödel t-norm

∃y1, . . . , yn.
n∧

i=1

R(x, yi ) ∧ C(yi ) ∧
∧

1≤i<j≤n

yi 6= yj

The semantics of the concept (≤ n R.C) is: ∧ interpreted as Gödel t-norm

(≤ n R)I (x) = ∀y1, . . . , yn+1.
n+1∧
i=1

(R(x, yi ) ∧ C(yi ))⇒
∨

1≤i<j≤n+1

yi = yj

Note: (≥ 1 R) ≡ ∃R.>
For transitive roles R we impose: for all x, y ∈ ∆I

RI (x, y) ≥ sup
z∈∆I

RI (x, z)⊗ RI (z, y)

For inverse roles we have for all x, y ∈ ∆I

RI (x, y) = RI (y, x)

The semantics of fucntional roles fun(R) is

∀x∀y∀z. R(x, y) ∧ R(x, z)⇒ y = z

Similar for other SROIQ constructs
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Fuzzy Concrete Domains

E.g., Small ,Young,High,etc. with explicit membership
function
Use the idea of concrete domains:

D = 〈∆D,ΦD〉
∆D is an interpretation domain
ΦD is the set of concrete unary fuzzy domain predicates d
and fixed interpretation dD : ∆D → [0,1]

Specifically,

d → ls(a,b) | rs(a,b) | tri(a,b, c) | trz(a,b, c,d)
| ≥v | ≤v | =v

C,D → ∀T .d | ∃T .d
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Representation of Young Person:

Minor = Person u ∃hasAge. ≤18
YoungPerson = Person u ∃hasAge.ls(10,30)

Representation of Heavy Rain:

HeavyRain = Rain u ∃hasPrecipitationRate.rs(5,7.5)
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Modifiers

Very , moreOrLess, slightly , etc.
Fuzzy modifier m with function fm : [0,1]→ [0,1]

C → m(C) | ∀T .m(d) | ∃T .m(d)

where m is a linear modifier
Representation of Sport Car

SportsCar = Car u ∃speed .very(rs(80,250))

Representation of Very Heavy Rain

VeryHeavyRain = Rainu∃hasPrecipitationRate.very(rs(5,7.5)) .
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Aggregation Operators

Aggregation operators: aggregate concepts, using functions
such as the mean, median, weighted sum operators
Given an n-ary aggregation operator @ : [0,1]n → [0,1]

We fuzzy concepts by allowing to apply @ to n concepts
C1, . . . ,Cn, i.e.

C → @(C1, . . . ,Cn)

Semantics:

@(C1, . . . ,Cn)I(x) = @(CI1 (x), . . . ,CIn (x)) .

Allows to express the concept

GoodHotel = 0.3 · ExpensiveHotel + 0.7 · LuxuriousHotel

The membership function of good hotels is the weighted
sum of being an expensive and luxurious hotel
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Some Applications

Information retrieval
Recommendation systems
Image interpretation
Ambient intelligence
Ontology merging
Matchmaking
decision making
Summarization
Robotics perception
Software design
Machine learning
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Example (Graded Entailment)

audi_tt mg ferrari_enzo

Car speed
audi_tt 243
mg ≤ 170
ferrari_enzo ≥ 350

SportsCar = Car u ∃hasSpeed.very(High)

K |= 〈ferrari_enzo:SportsCar, 1〉
K |= 〈audi_tt :SportsCar, 0.92〉
K |= 〈mg:¬SportsCar, 0.72〉
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Example (Graded Subsumption)

Minor = Person u ∃hasAge. ≤18

YoungPerson = Person u ∃hasAge.Young
fun(hasAge)

K |= 〈Minor v YoungPerson, 0.6〉

Note: without an explicit membership function of Young, this inference cannot
be drawn
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Example (Simplified Matchmaking)

A car seller sells an Audi TT for 31500e, as from the catalog price.
A buyer is looking for a sports-car, but wants to to pay not more than around 30000e
Classical sets: the problem relies on the crisp conditions on price

More fine grained approach: to consider prices as fuzzy sets (as usual in negotiation)
Seller may consider optimal to sell above 31500e, but can go down to 30500e
The buyer prefers to spend less than 30000e, but can go up to 32000e

AudiTT = SportsCar u ∃hasPrice.rs(30500, 31500)
Query = SportsCar u ∃hasPrice.ls(30000, 32000)

Highest degree to which the concept
C = AudiTT u Query
is satisfiable is 0.75 (the degree to which the Audi TT and the query matches is 0.75)

The car may be sold at 31250e
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Example: Learning fuzzy GCIs from data

Learning of fuzzy GCIs from crisp data

Use Case: What are Good hotels, using TripAdvisor data?
Given

OWL 2 Ontology about meaningful city entities and their descriptions
TripAdvisor data about hotels and user judgments

We may learn that in e.g., Pisa, Italy

〈∃hasAmenity .Babysitting u ∃hasPrice.fair v Good_Hotel, 0.282〉

“A hotel having babysitting as amenity and a fair price is a
good hotel (to degree 0.282)”

Real valued price attribute hasPrice has been automatically fuzzyfied
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Example: Multi-Criteria Decision Making
We have to select among two sites, A1, A2
There are two criteria (C1 -Transportation Issues, and C2 -Public Nuisance) for judgement
There are two experts (E1, E2) that make judgments
The decision matrix of the experts is shown below:

E1 Criteria
0.48 0.52

Alter. C1 C2

x1 A1 tri(0.6, 0.7, 0.8) tri(0.9, 0.95, 1.0)
x2 A2 tri(0.6, 0.7, 0.8) tri(0.4, 0.5, 0.6)

E2 Criteria
0.52 0.48

Alter. C1 C2

x1 A1 tri(0.55, 0.6, 0.7) tri(0.4, 0.45, 0.5)
x2 A2 tri(0.35, 0.4, 0.45) tri(0.5, 0.55, 0.6)

For each expert k = 1, 2, for each alternative i = 1, 2 and for each criteria j = 1, 2, we define the concept

Pk
ij = ∃hasScore.ak

ij

Now, for each expert k and alternative i , we define the weighted concept

Ak
i = wk

1 · Pk
i1 + wk

2 · Pk
i2

Finally, we combine the two experts outcome, by defining the weighted concept

Ai = 0.5 · A1
i + 0.5 · A2

i

It can be verified that rv(K, A1) = bsd(K, A1) = 0.26 and rv(K, A2) = bsd(K, A2) = 0.37
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Representing Fuzzy OWL Ontologies in OWL

OWL 2 is W3C standard, with classical logic semantics
Hence, cannot support natively Fuzzy Logic

However, Fuzzy OWL 2, has been defined using OWL 2
Uses the axiom annotation feature of OWL 2

Any Fuzzy OWL 2 ontology is a legal OWL 2 ontology
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A java parser for Fuzzy OWL 2 exists
Protégé plug-in exists to encode Fuzzy OWL ontologies
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Reasoning Problems and Algorithms

Consistency problem:
Is K satisfiable?
Is C coherent, i.e. is CI(x) > 0 for some I |= K and x ∈ ∆I?

Instance checking problem:
Does K |= 〈a:C, n〉 hold?

Subsumption problem:
Does K |= 〈C v D, n〉 hold?

Best entailment degree problem:
What is bed(K, φ)?

Best satisfiability degree problem:
What is bsd(K, φ)?

Instance retrieval problem:
Compute the set {〈a, n〉 | n = bed(K, a:C)}

Top-k retrieval problem:
Compute the top-k ranked elements of
{〈a, n〉 | n = bed(K, a:C)}
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Some Reductions

K is satisfiable iff bsd(K, a:⊥) > 0, where a is a new individual.

C is coherent w.r.t.K if one of the following holds:
K ∪ {〈a:C > 0〉} is satisfiable, where a is a new individual
K 6|= 〈C v⊥, 1〉

bsd(K,C) > 0

K |= 〈a:C, n〉 if one of the following holds:
K ∪ {〈a:C < n〉} is not satisfiable

bed(K, a:C) ≥ n

K |= 〈C v D, n〉 if one of the following holds:
K ∪ {〈a:C → D < n〉} is not satisfiable, where a is a new individual

bed(K,C v D) ≥ n

We have that

bed(K, φ) = min x. such thatK ∪ {〈φ ≤ x〉} satisfiable

bsd(K, φ) = max x. such thatK ∪ {〈φ ≥ x〉} satisfiable
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Reasoning in Fuzzy DLs: Basics

Algorithms for fuzzy DLs: are a mixture of classical DLs
reasoning algorithms and algorithms for Mathematical
Fuzzy Logic
Fuzzy OWL 2:

Fuzzy tableaux based algorithms
Tableaux and non deterministic tableaux
Operational Research

Reduction into classical DLs

Fuzzy OWL 2 EL: fuzzy structural based algorithms
Fuzzy OWL 2 QL: fuzzy query rewriting based algorithms
fuzzy OWL 2 RL: fuzzy logic programming based
algorithms
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OR Fuzzy Tableaux: ALC under SFL over [0,1]

Works as for classical ALC on completion forests
Blocking is as for classical ALC
The completion forest is expanded by repeatedly applying
inference rules
The completion-forest is complete when none of the rules
are applicable

Additionally, at each inference step we add equational
constraints that have to hold
Eventually, the initial KB is satisfiable if the final set of
equational constraints has a solution

For the latter case, we may use a MILP solver

All About Fuzzy Description Logics Lecture at Reasoning Web 2015 Umberto Straccia



About Vagueness
From Fuzzy Sets to Mathematical Fuzzy Logic

Fuzzy Description Logics and OWL 2

Crisp DLs
Fuzzy DLs
Representing Fuzzy OWL Ontologies in OWL
Reasoning Problems and Algorithms

Rule Description
(var) For variable xv :C add xv :C ∈ [0, 1] to CF . For variable x(v,w):R , add x(v,w):R ∈ [0, 1] to CF

(Ā) if ¬A ∈ L(v) then add xv :A = 1− xv :¬A to CF

(⊥) If ⊥ ∈ L(v) then add xv :⊥ = 0 to CF

(>) If > ∈ L(v) then add xv :> = 1 to CF

(u) if C1 u C2 ∈ L(v), v is not indirectly blocked
then L(v)→ L(v) ∪ {C1,C2}, and add xv :C1

⊗ xv :C2
≥ xv :C1 u C2

to CF

(t) if C1 t C2 ∈ L(v), v is not indirectly blocked
then L(v)→ L(v) ∪ {C1,C2}, and add xv :C1

⊕ xv :C2
≥ xv :C1 t C2

to CF

(∀) if ∀R.C ∈ L(v), v is not indirectly blocked
then L(w)→ L(w) ∪ {C}, and add xw :C ≥ xv :∀R.C ⊗ x(v,w):R to CF

(∃) if ∃R.C ∈ L(v), v is not blocked
then create new node w with L(〈v,w〉) = {R} and L(w) = {C}, and add xw :C ⊗ x(v,w):R ≥ xv :∃R.C to CF

(v) if 〈C v D, n〉 ∈ T , v is not indirectly blocked
then L(v)→ L(v) ∪ {C,D}, and add xv :D ≥ xv :C ⊗ n to CF
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Analytical Fuzzy Tableaux: ALC under SFL over [0,1]

Works as for classical ALC on completion forests
Node labels L(v) contain, rather than DL concept expressions,
expressions of the form 〈C, n〉

“The truth degree of being v instance of C is ≥ n"

Blocking is as for classical ALC
The completion forest is expanded by repeatedly applying
inference rules
The completion-forest is complete when none of the rules are
applicable

Additionally, we adapt the notion of clash: a clash is either
〈⊥,n〉 with n > 0; or
a pair 〈C,n〉 and 〈¬C,m〉 with n > 1−m

Eventually, the initial KB is satisfiable if there is a clash-free complete
completion forest
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(u). If (i) 〈C1 u C2, n〉 ∈ L(v), (ii) {〈C1, n〉, 〈C2, n〉} 6⊆ L(v), and
(iii) node v is not indirectly blocked, then add 〈C1, n〉 and
〈C2, n〉 to L(v).

(t). If (i) 〈C1 t C2, n〉 ∈ L(v), (ii) {〈C1, n〉, 〈C2, n〉} ∩ L(v) = ∅,
and (iii) node v is not indirectly blocked, then add some
〈C, n〉 ∈ {〈C1, n〉, 〈C2, n〉} to L(v).

(∀). If (i) 〈∀R.C, n〉 ∈ L(v), (ii) 〈R,m〉 ∈ L(〈v ,w〉) with m > 1− n,
(iii) 〈C, n〉 6∈ L(w), and (iv) node v is not indirectly blocked,
then add 〈C, n〉 to L(w).

(∃). If (i) 〈∃R.C, n〉 ∈ L(v), (ii) there is no 〈R, n1〉 ∈ L(〈v ,w〉) with
〈C, n2〉 ∈ L(w) such that min(n1, n2) ≥ n, and (iii) node v is
not blocked, then create a new node w , add 〈R, n〉 to
L(〈v ,w〉) and add 〈C, n〉 to L(w).

(v). If (i) 〈> v D, n〉 ∈ T , (ii) 〈D, n〉 6∈ L(v), and (iii) node v is not
indirectly blocked, then add 〈D, n〉 to L(v).
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Non-Deterministic Analytic Fuzzy Tableaux

It’s a combination of the analogous method for fuzzy
propositional logic and analytical fuzzy tableau
Rule example:

(u). If (i) 〈C1 u C2,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that
m1 ⊗m2 = m with {〈C1,m1〉, 〈C2,m2〉} 6⊆ L(v), and (iii) node
v is not indirectly blocked, then add 〈C1,m1〉 and 〈C2,m2〉 to
L(v)
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Reduction to Classical DLs

Same principle as for the reduction for propositional fuzzy
logic
Needs adaption to the DL constructs: e.g. ∃,∀ and v
Examples of reduction rules for SFL:

ρ(A,≥ γ) = A≥γ
ρ(C u D,≥ γ) = ρ(C,≥ γ) u ρ(D,≥ γ)
ρ(C u D,≤ γ) = ρ(C,≤ γ) t ρ(D,≤ γ)
ρ(∀R.C,≥ γ) = ∀ρ(R, > 1− γ).ρ(C,≥ γ)
ρ(∀R.C,≤ γ) = ∃ρ(R,≥ 1− γ).ρ(C,≤ γ)
ρ(∃R.C,≥ γ) = ∃ρ(R,≥ γ).ρ(C,≥ γ)
ρ(∃R.C,≤ γ) = ∀ρ(R, > γ).ρ(C,≤ γ)

ρ(R,≥ γ) = R≥γ
ρ(〈a:C, γ〉) = {a:ρ(C,≥ γ)}

ρ(〈C v D, n〉) =
⋃
α∈N̄K+ ,α≤n{ρ(C,≥ α) v ρ(D,≥ α)}
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Computational Complexity

The bad news...undecidability!

Proposition

Assume that fuzzy GCIs are restricted to be classical, i.e. of the form 〈α, 1〉 only. Then
for the following fuzzy DLs, the KB satisfiability problem is undecidable over [0, 1]:

1 ELC with classical axioms only under Łukasiewicz logic and product logic;
2 ELC under any non Gödelt-norm ⊗;
3 ELC with concept assertions of the form 〈α = n〉 only under any non

Gödelt-norm ⊗;
4 AL with concept implication operator→ and concept assertions of the form
〈α = n〉 only under any non Gödelt-norm ⊗.

5 ELC under SFL with weighted sum constructor.
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Some decidability results..

Proposition

The KB satisfiability problem is decidable for

SROIQ under SFL over [0, 1] and Gödel logic over Ln

SROIN under Łukasiewicz logic over Ln

SHI under any continuous t-norm over Ln without TBox

ALC with concept implication operator→, for any continuous t-norm over [0, 1]
with acyclicTBox

SHIF with concept implication operator→, for Łukasiewicz logic over [0, 1] with
acyclicTBox

SI under any continuous t-norm over [0, 1] without TBox
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Reasoners

Languages supported by fuzzy ontology reasoners:

Reasoner Fuzzy DL Logic Degrees Other constructors GUI
fuzzyDL SHIF(D) Z, Ł General Modifiers, rough, aggregation •

Fire SHIN Z Numbers •
FPLGERDS ALC Ł Numbers Role negatio/top/bottom

YADLR ALCOQ Z, Ł General Local reflexivity
DeLorean SROIQ(D) Z, G General Modifiers, rough DL •
GURDL ALC General Numbers No
FRESG ALC(D) Z Numbers Fuzzy datatype expressions •

LiFR DLP fragment Z Numbers Weighted concepts
SMT-based solver ALE Π No No

DLMedia DLR–Lite Z, G Numbers Image similarity •
SoftFacts DLR–Lite Z, G Numbers Fuzzy datataypes •

ONTOSEARCH2 DL− LiteR General Numbers •
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Reasoning services offered by fuzzy ontology reasoners

Reasoner CON ENT CSAT SUB IR BDB Other tasks OPT
fuzzyDL • • • • • • Defuzzification •

Fire • • • • • Classification •
FPLGERDS •

YADLR Partial • Partial Realisation
DeLorean • • • • • •
GURDL • • • •
FRESG • • • • Realisation

LiFR Partial • • •
SMT-based solver •

DLMedia Top-k Image Retrieval •
SoftFacts Top-k CQA •

ONTOSEARCH2 Retrieval

“CON”, “ENT”, “CSAT”, “SUB”, “IR”, “BED”, and “OPT” represent consistency,
entailment, concept satisfiability, subsumption, instance retrieval, BED, and
optimisations, respectively
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That’s it !
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