From Fuzzy to Annotated Semantic Web Languages

Umberto Straccia and Fernando Bobillo

ISTI-CNR, Pisa, Italy, straccia@isti.cnr.it University of Zaragoza, Spain, fbobillo@unizar.es

About Vagueness

- On the Existence of Vague Concepts
- On the Existence of Vague Objects
- Vague Statements
- Sources of Vagueness
- Uncertainty vs Vagueness: a clarification

From Fuzzy Sets to Mathematical Fuzzy Logic

- Fuzzy Sets Basics
- Mathematical Fuzzy Logics Basics

From Fuzzy to Annotated Semantic Web Languages

- Introduction
- The case of RDF
- The case of Description Logics
- The case of Logic Programs

About Vagueness

æ

イロト イヨト イヨト イヨト

What are vague concepts and do they exists?

∃ ▶ ∢

• What are the pictures about?

ъ

æ

◆□> ◆圖> ◆理> ◆理> 「理

2

▲口▶ ▲圖▶ ▲理≯ ▲理≯

- A concept is vague whenever its extension is deemed lacking in clarity
 - Aboutness of a picture or piece of text
 - Tall person
 - High temperature
 - Nice weather
 - Adventurous trip
 - Similar proof
- Vague concepts:
 - Are abundant in everyday speech and almost inevitable
 - Their meaning is often subjective and context dependent

What are vague objects and do they exists?

From Fuzzy to Annotated SW Languages

∃ ▶ ∢

• Are there vague objects in the pictures?

A B > A B >

Ξ.

◆□▶ ◆圖▶ ◆理≯ ◆理≯

From Fuzzy to Annotated SW Languages

æ

<ロン <回と < 回と < 回と < 回と

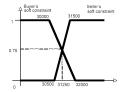
An object is vague whenever its identity is lacking in clarity

- Dust
- Cloud
- Dunes
- Sun
- Vague objects:
 - Are not identical to anything, except to themselves (reflexivity)
 - Are characterised by a vague identity relation (e.g. a similarity relation)
- BTW: example of *uncertain object*: "habitable Earth-like planet in universe"

A (10) > A (10) > A (10)

- A statement is vague whenever it involves vague concepts or vague objects
 - Heavy rain
 - Tall person
 - Hot temperature
- The truth of a vague statement is a matter of degree, as it is intrinsically difficult to establish whether the statement is entirely true or false
 - There are 33 °C. Is it hot?

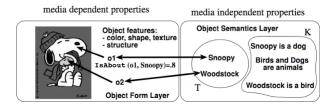
Sources of Vagueness: Matchmaking



- A car seller sells an Audi TT for 31500 €, as from the catalog price.
- A buyer is looking for a sports-car, but wants to to pay not more than around 30000 €
- Classical DLs: the problem relies on the crisp conditions on price.
- More fine grained approach: to consider prices as vague constraints (fuzzy sets) (as usual in negotiation)
 - Seller would sell above 31500 €, but can go down to 30500 €
 - The buyer prefers to spend less than $30000 \in$, but can go up to $32000 \in$
 - Highest degree of matching is 0.75. The car may be sold at 31250 €.

A D N A B N A B N

Sources of Vagueness: Multimedia information retrieval

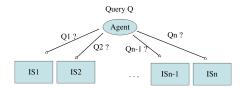


IsAbout				
ImageRegion	Object ID	degree		
01	snoopy	0.8		
<i>o</i> 2	woodstock	0.7		
	:			
	•			

"Find top-k image regions about animals" $Query(x) \leftarrow ImageRegion(x) \land isAbout(x, y) \land Animal(y)$

< ロ > < 同 > < 回 > < 回 >

Sources of Vagueness: Distributed Information Retrieval



Then the agent has to perform automatically the following steps:

- The agent has to select a subset of relevant resources 𝒴' ⊆ 𝒴, as it is not reasonable to assume to access to and query all resources (resource selection/resource discovery);
- Por every selected source S_i ∈ S' the agent has to reformulate its information need Q_A into the query language L_i provided by the resource (schema mapping/ontology alignment);

The results from the selected resources have to be merged together (data fusion/rank aggregation)

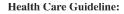
HoteIID	hasLoc	ConferenceID	hasLoc
h1	<i>h</i> /1	c1	<i>c</i> /1
h2	hl2	c2	cl2
•			
•	•		•

hasLoc	hasLoc	distance	hasLoc	hasLoc	close	cheap
<i>h</i> /1	c/1	300	h/1	c/1	0.7	0.3
<i>h</i> /1	cl2	500	h/1	cl2	0.5	0.5
hl2	<i>c</i> /1	750	hl2	c/1	0.25	0.8
hl2	cl2	800	hl2	cl2	0.2	0.9
•			·	·	·	
•			•	•	•	

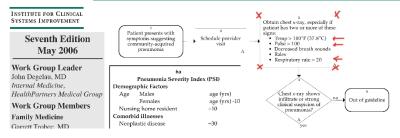
"Find top-k cheapest hotels close to the train station"

 $q(h) \leftarrow hasLocation(h, hl) \land hasLocation(train, cl) \land close(hl, cl) \land cheap(h)$

Sources of Vagueness: Health-care: diagnosis of pneumonia



Community-Acquired Pneumonia in Adults

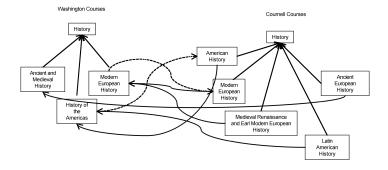


E.g., *Temp* = 37.5, *Pulse* = 98, *RespiratoryRate* = 18 are in "danger zone" already
Temperature, Pulse and Respiratory rate: these constraints are rather vague than crisp

< ロ > < 同 > < 回 > < 回 >

Sources of Vagueness: Ontology alignment (schema matching)

• To which degree are two concepts of two ontologies similar?



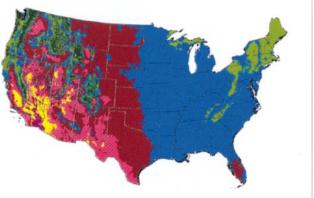
э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sources of Vagueness: Lifezone mapping

• To which degree do certain areas have a specific bioclima

Humidity Province (cells) Superhumid (17,278) Perhumid (12,705) Humid (139,680) Subhumid (139,615) Semiarid (51,828) Arid (11,008) Perarid (3,841) Superarid (153)



Holdridge life zones of USA

Sources of Vagueness: ARPAT, Air quality in the province of Lucca

I dati di domenica 21/02/2010

	Stazione	Tipo stazione	SO ₂ µg/m ³ (media su 24h)	NO ₂ µg/m ³ (max oraria)	CO mg/m ³ (max oraria)	O ₃ µg/m ³ (max oraria)	PM ₁₀ µg/m ³ (media su 24h)	Giudizio di qualità dell'aria
Lucca	P.za San Micheletto (RETE REGIONALE **)	urbana - traffico	1	75			37	Accettabile
Lucca	V.le Carducci	urbana - traffico	1		2,3		49	Accettabile
Lucca	Carignano (RETE REGIONALE **)	rurale - fondo				86 (h.16*)		Buona
Viareggio	Largo Risorgimento	urbana - traffico			1,8		n.d.	Buona
Viareggio	Via Maroncelli (RETE REGIONALE **)	urbana - fondo	4	97		61 (h.15*)	33	Accettabile
Capannori	V. di Piaggia (RETE REGIONALE **)	urbana - fondo		62	1,3		25	Accettabile
Porcari	V. Carrara (RETE REGIONALE **)	periferica - fondo	1	51		84 (h.15*)	24	Accettabile

Sintesi dei dati rilevati dalle ore 0 alle ore 24 dei giorno domenica 21/02/2010

4 D b 4 A b

Giudizio di qualità		NO ₂ µg/m ³ (max oraria)	CO mg/m ³ (max oraria)	O ₃ µg/m ³ (max oraria)	PM ₁₀ µg/m ³ (media su 24h)
Buona	0-50	0-50	0-2,5	0-120	0-25
Accettabile	51-125	51-200	2,6-15	121-180	26-50
Scadente	126-250	201-400	15,1-30	181-240	51-74
Pessima	>250	>400	>30	>240	>74

http://www.arpat.toscana.it/ U. Straccia, F. Bobillo

From Fuzzy to Annotated SW Languages

	Stazione	Tipo stazione	SO ₂ µg/m ³ (media su 24h)	NO ₂ µg/m ³ (max oraria)	CO mg/m ³ (max oraria)	O ₃ µg/m ³ (max oraria)		Giudizio di qualità dell'aria
Lucca	P.za San Micheletto (RETE REGIONALE **)	urbana - traffico	1	75			56	Scadente
Lucca	V.le Carducci	urbana - traffico	2		2		75	Pessima
Lucca	Carignano (RETE REGIONALE **)	rurale - fondo				87 (h.18*)		Buona
Viareggio	Largo Risorgimento	urbana - traffico			1,7		n.d.	Buona
Viareggio	Via Maroncelli (RETE REGIONALE **)	urbana - fondo	1	121		60 (h.17*)	45	Accettabile
Capannori	V. di Piaggia (RETE REGIONALE **)	urbana - fondo		79	2		59	Scadente
Porcari	V. Carrara (RETE REGIONALE **)	periferica - fondo	2	72		82 (h.16*)	63	Scadente

Sintesi dei dati rilevati dalle ore 0 alle ore 24 del giorno domenica 14/02/2010

Giudizio di qualità		NO ₂ µg/m ³ (max oraria)	CO mg/m ³ (max oraria)	O ₃ µg/m ³ (max oraria)	PM ₁₀ µg/m ³ (media su 24h)
Buona	0-50	0-50	0-2,5	0-120	0-25
Accettabile	51-125	51-200	2,6-15	121-180	26-50
Scadente	126-250	201-400	15,1-30	181-240	51-74
Pessima	>250	>400	>30	>240	>74

æ

イロト イポト イヨト イヨト

TripAdvisor: Hotel User Judgments

2,889 Reviews from our TripAdvisor Community

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Initial difficulty:
 - Understand the conceptual differences between uncertainty and vagueness
- Main problem:
 - Interpreting a degree as a measure of uncertainty rather than as a measure of vagueness

→ ∃ →

- A statement is true or false in any world/interpretation
 - We are "uncertain" about which world to consider
 - We may have e.g. a probability distribution over possible worlds
- E.g., "it will rain tomorrow"
 - We cannot exactly establish whether it will rain tomorrow or not, due to our incomplete knowledge about our world
 - We can estimate to which degree this is probable

- Consider a propositional statement (formula) ϕ
- Interpretation (world) $\mathcal{I} \in \mathcal{W}$,

$$\mathcal{I}:\mathcal{W} \to \{0,1\}$$

- $\mathcal{I}(\phi) = 1$ means ϕ is true in \mathcal{I} , denoted $\mathcal{I} \models \phi$
- Each interpretation $\mathcal I$ depicts some concrete world
- Given *n* propositional letters, $|W| = 2^n$
- $\bullet\,$ In uncertainty theory, we do not know which interpretation ${\cal I}$ is the actual one

One may construct a probability distribution over the worlds

$${\it Pr}: {\cal W} o [0,1]$$

 $\sum_{{\cal I}} {\it Pr}({\cal I}) = 1$

- $Pr(\mathcal{I})$ indicates the probability that \mathcal{I} is the actual world
- Probability $Pr(\phi)$ of a statement ϕ in Pr

$$\mathsf{Pr}(\phi) = \sum_{\mathcal{I}\models\phi} \mathsf{Pr}(\mathcal{I})$$

• $Pr(\phi)$ is the probability of the event: " ϕ is true"

- A statement is true to some degree, which is taken from a truth space (usually [0, 1])
- The convention prescribing that a proposition is either true or false is changed towards graded propositions
- E.g., "heavy rain"
 - The compatibility of "heavy" in the phrase "heavy rain" is graded and the degree depends on the amount of rain is falling
 - The intensity of precipitation is expressed in terms of a precipitation rate *R*: volume flux of precipitation through a horizontal surface, i.e. $m^3/m^2s = ms^{-1}$
 - It is usually expressed in mm/h

A (1) > A (2) > A

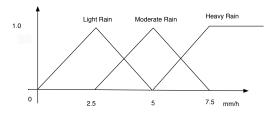
"Heavy rain" continued...E.g., in weather forecasts one may find:

 Rain intensity measured as precipitation rate R: volume flux of precipitation through a horizontal surface, i.e. m³/m²h = mh⁻¹

Rain.	Falling drops of water larger than 0.5 mm in diameter. "Rain" usually implies that the rain will fall
	steadily over a period of time;
Light rain.	Rain falls at the rate of 2.6 mm or less an hour;
Moderate rain.	Rain falls at the rate of 2.7 mm to 7.6 mm an hour;
Heavy rain.	Rain falls at the rate of 7.7 mm an hour or more.

- Quite harsh distinction: $\begin{array}{ccc} R=7.7mm/h & \rightarrow & \text{heavy rain} \\ R=7.6mm/h & \rightarrow & \text{moderate rain} \end{array}$
- This is clearly unsatisfactory, as quite naturally
 - The more rain is falling, the more the sentence "heavy rain" is true
 - Vice-versa, the less rain is falling the less the sentence is true

- In other words, that the sentence "heavy rain" is no longer either true or false, but is intrinsically graded
 - Even if we have complete knowledge about the current world, i.e. exact specification of the precipitation rate
- More fine grained approach:
 - Define the various types of rains as



• Light rain, moderate rain and heavy rain are vague concepts

- Consider a propositional statement ϕ
- A propositional interpretation \mathcal{I} maps ϕ to a truth degree in [0, 1]

 $\mathcal{I}(\phi) \in [0,1]$

- I.e., we are unable to establish whether a statement is entirely true or false due the occurrence of vague concept
- Vague statements are truth-functional
 - Degree of truth of a statement can be calculated from the degrees of truth of its constituents
 - Note that this is not possible for uncertain statements
- Example of truth functional interpretation of vague statements:

$$egin{array}{rcl} \mathcal{I}(\phi \wedge \psi) &=& \min(\mathcal{I}(\phi), \mathcal{I}(\psi)) \ \mathcal{I}(\phi \lor \psi) &=& \max(\mathcal{I}(\phi), \mathcal{I}(\psi)) \ \mathcal{I}(\neg \phi) &=& 1 - \mathcal{I}(\phi) \end{array}$$

- Recap:
 - In a probabilistic setting each statement is either true or false, but there is e.g. a probability distribution telling us how probable each interpretation/sentence is

$$\mathcal{I}(\phi) \in \{0,1\}, Pr(\mathcal{I}) \in [0,1] \text{ and } Pr(\phi) = \sum_{\mathcal{I} \models \phi} Pr(\mathcal{I}) \in [0,1]$$

• In vagueness theory instead, sentences are graded

 $\mathcal{I}(\phi) \in [0,1]$

< 同 ト < 三 ト < 三 ト

- Are there sentences combining the two orthogonal concepts of uncertainty and vagueness?
- Yes, and we use them daily !
 - E.g. "there will be heavy rain tomorrow"
- This type of sentences are called uncertain vague sentences
- Essentially, there is
 - uncertainty about the world we will have tomorrow
 - vagueness about the various types of rain

- Consider a propositional statement ϕ
- A model for uncertain vague sentences:
 - Define probability distribution over worlds $\mathcal{I} \in \mathcal{W},$ i.e.

$$\textit{Pr}(\mathcal{I}) \in [0,1], \sum_{\mathcal{I}}\textit{Pr}(\mathcal{I}) = 1$$

• Sentences are graded: each interpretation $\mathcal{I} \in W$ is truth functional and maps sentences into [0, 1]

$$\mathcal{I}(\phi) \in [0,1]$$

• For a sentence ϕ , consider the expected truth of ϕ

$$\mathsf{ET}(\phi) = \sum_{\mathcal{I}} \mathsf{Pr}(\mathcal{I}) \cdot \mathcal{I}(\phi) \; .$$

• Note: if \mathcal{I} is bivalent (that is, $\mathcal{I}(\phi) \in \{0, 1\}$) then $ET(\phi) = Pr(\phi)$

From Fuzzy Sets to Mathematical Fuzzy Logic

From Crisp Sets to Fuzzy Sets.

- Let X be a universal set of objects
- The power set, denoted 2^A, of a set A ⊂ X, is the set of subsets of A, i.e.,

$$\mathbf{2}^{\mathbf{A}} = \{\mathbf{B} \mid \mathbf{B} \subseteq \mathbf{A}\}$$

• Often sets are defined as

$$A = \{x \mid P(x)\}$$

- *P*(*x*) is a statement "*x* has property *P*"
- P(x) is either true or false for any $x \in X$

• Examples of universe X and subsets $A, B \in 2^X$ may be

$$X = \{x \mid x \text{ is a day}\}$$

$$A = \{x \mid x \text{ is a rainy day}\}$$

 $B = \{x \mid x \text{ is a day with precipitation rate } R \ge 7.5 mm/h\}$

- In the above case: $B \subseteq A \subseteq X$
- The membership function of a set $A \subseteq X$:

$$\chi_{\textit{A}} \colon \textit{X} \to \{0,1\}$$

where $\chi_A(x) = 1$ iff $x \in A$

• Note that for sets $A, B \in 2^X$

$$A \subseteq B \text{ iff } \forall x \in X. \ \chi_A(x) \leq \chi_B(x)$$

• Complement of a set *A*, i.e. $\bar{A} = X \setminus A$: $\forall x \in X$:

$$\chi_{\bar{A}}(x) = 1 - \chi_{A}(x)$$

• Intersection and union: $\forall x \in X$

$$\chi_{A \cap B}(x) = \min(\chi_A(x), \chi_B(x))$$

 $\chi_{A \cup B}(x) = \max(\chi_A(x), \chi_B(x))$

• Cartesian product of two sets $A, B \in 2^X$

$$A imes B = \{ \langle a, b
angle \mid a \in A, b \in B \}$$

$$\chi_R(x,x) = 1$$

• is symmetric if for all $x, y \in X$

$$\chi_R(x,y) = \chi_R(y,x)$$

• Inverse of R, $\chi_{R^{-1}} : X \times X \to \{0, 1\}$: $\forall x, y \in X$:

$$\chi_{R^{-1}}(y,x) = \chi_R(x,y)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Fuzzy set A: $\chi_A : X \to [0, 1]$, or simply

 $A: X \rightarrow [0, 1]$

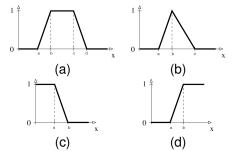
- Fuzzy power set over X, is denoted 2^X, i.e. the set of all fuzzy sets over X
- Example: the fuzzy set

 $C = \{x \mid x \text{ is a day with heavy precipitation rate } R\}$

is defined via the membership function

$$\chi_C(x) = \begin{cases} 1 & \text{if } R \ge 7.5\\ (x-5)/2.5 & \text{if } R \in [5,7.5)\\ 0 & \text{otherwise} \end{cases}$$

- Fuzzy membership functions may depend on the context and may be subjective
- Shape may be quite different
- Usually, it is sufficient to consider functions

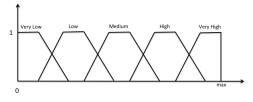


(a) Trapezoidal trz(a, b, c, d); (b) Triangular tri(a, b, c); (c) left-shoulder ls(a, b); (d) right-shoulder rs(a, b)

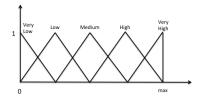
- The usefulness of fuzzy sets depends critically on appropriate membership functions
- Methods for fuzzy membership functions construction is largely addressed in literature

4 A N

- Easy and typically satisfactory method (numerical domain)
 - uniform partitioning into 5 fuzzy sets

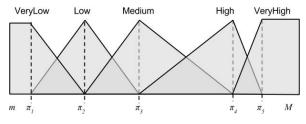


Fuzzy sets construction using trapezoidal functions



Fuzzy sets construction using triangular functions

- Another popular method is based on clustering
- Use Fuzzy C-Means to cluster data into 5 clusters
 - Fuzzy C-Means extends K-Means to accommodates graded membership
- From the clusters c_1, \ldots, c_5 take the centroids π_1, \ldots, π_5
- Build the fuzzy sets from the centroids



Fuzzy sets construction using clustering

< □ > < 同 > < 回 > < 回 > < 回 >

Norm-Based Fuzzy Set Operations

- Standard fuzzy set operations are not the only ones
- Most notable ones are triangular norms
 - t-norm \otimes for set intersection
 - t-conorm ⊕ (also called s-norm) for set union
 - negation \ominus for set complementation
 - implication \Rightarrow
 - set inclusion $A \sqsubseteq B$ is defined as

$$\inf_{x\in X}A(x)\Rightarrow B(x)$$

• \Rightarrow is often defined from \otimes as *r*-implication

$$a \Rightarrow b = \sup \{ c \mid a \otimes c \leq b \}$$
.

These functions satisfy some properties that one expects to hold

Axiom Name	T-norm	S-norm
Taututology/Contradiction	$a \otimes 0 = 0$	$a \oplus 1 = 1$
Identity	$a \otimes 1 = a$	$a \oplus 0 = a$
Commutativity	$a \otimes b = b \otimes a$	$a \oplus b = b \oplus a$
Associativity	$(a \otimes b) \otimes c = a \otimes (b \otimes c)$	$(a \oplus b) \oplus c = a \oplus (b \oplus c)$
Monotonicity	if $b \leq c$, then $a \otimes b \leq a \otimes c$	if $b \leq c$, then $a \oplus b \leq a \oplus c$

Properties for implication and negation functions

Axiom Name	Implication Function	Negation Function
Tautology / Contradiction	$0 \Rightarrow b = 1, a \Rightarrow 1 = 1, 1 \Rightarrow 0 = 0$	\ominus 0 = 1, \ominus 1 = 0
Antitonicity	if $a \leq b$, then $a \Rightarrow c \geq b \Rightarrow c$	if $a \leq b$, then $\ominus a \geq \ominus b$
Monotonicity	if $b \leq c$, then $a \Rightarrow b \leq a \Rightarrow c$	

- By commutativity, \otimes and \oplus are monotone also in the first argument
- \otimes is indempotent if $a \otimes a = a$, for all $a \in [0, 1]$
- Megation function \ominus is involutive iff $\ominus \ominus a = a$, for all $a \in [0, 1]$.
- Salient negation functions are: Standard or Łukasiewicz negation: ⊖_Ia = 1 - a; Gödel negation: ⊖_ga is 1 if a = 0, else is 0.
- Łukasiewicz negation is involutive, Gödel negation is not.

Salient t-norm functions are:

Gödel t-norm: $a \otimes_g b = \min(a, b)$; Bounded difference or Łukasiewicz t-norm: $a \otimes_l b = \max(0, a + b - 1)$; Algebraic product or product t-norm: $a \otimes_p b = a \cdot b$; Drastic product:

$$a \otimes_d b = \left\{egin{array}{cc} 0 & ext{when } (a,b) \in [0,1[imes [0,1[\ \min(a,b) & ext{otherwise} \end{array}]
ight.$$

Salient s-norm functions are:

Gödel s-norm: $a \oplus_g b = \max(a, b)$; Bounded sum or Łukasiewicz s-norm: $a \oplus_l b = \min(1, a + b)$; Algebraic sum or product s-norm: $a \oplus_p b = a + b - ab$; Drastic sum: $a \oplus_d b = \begin{cases} 1 & \text{when } (a, b) \in]0, 1] \times]0, 1] \\ \max(a, b) & \text{otherwise} \end{cases}$ Salient properties of norms:

Ordering among t-norms (⊗ is any t-norm):

$$\begin{aligned} \otimes_d &\leq \otimes \leq \otimes_g \\ \otimes_d &\leq \otimes_I \leq \otimes_p \leq \otimes_g . \end{aligned}$$

- The only idempotent t-norm is \otimes_g .
- The only t-norm satisfying $a \otimes a = 0$ for all $a \in [0, 1[$ is \otimes_d .
- Ordering among s-norms (\oplus is any s-norm):

$$\oplus_{g} \leq \oplus \leq \oplus_{d}$$

 $\oplus_{g} \leq \oplus_{p} \leq \oplus_{l} \leq \oplus_{d}$.

- The only idempotent s-norm is \oplus_g .
- The only s-norm satisfying $a \oplus a = 1$ for all $a \in]0, 1]$ is \oplus_d .
- The dual s-norm of \otimes is defined as

$$a\oplus b=1-(1-a)\otimes(1-b)$$
.

- Kleene-Dienes implication: $x \Rightarrow y = \max(1 x, y)$ is called
- Fuzzy modus ponens: let $a \ge n$ and $a \Rightarrow b \ge m$
 - Under Kleene-Dienes implication, we infer that if n > 1 m then $b \ge m$
 - Under r-implication relative to a t-norm \otimes , we infer that $b \ge n \otimes m$
- composition of two fuzzy relations $R_1: X \times X \rightarrow [0, 1]$ and $R_2: X \times X \rightarrow [0, 1]$: for all $x, z \in X$
 - $(R_1 \circ R_2)(x,z) = \sup_{y \in X} R_1(x,y) \otimes R_2(y,z)$
- A fuzzy relation R is transitive iff for all $x, z \in X$ $R(x, z) \ge (R \circ R)(x, z)$

A (10) A (10)

Łukasiewicz, Gödel, Product logic and Standard Fuzzy logic

- One distinguishes three different sets of fuzzy set operations (called fuzzy logics)
 - Łukasiewicz, Gödel, and Product logic
 - Standard Fuzzy Logic (SFL) is a sublogic of Łukasiewicz

• $\min(a,b) = a \otimes_l (a \Rightarrow_l b), \max(a,b) = 1 - \min(1-a,1-b)$

	Łukasiewicz Logic	Gödel Logic	Product Logic	SFL
$a \otimes b$	max(a + b - 1, 0)	min(<i>a</i> , <i>b</i>)	a · b	min(<i>a</i> , <i>b</i>)
$a \oplus b$	min(<i>a</i> + <i>b</i> , 1)	max(<i>a</i> , <i>b</i>)	$a + b - a \cdot b$	max(<i>a</i> , <i>b</i>)
$a \Rightarrow b$	$\min(1-a+b,1)$	$\begin{cases} 1 & \text{if } a \leq b \\ b & \text{otherwise} \end{cases}$	min(1, <i>b/a</i>)	max(1 - a, b)
⊖ a	1 – <i>a</i>	$\begin{cases} 1 & \text{if } a = 0 \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } a = 0 \\ 0 & \text{otherwise} \end{cases}$	1 – <i>a</i>

 Mostert–Shields theorem: any continuous t-norm can be obtained as an ordinal sum of these three

Property	Łukasiewicz Logic	Gödel Logic	Product Logic	SFL
$x \otimes \ominus x = 0$	•			
$x \oplus \ominus x = 1$	•			
$x \otimes x = x$		•		•
$x \oplus x = x$		•		•
$\ominus \ominus x = x$	•			•
$x \Rightarrow y = \ominus x \oplus y$	•			•
\ominus ($x \Rightarrow y$) = $x \otimes \ominus y$	•			•
\ominus ($x \otimes y$) = $\ominus x \oplus \ominus y$	•	•	•	•
$\ominus (x \oplus y) = \ominus x \otimes \ominus y$	•	•	•	•

• Note: If all conditions in the upper part of a column have to be satisfied then we collapse to classical two-valued logic

- Fuzzy modifiers: interesting feature of fuzzy set theory
- A fuzzy modifier apply to fuzzy sets to change their membership function
 - Examples: very, more_or_less, and slightly
- A fuzzy modifier *m* represents a function

 $\mathit{f_m}\colon [0,1] \to [0,1]$

Example: $f_{very}(x) = x^2$, $f_{more_or_less}(x) = tri(0, x, 1)$, $f_{slightly}(x) = \sqrt{x}$

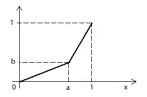
< 回 > < 三 > < 三 >

• Modelling the fuzzy set of very heavy rain:

$$\chi_{\text{very heavy rain}}(x) = f_{\text{very}}(\chi_{\text{heavyrain}}(x))$$

= $(\chi_{\text{heavyrain}}(x))^2$
= $(rs(5, 7.5)(x))^2$

• A typical shape of modifiers: linear modifiers Im(a, b)



• Note: linear modifiers require one parameter c only

$$lm(a,b) = lm(c)$$

where
$$a = c/(c+1)$$
, $b = 1/(c+1)$

Mathematical Fuzzy Logics Basics

- OWL 2 is grounded on Mathematical Logic
- Fuzzy OWL 2 is grounded on Mathematical Fuzzy Logic
- A statement is no longer either true or false, but is graded
- Truth space: set of truth values L with some structure
- Given a statement ϕ
 - Fuzzy Interpretation: a function \mathcal{I} mapping ϕ into L, i.e.

$$\mathcal{I}(\varphi) \in \mathcal{L}$$

Usually

$$L = [0, 1]$$

$$L_n = \{0, \frac{1}{n}, \dots, \frac{n-2}{n-1}, \dots, 1\} \quad (n \ge 1)$$

• Fuzzy statement: for $r \in [0, 1]$

 $\langle \phi, {\it r} \rangle$

The degree of truth of ϕ is equal or greater than r

- Examples:
 - Fuzzy FOL: (RainyDay(d), 0.75)
 - Fuzzy LPs: $\langle RainyDay(d) \leftarrow, 0.75 \rangle$
 - Fuzzy RDFS: ((*d*, *type*, *RainyDay*), 0.75)
 - Fuzzy DLs: (*d*:*RainyDay*, 0.75)

• Fuzzy interpretation \mathcal{I} :

- Maps each basic statement *p_i* into [0, 1]
- Extended inductively to all statements

where

- $\Delta^{\mathcal{I}}$ is the domain of \mathcal{I}
- \otimes , \oplus , \Rightarrow , and \ominus are the t-norms, t-conorms, implication functions, a negation functions
- The function \mathcal{I}_x^a is as \mathcal{I} except that x is interpreted as a

▲ □ ▶ → □ ▶

• In Lukasiewicz logic:

 $\varphi = Cold \wedge Cloudy$ Cold Cloudy $\mathcal{I}(\varphi)$ \mathcal{I}_1 0.1 $\max(0, 0 + 0.1 - 1) = 0.0$ 0 \mathcal{I}_{2} 0.4 $\max(0, 0.3 + 0.4 - 1) = 0.0$ 0.3 \mathcal{I}_3 0.7 0.8 $\max(0, 0.7 + 0.9 - 1) = 0.6$ $\mathcal{I}_{\mathbf{A}}$ 1 max(0, 1 + 1 - 1) = 1.0: : ÷

• Note: given *m* propositional letters

- Fuzzy interpretations over L = [0, 1] are not recursively enumerable
- There are *n^m* fuzzy interpretations over *L_n*

• One may also consider the following abbreviations:

$$\begin{array}{lll} \phi \wedge_{g} \psi & \stackrel{\text{def}}{=} & \phi \wedge (\phi \to \psi) \\ \phi \vee_{g} \psi & \stackrel{\text{def}}{=} & (\phi \to \psi) \to \phi) \wedge_{g} (\psi \to \phi) \to \psi) \\ \neg_{\otimes} \phi & \stackrel{\text{def}}{=} & \phi \to 0 \\ \langle \phi \leq r \rangle & \stackrel{\text{def}}{=} & \langle \neg_{I} \phi, 1 - r \rangle \end{array}$$

- In case \Rightarrow is the r-implication based on \otimes , then
 - ∧_g is Gödel t-norm
 - ∨_g is Gödel s-norm
 - \neg_{\otimes} is interpreted as the negation function related to \otimes

• \mathcal{I} satisfies $\langle \phi, r \rangle$, or \mathcal{I} is a model of $\langle \phi, r \rangle$

$$\mathcal{I} \models \langle \phi, \mathbf{r} \rangle \text{ iff } \mathcal{I}(\phi) \geq \mathbf{r}$$

- \mathcal{I} is a model of ϕ if $\mathcal{I}(\phi) = 1$
- Fuzzy knowledge base \mathcal{K} : finite set of fuzzy statements
- \mathcal{I} satisfies (is a model of) \mathcal{K} : $\mathcal{I} \models \mathcal{K}$ iff it satisfies each element in it
- Best entailment degree of ϕ w.r.t. \mathcal{K} :

$$bed(\mathcal{K}, \phi) = \sup \{r \mid \mathcal{K} \models \langle \phi, r \rangle \}$$

• Best satisfiability degree of ϕ w.r.t. \mathcal{K} :

$$\textit{bsd}(\mathcal{K},\phi) = \sup_{\mathcal{I}} \left\{ \mathcal{I}(\phi) \,|\, \mathcal{I} \models \mathcal{K} \right\}$$

Proposition (Fuzzy Modus Ponens)

For r-implication \rightarrow , for $r, s \in [0, 1]$:

$$\langle \phi, \mathbf{r} \rangle, \langle \phi \to \psi, \mathbf{s} \rangle \models \langle \psi, \mathbf{r} \otimes \mathbf{s} \rangle$$

Proposition

Salient equivalences:

$$\neg \neg \phi \equiv \phi \ (\pounds, SFL)$$

$$\phi \land \phi \equiv \phi \ (G, SFL)$$

$$\neg (\phi \land \neg \phi) \equiv 1 \ (\pounds, G, \Pi)$$

$$\phi \lor \neg \phi \equiv 1 \ (\pounds)$$

$$\forall x. \phi \equiv \neg \exists x. \neg \phi \ (\pounds, SFL)$$

Proposition

Salient equivalences:

L + G	≡	Boolean Logic
$\boldsymbol{k} + \boldsymbol{\Pi}$	\equiv	Boolean Logic
$G + \Pi$	≡	Boolean Logic

æ

Proposition (BED)

 $bed(\mathcal{K}, \phi) = \min x$. such that $\mathcal{K} \cup \{\langle \varphi \leq x \rangle\}$ satisfiable.

Proposition (BSD)

 $bsd(\mathcal{K}, \phi) = \max x$. such that $\mathcal{K} \cup \{\langle \varphi, x \rangle\}$ satisfiable.

・ロト ・ 四ト ・ ヨト ・ ヨト

• Witnessed interpretation \mathcal{I} :

$$\begin{aligned} \mathcal{I}(\exists x.\phi) &= \mathcal{I}_x^a(\phi), \text{ for some } a \in \Delta^{\mathcal{I}} \\ \mathcal{I}(\forall x.\phi) &= \mathcal{I}_x^a(\phi), \text{ for some } a \in \Delta^{\mathcal{I}} \end{aligned}$$

- The supremum (resp. infimum) are attained at some point
- Classical interpretations are witnessed
- Fuzzy interpretations may not be witnessed
- E.g., I is not witnessed as Eq. (1) not satisfied:

$$\Delta^{\mathcal{I}} = \mathbb{N}$$

$$\mathcal{I}_{x}^{n}(A(x)) = 1 - 1/n < 1, \text{ for all } n$$

$$\mathcal{I}(\exists x.A(x)) = \sup_{n} \mathcal{I}_{x}^{n}(A(x))$$

$$= \sup_{n} 1 - 1/n = 1$$

4 A N

(1) (2)

Proposition (Witnessed model property)

In Łukasiewicz logic and SFL over L = [0, 1], or for all cases in which the truth space L is finite, a fuzzy KB has a witnessed fuzzy model iff it has a fuzzy model.

- Not true for Gödel and product logic over L = [0, 1]
 - $\neg \forall x \, p(x) \land \neg \exists x \neg p(x)$ has no classical model
 - In Gödel logic it has no finite model, but has an infinite model: for integer n ≥ 1, let I such that I(p(n)) = 1/n

$$\mathcal{I}(\forall x \, p(x)) = \inf_{n} 1/n = 0$$

$$\mathcal{I}(\exists x \neg p(x)) = \sup_{n} \neg 1/n = \sup 0 = 0$$

- IMHO: non-witnessed models make little sense in KR
- We will always assume that interpretations are witnessed

A I > A = A A

- We need to distinguish if truth space is L = [0, 1] or $L_n = \{0, \frac{1}{n}, \dots, \frac{n-2}{n-1}, \dots, 1\}$
- Case *L_n* easier: given *m* propositional letters, there are *mⁿ* possible interpretations
- We may use
 - Operational Research
 - Analytic Tableaux, Non-Deterministic Analytic Tableaux
 - Reduction into Classical Propositional Logic

- Basic idea: translate formulae into equational constraints about truth degrees
- For a formula ϕ consider a variable x_{ϕ}
 - Intuition: x_{ϕ} will hold the degree of truth of statement ϕ
 - Example: constraints under Łukasiewicz for $\langle \neg \phi, 0.6 \rangle$

$$egin{array}{rcl} x_{
eg \phi} &\in & [0,1] \ x_{\phi} &\in & [0,1] \ x_{
eg \phi} &= & 1-x_{\phi} \end{array}$$

- We may use Mixed Integer Linear Programming for the encodings of constraints For Łukasiewicz:
 - $x_1 \otimes_l x_2 = z \mapsto \{x_1 + x_2 1 \le z, x_1 + x_2 1 \ge z y, z \le 1 y, y \in \{0, 1\}\},$ where y is a new variable.
 - $x_1 \oplus_l x_2 = z \mapsto \{x_1 + x_2 \le z + y, y \le z, x_1 + x_2 \ge z, y \in \{0, 1\}\}$, where y is a new variable.
 - $X_1 \Rightarrow_I X_2 = Z \mapsto \{(1 X_1) \oplus_I X_2 = Z\}.$

For SFL:

- $x_1 \otimes_g x_2 = z \mapsto \{z \le x_1, z \le x_2, x_1 \le z + y, x_2 \le z + (1 y), y \in \{0, 1\}\},$ where y is a new variable.
- $x_1 \oplus_g x_2 = z \mapsto \{z \ge x_1, z \ge x_2, x_1 + y \ge z, x_2 + (1 y) \ge z, y \in \{0, 1\}\},$ where y is a new variable.
- $X_1 \Rightarrow_{kd} X_2 = Z \mapsto (1 X_1) \oplus_g X_2 = Z.$

• Negation Normal Form, $nnf(\phi)$

$$\neg \bot = \top$$
$$\neg \top = \bot$$
$$\neg \neg \phi \mapsto \phi$$
$$\neg (\phi \land \psi) \mapsto \neg \phi \lor \neg \psi$$
$$\neg (\phi \lor \psi) \mapsto \neg \phi \land \neg \psi$$
$$\neg (\phi \rightarrow \psi) \mapsto \phi \land \neg \psi.$$

U. Straccia, F. Bobillo

From Fuzzy to Annotated SW Languages

크

12

Transform \mathcal{K} into NNF

Initialize the fuzzy theory $\mathcal{T}_{\mathcal{K}}$ and the initial set of constraints $\mathcal{C}_{\mathcal{K}}$ by

$$\begin{array}{ll} \mathcal{T}_{\mathcal{K}} & = & \{\phi \mid \langle \phi, n \rangle \in \mathcal{K} \} \\ \mathcal{C}_{\mathcal{K}} & = & \{x_{\psi} \geq n \mid \langle \phi, n \rangle \in \mathcal{K} \} \end{array}$$

3 Apply the following inference rules until no more rules can be applied
(var). For variable
$$x_{\phi}$$
 occurring in $\mathcal{C}_{\mathcal{K}}$ add $x_{\phi} \in [0, 1]$ to $\mathcal{C}_{\mathcal{K}}$
(var). For variable $x_{\neg\phi}$ occurring in $\mathcal{C}_{\mathcal{K}}$ add $x_{\phi} = 1 - x_{\neg\phi}$ to $\mathcal{C}_{\mathcal{K}}$
(\bot). If $\bot \in \mathcal{T}_{\mathcal{K}}$ then $\mathcal{C}_{\mathcal{K}} := \mathcal{C}_{\mathcal{K}} \cup \{x_{\bot} = 0\}$
(\land). If $\phi \land \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\land). If $\phi \land \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\land). If $\phi \lor \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\checkmark). If $\phi \lor \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\lor). If $\phi \lor \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\lor). If $\phi \lor \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\lor). If $\phi \lor \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\lor). If $\phi \to \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\rightarrow). If $\phi \to \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\rightarrow). If $\phi \to \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\rightarrow). If $\phi \to \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\rightarrow). If $\phi \to \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\rightarrow). If $\phi \to \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\rightarrow). If $\phi \to \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\rightarrow). If $\phi \to \psi \in \mathcal{T}_{\mathcal{K}}$, then
(\rightarrow). If $\phi \to \psi \in \mathcal{T}_{\mathcal{K}}$, then

э.

・ロト ・聞 ト ・ ヨト ・ ヨト

sat(\mathcal{K}): \mathcal{K} is satisfiable iff the final set of constraints $\mathcal{C}_{\mathcal{K}}$ has a solution

- **bed**(\mathcal{K}, ϕ): Add $\neg \phi$ to $\mathcal{T}_{\mathcal{K}}$
- - Add $x_{\neg\phi} \geq 1 x, x \in [0, 1]$ to $C_{\mathcal{K}}$, x new
 - Compute final set of constraints C_k
 - Then, solve the optimisation problem

 $bed(\mathcal{K}, \phi) = \min x$ such that $\mathcal{C}_{\mathcal{K}}$ has a solution

- **bsd**(\mathcal{K}, ϕ): Add ϕ to $\mathcal{T}_{\mathcal{K}}$
 - Add $x_{\phi} \geq x, x \in [0, 1]$ to $\mathcal{C}_{\mathcal{K}}$, x new
 - Compute final set of constraints $C_{\mathcal{K}}$
 - Then, solve the optimisation problem

 $bsd(\mathcal{K}, \phi) = \max x$. such that $\mathcal{C}_{\mathcal{K}}$ has a solution

< 回 > < 回 > < 回 >

• Main property the method is based on:

- if \mathcal{I} is model of $\langle \phi \land \psi, n \rangle$ then \mathcal{I} is a model of both $\langle \phi, n \rangle$ and $\langle \psi, n \rangle$;
- if *I* is model of ⟨φ ∨ ψ, n⟩ then *I* is a model of either ⟨φ, n⟩ or ⟨ψ, n⟩.
- \mathcal{I} cannot be a model of both $\langle p, n \rangle$ and $\langle \neg p, m \rangle$ if n > 1 m.

A clash is either

- a fuzzy statement $\langle \perp, n \rangle$ with n > 0; or
- a pair of fuzzy statements $\langle p, n \rangle$ and $\langle \neg p, m \rangle$ with n > 1 m
- Clash-free: does not contain a clash

・ 何 ト ・ ヨ ト ・ ヨ

Transform \mathcal{K} into NNF

- Initialize the completion $\mathcal{S}_{\mathcal{K}} = \mathcal{K}$
- Apply the following inference rules to $\mathcal{S}_{\mathcal{K}}$ until no more rules can be applied
- We call a set of fuzzy statements $S_{\mathcal{K}}$ complete iff none of the rules below can be applied to $S_{\mathcal{K}}$
- Sote that rule (V) is non-deterministic
 - (\wedge). If $\langle \phi \land \psi, n \rangle \in S_{\mathcal{K}}$ and $\{\langle \phi, n \rangle, \langle \psi, n \rangle\} \not\subseteq S_{\mathcal{K}}$, then add both $\langle \phi, n \rangle$ and $\langle \psi, n \rangle$ to $S_{\mathcal{K}}$
 - (V). If $\langle \phi \lor \psi, n \rangle \in S_{\mathcal{K}}$ and $\{\langle \phi, n \rangle, \langle \psi, n \rangle\} \cap S_{\mathcal{K}} = \emptyset$, then add either $\langle \phi, n \rangle$ or $\langle \psi, n \rangle$ to $S_{\mathcal{K}}$
 - $\begin{array}{l} (\rightarrow). \ \ \text{If } \langle \phi \rightarrow \psi, n \rangle \in \mathcal{S}_{\mathcal{K}} \text{ and } \langle nnf(\neg \phi) \lor \psi, n \rangle \not\in \mathcal{S}_{\mathcal{K}}, \text{ then add} \\ \langle nnf(\neg \phi) \lor \psi, n \rangle \text{ to } \mathcal{S}_{\mathcal{K}} \end{array}$
 - sat(\mathcal{K}): \mathcal{K} is satisfiable iff we find a complete and clash-free completion $\mathcal{S}_{\mathcal{K}}$ of \mathcal{K}

< 回 > < 三 > < 三 >

- For BED and BSD we need some more work
- Given *K*, define

$$\begin{array}{lll} \mathcal{N}^{\mathcal{K}} &=& \{0, 0.5, 1\} \cup \{n \mid \langle \phi, n \rangle \in \mathcal{K}\} \\ \bar{\mathcal{N}}^{\mathcal{K}} &=& \mathcal{N}^{\mathcal{K}} \cup \{1 - n \mid n \in \mathcal{N}^{\mathcal{K}}\} \\ \epsilon &=& \min\{d/2 \mid n, m \in \bar{\mathcal{N}}^{\mathcal{K}}, n \neq m, d = |n - m|\} \end{array}$$

Proposition

Under SFL, given \mathcal{K} , then for n > 0

 $\mathcal{K} \models \langle \phi, n \rangle$ iff $\mathcal{K} \cup \{ \langle \neg \phi, 1 - n + \epsilon \rangle \}$ is not satisfiable.

Moreover, \mathcal{K} is satisfiable iff it has a model over $\bar{N}^{\mathcal{K}}$.

bed(\mathcal{K}, ϕ): Find greatest $n \in \overline{N}^{\mathcal{K}}$ such that $\mathcal{K} \models \langle \phi, n \rangle$ *bsd*(\mathcal{K}, ϕ): Find greatest $n \in \overline{N}^{\mathcal{K}}$ such that $\mathcal{K} \cup \{\langle \phi, n \rangle\}$ satisfiable

Non Deterministic Analytic Fuzzy Tableau

- Works for finitely-valued fuzzy propositional logic over L_n
- Works also for SFL (as in place of [0, 1], we may use $\bar{N}^{\mathcal{K}}$)
- Basic idea is as for fuzzy tableau, but now we guess the truth degrees

(^). If
$$\langle \phi \land \psi, n \rangle \in S_{\mathcal{K}}$$
, $n_1, n_2 \in L_n$ such that $n_1 \otimes n_2 = n$ and $\{\langle \phi, n_1 \rangle, \langle \psi, n_2 \rangle\} \not\subseteq S_{\mathcal{K}}$, then add both $\langle \phi, n_1 \rangle$ and $\langle \psi, n_2 \rangle$ to $S_{\mathcal{K}}$
(V). If $\langle \phi \lor \psi, n \rangle \in S_{\mathcal{K}}$, $n_1, n_2 \in L_n$ such that $n_1 \oplus n_2 = n$ and $\{\langle \phi, n_1 \rangle, \langle \psi, n_2 \rangle\} \not\subseteq S_{\mathcal{K}}$, then add both $\langle \phi, n_1 \rangle$ and $\langle \psi, n_2 \rangle$ to $S_{\mathcal{K}}$
(\rightarrow). If $\langle \phi \rightarrow \psi, n \rangle \in S_{\mathcal{K}}$, $n_1, n_2 \in L_n$ such that $n_1 \Rightarrow n_2 = n$ and $\{\langle \phi, n_1 \rangle, \langle \psi, n_2 \rangle\} \not\subseteq S_{\mathcal{K}}$, then add both $\langle \phi, n_1 \rangle$ and $\langle \psi, n_2 \rangle$ to $S_{\mathcal{K}}$

A clash is either

- a fuzzy statement $\langle \perp, n \rangle$ with n > 0; or
- a pair of fuzzy statements $\langle p, n \rangle$ and $\langle \neg p, m \rangle$ such that

$$x_p \ge n, \ \ominus x_p \ge m, x_p \in L_n$$

has no solution

▲ □ ▶ → □ ▶

Reduction to Classical Propositional Logic: Case SFL over [0, 1]

• Given *K*, we know that we can use

$$L_n = \bar{N}^{\mathcal{K}} = \{\gamma_1, \ldots, \gamma_n\}$$

with $\gamma_i < \gamma_{i+1}$, $1 \le i \le n-1$

• Basic idea: use atom $A_{\geq r}$ to represent

The truth degree of A has to be equal or greater than r

• Similarly for $A_{>r}$, $A_{\leq r}$ and $A_{< r}$

• To start with, build *Crisp*_{Ln}

• For all atoms *A*, for all $1 \le i \le n-1, 2 \le j \le n-1$

$$\begin{array}{c} \textbf{\textit{A}}_{\geq \gamma_{i+1}} \rightarrow \textbf{\textit{A}}_{>\gamma_{i}} \\ \textbf{\textit{A}}_{>\gamma_{j}} \rightarrow \textbf{\textit{A}}_{\geq \gamma_{j}} \end{array}$$

• Build *Crisp*_{*K*}:

$$egin{array}{rcl} {\it Crisp}_{{\cal K}} &=& \{
ho(\phi, {\it n}) \mid \langle \phi, {\it n}
angle \in {\cal K}\} \cup \ {\it Crisp}_{{\it L}_{\it n}} \ , \end{array}$$

X	у	$\rho(\mathbf{x},\mathbf{y})$
T	С	Т
1	0	Т
1	С	\perp if $c > 0$
A	С	$A_{\geq c}$
$\neg A$	С	$\neg A_{>1-c}$
$\phi \wedge \psi$	С	$ ho(\phi, { extsf{c}}) \wedge ho(\psi, { extsf{c}})$
$\phi \lor \psi$	С	$ ho(\phi, c) ee ho(\psi, c)$

< ロ > < 同 > < 回 > < 回 >

Proposition

Given \mathcal{K} under SFL over L_n , then $\mathcal{K} \models \langle \phi, c \rangle$ iff $\mathcal{K} \cup \{ \langle \neg \phi, 1 - c^- \rangle \}$ is not satisfiable, where c^- is the next smaller value than c in L_n

sat(\mathcal{K}): \mathcal{K} is satisfiable iff $Crisp_{\mathcal{K}}$ satisfiable *bed*(\mathcal{K}, ϕ): Find greatest $c \in L_n$ such that $\mathcal{K} \models \langle \phi, c \rangle$ *bsd*(\mathcal{K}, ϕ): Find greatest $c \in L_n$ such that $\mathcal{K} \cup \{\langle \phi, c \rangle\}$ satisfiable

From Fuzzy to Annotated Semantic Web Languages

• • • • • • • • • • • •

The Semantic Web Family of Languages

Wide variety of languages

- RDFS: Triple language, -Resource Description Framework
 - The logical counterpart is ρdf
- RIF: Rule language, -Rule Interchange Format,
 - Relate to the Logic Programming (LP) paradigm
- OWL 2: Conceptual language, -Ontology Web Language
 - Relate to Description Logics (DLs)



• RDFS: the triple language

```
(subject, predicate, object)
```

- e.g. $\langle umberto, born, zurich \rangle$
- Computationally: compute *closure*, *cl*(*K*),
 - Infer all possible triples using inference rules, e.g.

$$\frac{(A, \text{sc}, B), (X, \text{type}, A)}{(X, \text{type}, B)}$$

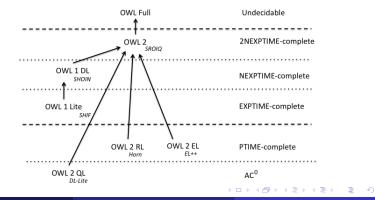
"if A subclass of B, X instance of A then X is instance of B"

- Complexity: $\mathcal{O}(|\mathcal{K}|^2)$
- Store all inferred triples into a relational database and query via SQL

OWL 2 family: the object oriented language

class **PERSON** partial restriction (*hasName* someValuesFrom String) restriction (*hasBirthPlace* someValuesFrom **GEOPLACE**) ...

Computationally: tableaux like algorithms



U. Straccia, F. Bobillo

From Fuzzy to Annotated SW Languages

OWL 2 EL

- Useful for large size of properties and/or classes
- Basic reasoning problems solved in polynomial time
- The EL acronym refers to the *EL* family of DLs

OWL 2 QL

- Useful for very large volumes of instance data
 - Conjunctive query answering via query rewriting and SQL
 - OWL 2 QL relates to the DL family DL-Lite

OWL 2 RL

- Useful for scalable reasoning without sacrificing too much expressive power
- OWL 2 RL maps to Datalog
- Computational complexity: same as for Datalog, polynomial in size of the data, EXPTIME w.r.t. size of knowledge base

A I > A = A A

• RIF/RuleML family: the rule language

Forall ?Buyer ?Item ?Seller buy(?Buyer ?Item ?Seller) :- sell(?Seller ?Item ?Buyer)

4 A N

Important point: RDFS, OWL 2 and RIF/RuleML are logical languages

- RDFS: logic with intensional semantics
- OWL 2: relates to the Description Logics family
- RIF/RuleML: relates to the Logic Programming paradigm (e.g., Datalog, Datalog[±])
- OWL 2 and RIF/RuleML have extensional semantics
- We will address them from a logical point of view

The case of RDF

From Fuzzy to Annotated SW Languages

æ

イロト イヨト イヨト イヨト

- Pairwise disjoint alphabets
 - U (RDFS URI references)
 - B (Blank nodes)
 - L (Literals)
- For simplicity we will denote unions of these sets simply concatenating their names
- We call elements in **UBL** terms (denoted t)
- We call elements in **B** variables (denoted *x*)

• RDFS triple (or RDFS atom):

 $(s, p, o) \in \mathsf{UBL} imes \mathsf{U} imes \mathsf{UBL}$

- s is the subject
- p is the predicate
- *o* is the object
- Example:

(airplane, has, enginefault)

4 A N

ρ df (restricted RDFS)

- ρ df (read rho-df, the ρ from restricted rdfs)
- ρ df is defined as the following subset of the RDFS vocabulary:

 $\rho df = \{sp, sc, type, dom, range\}$

- (*p*, sp, *q*)
 - property p is a sub property of property q
- (c, sc, d)
 - class c is a sub class of class d
- (*a*, type, *b*)
 - a is of type b
- (*p*, dom, *c*)
 - domain of property p is c
- (*p*, range, *c*)
 - range of property p is c

• RDF interpretation \mathcal{I} over a vocabulary V is a tuple

$$\mathcal{I} = \langle \Delta_{R}, \Delta_{P}, \Delta_{C}, \Delta_{L}, P[\![\cdot]\!], C[\![\cdot]\!], \cdot^{\mathcal{I}} \rangle ,$$

where

- $\Delta_R, \Delta_P, \Delta_C, \Delta_L$ are the interpretations domains of \mathcal{I}
- $P[\cdot], C[\cdot], \cdot^{\mathcal{I}}$ are the interpretation functions of \mathcal{I}

$\mathcal{I} = \langle \Delta_{R}, \Delta_{P}, \Delta_{C}, \Delta_{L}, \boldsymbol{P}[\![\cdot]\!], \boldsymbol{C}[\![\cdot]\!], \cdot^{\mathcal{I}} \rangle$

- **1** Δ_R is a nonempty set of resources, called the domain or universe of \mathcal{I} ;
- 2) Δ_P is a set of property names (not necessarily disjoint from Δ_R);
- O_C ⊆ Δ_R is a distinguished subset of Δ_R identifying if a resource denotes a class of resources;
- **(4)** $\Delta_L \subseteq \Delta_R$, the set of literal values, Δ_L contains all plain literals in $\mathbf{L} \cap V$;
- Some property name p ∈ Δ_P into a subset P[[p]] ⊆ Δ_R × Δ_R, i.e. assigns an extension to each property name;
- C[[·]] maps each class c ∈ Δ_C into a subset C[[c]] ⊆ Δ_R, i.e. assigns a set of resources to every resource denoting a class;
- ✓ ·^𝒯 maps each *t* ∈ **UL** ∩ *V* into a value *t*^𝒯 ∈ Δ_𝑘 ∪ Δ_𝑘, i.e. assigns a resource or a property name to each element of **UL** in *V*, and such that ·^𝒯 is the identity for plain literals and assigns an element in Δ_𝑘 to elements in **L**;

3 $\cdot^{\mathcal{I}}$ maps each variable $x \in \mathbf{B}$ into a value $x^{\mathcal{I}} \in \Delta_{B}$, i.e. assigns a resource to each variable in **B**.

Intuitively,

- A ground triple (s, p, o) in an RDF graph G will be true under the interpretation I if
 - *p* is interpreted as a property name
 - s and o are interpreted as resources
 - the interpretation of the pair (*s*, *o*) belongs to the extension of the property assigned to *p*
- Blank nodes, i.e. variables, work as existential variables: a triple ((*x*, *p*, *o*) with *x* ∈ B would be true under *I* if
 - there exists a resource s such that (s, p, o) is true under \mathcal{I}

Let G be a graph over ρ df.

- An interpretation \mathcal{I} is a model of G under ρ df, denoted $\mathcal{I} \models G$, iff
 - \mathcal{I} is an interpretation over the vocabulary $\rho df \cup universe(G)$
 - $\ensuremath{\mathcal{I}}$ satisfies the following conditions:

Simple:

for each
$$(s, p, o) \in G$$
, $p^{\mathcal{I}} \in \Delta_P$ and $(s^{\mathcal{I}}, o^{\mathcal{I}}) \in P\llbracket p^{\mathcal{I}} \rrbracket$;

Subproperty:

1
$$P[\![sp^T]\!]$$
 is transitive over Δ_P ;
2 if $(p,q) \in P[\![sp^T]\!]$ then $p,q \in \Delta_P$ and $P[\![p]\!] \subseteq P[\![q]\!]$;

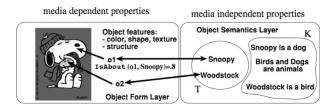
4 A N

Subclass: • $P[sc^{\mathcal{I}}]$ is transitive over Δ_c ; 2 if $(c, d) \in P[sc^{\mathcal{I}}]$ then $c, d \in \Delta_c$ and $C[c] \subseteq C[d]$; Typing I: $x \in C[[c]] \text{ iff } (x, c) \in P[[type^{\mathcal{I}}]];$ 2 if $(p, c) \in P[\text{dom}^{\mathcal{I}}]$ and $(x, y) \in P[p]$ then $x \in C[c]$; **3** if $(p, c) \in P[\operatorname{range}^{\mathcal{I}}]$ and $(x, y) \in P[p]$ then $y \in C[c]$; Typing II: **(1)** For each $e \in \rho df$, $e^{\mathcal{I}} \in \Delta_P$ 2 if $(p, c) \in P$ dom^{*I*} then $p \in \Delta_P$ and $c \in \Delta_C$ **3** if $(p, c) \in P$ [range^{*I*}] then $p \in \Delta_P$ and $c \in \Delta_C$ (a) if $(x, c) \in P[[type^{\mathcal{I}}]]$ then $c \in \Delta_c$

- *G* entails *H* under ρ df, denoted *G* \models *H*, iff
 - every model under ρ df of *G* is also a model under ρ df of *H*
- Note: often P[[sp^I]] (resp. C[[sc^I]]) is also *reflexive* over Δ_P (resp. Δ_C)
 - We omit this requirement and, thus, do NOT support inferences such as

$$\begin{array}{rcl} G &\models & (a, \operatorname{sp}, a) \\ G &\models & (a, \operatorname{sc}, a) \end{array}$$

which anyway are of marginal interest



$$G = \left\{ \begin{array}{ll} (o1, lsAbout, snoopy) & (o2, lsAbout, woodstock) \\ (snoopy, type, dog) & (woodstock, type, bird) \\ (dog, sc, animal) & (bird, sc, animal) \end{array} \right\}$$

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Simple: $\frac{G}{G'}$ for $G' \subseteq G$ 2 Subproperty: $\frac{(A, \text{sp}, B), (B, \text{sp}, C)}{(A, \text{sp}, C)}$ $\frac{(A, \operatorname{sp}, B), (X, A, Y)}{(X, B, Y)}$ (a) (b) Subclass: 3 $\frac{(A, \text{sc}, B), (B, \text{sc}, C)}{(A, \text{sc}, C)}$ $\frac{(A, \text{sc}, B), (X, \text{type}, A)}{(X, \text{type}, B)}$ (b) (a) Typing: 4 $\frac{(A, \text{dom}, B), (X, A, Y)}{(X, \text{type}, B)}$ $\frac{(A, \operatorname{range}, B), (X, A, Y)}{(Y, \operatorname{type}, B)}$ (a) (b) Implicit Typing: (5) $\frac{(A, \text{dom}, B), (C, \text{sp}, A), (X, C, Y)}{(X, \text{type}, B)}$ (A,range,B),(C,sp,A),(X,C,Y) (a) (b) (Y,type,B)

From Fuzzy to Annotated SW Languages

э

< ロ > < 同 > < 回 > < 回 >

We assume that a RDF graph *G* is *ground* and *closed*, i.e., *G* is closed under the application of the rules (2)-(5)
 Conjunctive query: is a Datalog-like rule of the form

 $q(\mathbf{x}) \leftarrow \exists \mathbf{y}. \tau_1, \ldots, \tau_n$

where

- $n \geq 1, \tau_1, \ldots, t_n$ are triples
- **x** is a vector of variables occurring in τ_1, \ldots, τ_n , called the *distinguished variables*
- y are so-called non-distinguished variables and are distinct from the variables in x
- each variable occurring in τ_i is either a distinguished variable or a non-distinguished variable
- If clear from the context, we may omit the exitential quantification \(\exists y\)
- For instance, the query

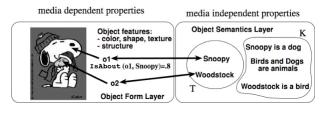
 $q(x, y) \leftarrow (x, creates, y), (x, type, Flemish), (x, paints, y), (y, exhibited, Uffizi)$

has intended meaning to retrieve all the artifacts x created by Flemish artists y, being exhibited at Uffizi Gallery

A simple query answering procedure is the following:

- Compute the closure of a graph off-line
- Store the RDF triples into a Relational database
- Translate the query into a SQL statement
- Execute the SQL statement over the relational database
- In practice, some care should be in place due to the large size of data: $\geq 10^9$ triples
- To date, several systems exists

Example



$$G = \begin{cases} (o1, IsAbout, snoopy) & (o2, IsAbout, woodstock) \\ (snoopy, type, dog) & (woodstock, type, bird) \\ (dog, sc, animal) & (bird, sc, animal) \end{cases}$$

Consider the query

$$q(x) \leftarrow (x, lsAbout, y), (y, type, Animal)$$

Then

answer
$$(G, q) = \{o1, o2\}$$

• Triples may have attached a degree in [0, 1]: for $n \in [0, 1]$

 $\langle (subject, predicate, object), n \rangle$

- Meaning: the degree of truth of the statement is at least n
- For instance,

 $\langle (o1, \textit{IsAbout}, \textit{snoopy}), 0.8 \rangle$

< (□) < 三 > (□)

• Fuzzy RDF triple (or Fuzzy RDF atom):

 $\langle \tau, \textbf{\textit{n}} \rangle \in (\textbf{UBL} \times \textbf{U} \times \textbf{UBL}) \times [0, 1]$

- *s* ∈ UBL is the subject
- $p \in \mathbf{U}$ is the predicate
- *o* ∈ UBL is the object
- $n \in (0, 1]$ is the degree of truth

• Example:

 $\langle (audiTT, type, SportCar), 0.8 \rangle$

A ∰ ▶ A ∃ ▶ A

- Fix a t-norm \otimes
- Fuzzy RDF interpretation \mathcal{I} over a vocabulary V is a tuple

$$\mathcal{I} = \langle \Delta_{R}, \Delta_{P}, \Delta_{C}, \Delta_{L}, P[\![\cdot]\!], C[\![\cdot]\!], \cdot^{\mathcal{I}} \rangle ,$$

where

Δ_R, Δ_P, Δ_C, Δ_L are the interpretations domains of *I P*[[·], *C*[[·]], ·^{*I*} are the interpretation functions of *I*

4 A N

$\mathcal{I} = \langle \Delta_{R}, \Delta_{P}, \Delta_{C}, \Delta_{L}, P[\![\cdot]\!], C[\![\cdot]\!], \cdot^{\mathcal{I}} \rangle$

- \square Δ_R is a nonempty set of resources, called the domain or universe of \mathcal{I} ;
- Δ_P is a set of property names (not necessarily disjoint from Δ_R);
- **3** $\Delta_C \subseteq \Delta_R$ is a distinguished subset of Δ_R identifying if a resource denotes a class of resources;
- ${}^{\textcircled{0}}$ $\Delta_L \subseteq \Delta_R$, the set of literal values, Δ_L contains all plain literals in $L \cap V$;
- P[[·]] maps each property name p ∈ Δ_P into a function P[[p]] : Δ_R × Δ_R → [0, 1],
 i.e. assigns a degree to each pair of resources, denoting the degree of being the pair an instance of the property p;
- **6** $C[\cdot]$ maps each class $c \in \Delta_C$ into a function $C[c] : \Delta_R \to [0, 1]$, i.e. assigns a degree to every resource, denoting the degree of being the resource an instance of the class c;
- ✓ .^{*I*} maps each *t* ∈ **UL** ∩ *V* into a value $t^{I} ∈ \Delta_{R} ∪ \Delta_{P}$, i.e. assigns a resource or a property name to each element of **UL** in *V*, and such that \cdot^{I} is the identity for plain literals and assigns an element in Δ_{R} to elements in **L**;
- **3** \mathcal{I} maps each variable $x \in \mathbf{B}$ into a value $x^{\mathcal{I}} \in \Delta_R$, i.e. assigns a resource to each variable in **B**.

Let G be a graph over ρ df.

- An interpretation \mathcal{I} is a model of G under ρ df, denoted $\mathcal{I} \models G$, iff
 - \mathcal{I} is an interpretation over the vocabulary $\rho df \cup universe(G)$
 - $\bullet \ \mathcal{I}$ satisfies the following conditions:

Simple:

• for each $\langle (s, p, o), n \rangle \in G, p^{\mathcal{I}} \in \Delta_{P} \text{ and } P\llbracket p^{\mathcal{I}} \rrbracket (s^{\mathcal{I}}, o^{\mathcal{I}}) \geq n;$

4 A N

Subproperty:

$$\begin{array}{c} \bullet P[\![sp^{\mathcal{I}}]\!](p,q) \otimes P[\![sp^{\mathcal{I}}]\!](q,r) \leq P[\![sp^{\mathcal{I}}]\!](p,r); \\ \bullet P[\![p^{\mathcal{I}}]\!](x,y) \otimes P[\![sp^{\mathcal{I}}]\!](p,q) \leq P[\![q^{\mathcal{I}}]\!](x,y); \end{array}$$

Subclass:

$$\begin{array}{l} P[sc^{\mathcal{I}}](c,d) \otimes P[sc^{\mathcal{I}}](d,e) \leq P[sc^{\mathcal{I}}](c,e);\\ C[c^{\mathcal{I}}](x) \otimes P[sc^{\mathcal{I}}](c,d) \leq P[d^{\mathcal{I}}](x); \end{array}$$

Typing I:

 $C[[c]](x) = P[[type^{\mathcal{I}}](x,c);$ $P[[dom^{\mathcal{I}}](\rho,c) \otimes P[[\rho]](x,y) \leq C[[c]](x);$ $P[[range^{\mathcal{I}}]](\rho,c) \otimes P[[\rho]](x,y) \leq C[[c]](y);$

Typing II:

For each $e \in \rho df$, $e^{\mathcal{I}} \in \Delta_P$; $P[sp^{\mathcal{I}}](p,q)$ is defined only for $p, q \in \Delta_P$; $C[sc^{\mathcal{I}}](c,d)$ is defined only for $c, d \in \Delta_C$; $P[dom^{\mathcal{I}}](p,c)$ is defined only for $p \in \Delta_P$ and $c \in \Delta_C$; $P[range^{\mathcal{I}}](p,c)$ is defined only for $p \in \Delta_P$ and $c \in \Delta_C$; $P[type^{\mathcal{I}}](s,c)$ is defined only for $c \in \Delta_C$. $G = \{ \langle (audiTT, type, SportsCar), 0.8 \rangle, \langle (SportsCar, sc, PassengerCar), 0.9 \rangle \}$ t-norm: Product

 $\mathcal{I} = \langle \Delta_{R}, \Delta_{P}, \Delta_{C}, \Delta_{L}, P[\![\cdot]\!], C[\![\cdot]\!], \cdot^{\mathcal{I}} \rangle$

$$\begin{array}{rcl} \Delta_{R} & = & \{audiTT, SportsCar, PassengerCar\} \\ \Delta_{P} & = & \{type, sc\} \\ \Delta_{C} & = & \{SportsCar, PassengerCar\} \\ P[type] & = & \{\langle\langle audiTT, SportsCar\rangle, 0.8\rangle, \langle\langle audiTT, PassengerCar\rangle, 0.72\rangle\} \\ P[sc] & = & \{\langle\langle SportsCar, PassengerCar\rangle, 0.9\rangle\} \\ C[SportsCar] & = & \{\langle audiTT, 0.8\rangle\} \\ C[PassengerCar] & = & \{\langle audiTT, 0.72\rangle\} \\ t^{\mathcal{I}} & = & t \text{ for all } t \in \mathbf{UL} \\ \mathcal{I} & \models & \mathbf{G} \\ \end{array}$$

Ξ.

イロト イ団ト イヨト イヨト

• Very simple: (AG) $\frac{\langle \tau_1, n_1 \rangle, ..., \langle \tau_k, n_k, \{\tau_1, \dots, \tau_k\} \vdash_{\mathsf{RDFS}} \tau \rangle}{\langle \tau, \bigotimes_i \lambda_i \rangle}$

From Fuzzy to Annotated SW Languages

< ロ > < 同 > < 回 > < 回 >

Deduction System for fuzzy RDFS

Simple: $\frac{G}{C'}$ for $G' \subseteq G$ Subproperty: $\frac{\langle (A, \operatorname{sp}, B), n \rangle, \langle (B, \operatorname{sp}, C), m \rangle}{\langle (A, \operatorname{sp}, C), n \otimes m \rangle}$ $\frac{\langle (A, \mathsf{sp}, B), n \rangle, \langle (X, A, Y), m \rangle}{\langle (X, B, Y), n \otimes m \rangle}$ (b) (a) Subclass: $\frac{\langle (A, \mathrm{sc}, B), n \rangle, \langle (B, \mathrm{sc}, C), m \rangle}{\langle (A, \mathrm{sc}, C), n \otimes m \rangle}$ $\frac{\langle (A, \text{sc}, B), n \rangle, \langle (X, \text{type}, A), m \rangle}{\langle (X, \text{type}, B), n \otimes m \rangle}$ (a) (b) Typing: $\frac{\langle (A, \operatorname{dom}, B), n \rangle, \langle (X, A, Y), m \rangle}{\langle (X, \operatorname{type} B), n \otimes m \rangle}$ $\frac{\langle (A, \text{range}, B), n \rangle, \langle (X, A, Y), m \rangle}{\langle (Y, \text{type } B), n \otimes m \rangle}$ (a) (b) Implicit Typing: $\frac{\langle (A, \text{dom}, B), n \rangle, \langle (C, \text{sp}, A), m \rangle, \langle (X, C, Y), r \rangle}{\langle (X, \text{type}, B), n \otimes m \otimes r \rangle}$ (a) $\frac{\langle (A, \text{range}, B), n \rangle, \langle (C, \text{sp}, A), m \rangle, \langle (X, C, Y), r \rangle}{\langle (Y, \text{type}, B), n \otimes m \otimes r \rangle}$ (b)

э

Fuzzy RDFS Query Answering

We assume that a fuzzy RDF graph G is ground and closed, i.e., G is closed under the application of the rules (2)-(5)

Conjunctive query: extends a crisp RDF query and is of the form

 $\langle q(\mathbf{x}), s \rangle \leftarrow \exists \mathbf{y}, \langle \tau_1, s_1 \rangle, \dots, \langle \tau_n, s_n \rangle, s = f(s_1, \dots, s_n, p_1(\mathbf{z}_1), \dots, p_h(\mathbf{z}_h))$

where additionally

- z_i are tuples of terms in UL or variables in x or y;
- p_i is an n_i-ary fuzzy predicate assigning to each n_j-ary tuple t_j in UL a score p_i(t_j) ∈ [0, 1]. Such predicates are called *expensive predicates* as the score is not pre-computed off-line, but is computed on query execution. We require that an n-ary fuzzy predicate p is safe, that is, there is not an m-ary fuzzy predicate p' such that m < n and p = p'. Informally, all parameters are needed in the definition of p;</p>
- *f* is a *scoring* function $f: ([0, 1])^{n+h} \to [0, 1]$, which combines the scores s_i of the *n* triples and the *h* fuzzy predicates into an overall *score* to be assigned to the rule head. We assume that *f* is *monotone*, that is, for each $\mathbf{v}, \mathbf{v}' \in ([0, 1])^{n+h}$ such that $\mathbf{v} \leq \mathbf{v}'$, it holds $f(\mathbf{v}) \leq f(\mathbf{v}')$, where $(v_1, \ldots, v_{n+h}) \leq (v'_1, \ldots, v'_{n+h})$ iff $v_i \leq v'_i$ for all *i*;
- the scoring variables s and s_i are distinct from those in x and y and s is distinct from each s_i
- If clear from the context, we may omit the exitential quantification \(\exit{y}\)
- We may omit s_i and in that case $s_i = 1$ is assumed
- s = f(s₁,..., s_n, p₁(z₁),..., p_h(z_h)) is called the *scoring atom*. We may also omit the scoring atom and in that case s = 1 is assumed.
- For instance, the query

 $\langle q(x), s \rangle \leftarrow \langle (x, \text{type}, \text{SportCar}), s_1 \rangle, (x, \text{hasPrice}, y), s = s_1 \cdot \text{cheap}(y)$

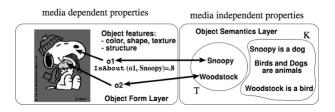
where e.g. cheap(p) = Is(0, 10000, 12000), has intended meaning to retrieve all cheap sports car. Any answer is scored according to the product of being cheap and a sports car

Top-k Retrieval: Given a fuzzy graph *G*, and a query *q*, retrieve *k* answers $\langle \mathbf{t}, s \rangle$ with maximal scores and rank them in decreasing order relative to the score *s*, denoted

 $ans_k(G,q) = Top_k answer(G,q)$

- A simple query answering procedure is the following:
 - Compute the closure of a graph off-line
 - Store the fuzzy RDF triples into a relational database supporting Top-k retrieval (e.g., RankSQL, Postgres)
 - Translate the fuzzy query into a top-k SQL statement
 - Execute the SQL statement over the relational database
 - Few systems exists, e.g. FuzzyRDF, AnQL (http://anql.deri.org/)

Example



$$G = \begin{cases} \langle (01, IsAbout, snoopy), 0.8 \rangle & \langle (02, IsAbout, woodstock), 0.9 \rangle \\ (snoopy, type, dog) & (woodstock, type, bird) \\ \langle (Bird, sc, SmallAnimal), 0.7 \rangle & \langle (Dog, sc, SmallAnimal), 0.4 \rangle \\ (dog, sc, Animal) & (bird, sc, Animal) \\ (SmallAnimal, sc, Animal) \end{cases}$$

Consider the query

$$\langle q(x), s \rangle \leftarrow \langle (x, lsAbout, y), s_1 \rangle, \langle (y, type, Animal), s_2 \rangle, s = s_1 \cdot s_2$$

Then (under any t-norm)

$$ans(G,q) = \{ \langle o1, 0.32 \rangle, \langle o2, 0.63 \rangle \}, ans_1(G,q) = \{ \langle o2, 0.63 \rangle \}$$

Annotation domains & RDFS

Generalisation of fuzzy RDFS

- a triple is annotated with a value λ taken from a so-called annotation domain, rather than with a value in [0,1]
- allows to deal with several domains (such as, fuzzy, temporal, provenance) and their combination, in a uniform way

Time

- (umberto, workedFor, IEI)
- true during 1992–2001

Fuzzyness

- (WingateHotel, closeTo, RR11Venue)
- true to some degree

Provenance

- (umberto, knows, didier)
- true in http://www.straccia.info/foaf.rdf

A I > A I > A

Annotation Domain: idempotent, commutative semi-ring

 $\textit{D} = \langle \textit{L}, \oplus, \otimes, \bot, \top \rangle$

where \oplus is \top -annihilating, i.e.

- ⊕ is idempotent, commutative, associative;
- $2 \otimes$ is commutative and associative;

• is distributive over \oplus , i.e. $\lambda_1 \otimes (\lambda_2 \oplus \lambda_3) = (\lambda_1 \otimes \lambda_2) \oplus (\lambda_1 \otimes \lambda_3);$

Induced partial order:

$$\lambda_1 \preceq \lambda_2 \iff \lambda_1 \oplus \lambda_2 = \lambda_2$$

• Annotated triple: for $\lambda \in L$

 $\langle (\boldsymbol{s}, \boldsymbol{p}, \boldsymbol{o}), \lambda \rangle$

• For instance,

 $\langle (umberto, workedFor, IEI), [1992, 2001] \rangle$

((WingateHotel, closeTo, RR11Venue), 0.8)

((umberto, knows, didier), http://www.straccia.info/foaf.rdf)

Annotation Domains: Examples

Illustration by Example: Time

- An Annotation Domain consists of
 - A set L of annotation values
 - e.g. [1968, 2000] and {[1968, 2000], [2003, 2004]}
 - An order between elements:
 - if $\lambda \preceq \lambda'$, then $\langle \tau, \lambda \rangle$ is true to a lesser extent than $\langle \tau', \lambda' \rangle$
 - e.g. [1968, 2000] \preceq [1952, 2007] (\preceq is \subseteq)
 - Top and bottom ellements:
 - $\top = [-\infty, +\infty], \bot = \emptyset$
 - "Conjunction" function \otimes
 - $[1992, 2001] \otimes [1968, 2000] = [1992, 2000] (\otimes is \cap)$
 - $\bullet~$ "Combination" function $\oplus~$
 - [1992, 2001] ⊕ [1995, 2003] = [1992, 2003]
 - $[1992, 1996] \oplus [2001, 2009] = \{ [1992, 1996], [2001, 2009] \}$

A (10) N (10) N (10)

Examples

• Fuzzy: ((WingateHotel, closeTo, RR11Venue), 0.8)

- *L* = [0, 1]
- $\bullet \ \otimes = \text{any t-norm}$
- $\vee = \max$
- Provenance: ((umberto, knows, didier), p)
 - L = DNF propositional formulae over URIs
 - $\otimes = \wedge$
 - $\vee = \vee$

Multiple Domains: our frameworks allows to combine domains

 $\langle (CountryXXX, type, Dangerous), \langle [1975, 1983], 0.8, 0.6 \rangle \rangle$

 $\mathit{Time} \times \mathit{Fuzzy} \times \mathit{Trust}$

Inference rule:

$$\frac{\langle \tau_1, \lambda_1 \rangle, \ldots, \langle \tau_k, \lambda_k, \{\tau_1, \ldots, \tau_k\} \vdash_{\mathsf{RDFS}} \tau \rangle}{\langle \tau, \bigotimes_j \lambda_j \rangle}$$

- Annotated conjunctive queries are as fuzzy queries, except that now variables *s* and *s_i* range over *L* in place of [0, 1];
- A query answering procedure is similar as for the fuzzy case: compute the closure, store it on a relation database and transform an annotated CQ into a SQL query
- Computational complexity: same as for crisp RDFS plus the cost of ⊗, ⊕ and the scoring function *f* in the body of a query
- A prototype Prolog implementation is available

```
http://anql.deri.org/
```

The case of Description Logics

From Fuzzy to Annotated SW Languages

• Concept/Class: names are equivalent to unary predicates

- In general, concepts equiv to formulae with one free variable
- Role or attribute: names are equivalent to binary predicates
 - In general, roles equiv to formulae with two free variables
- Taxonomy: Concept and role hierarchies can be expressed
- Individual: names are equivalent to constants
- Operators: restricted so that
 - Language is decidable and, if possible, of low complexity
 - No need for explicit use of variables
 - $\bullet~$ Restricted form of $\exists~ and~\forall~$
 - Features such as counting can be succinctly expressed

- Basic ingredients: descriptions of classes, properties, and their instances, such as
 - a:C, meaning that individual a is an instance of concept/class C

a:Person □ ∀hasChild.Femal

• (a, b):*R*, meaning that the pair of individuals $\langle a, b \rangle$ is an instance of the property/role *R*

(tom, mary):hasChild

• $C \sqsubseteq D$, meaning that the class *C* is a subclass of class *D*

 $Person \sqsubseteq \forall hasChild.Person$

A (B) < (B) < (B)</p>

- A given DL is defined by set of concept and role forming operators
- Basic language: ALC (Attributive Language with Complement)

Syntax	Semantics	Example
$C, D \rightarrow \top$	$ \top(x)$	
1	$ \perp (x)$	
A	A(x)	Human
$C \sqcap D$	$C(x) \wedge D(x)$	Human ⊓ Male
$C \sqcup D$	$C(x) \vee D(x)$	Nice 🗆 Rich
$\neg C$	$ \neg C(x)$	¬ <i>Meat</i>
∃ <i>R</i> . <i>C</i>	$\exists y.R(x,y) \wedge C(y)$	∃has_child.Blond
∀ <i>R</i> . <i>C</i>	$\forall y.R(x,y) \Rightarrow C(y)$	∀has_child.Human
$C \sqsubseteq D$	$\forall x. C(x) \Rightarrow D(x)$	Happy_Father \sqsubseteq Man $\sqcap \exists$ has_child.Female
a:C	C(a)	John:Happy_Father

• • • • • • • • • • • • •

э

DL Semantics

• Semantics is given in terms of an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where

- $\Delta^{\mathcal{I}}$ is the domain (a non-empty set)
- \mathcal{I} is an interpretation function that maps:
 - Concept (class) name A into a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$
 - Role (property) name R into a subset $R^{\mathcal{I}}$ of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - Individual name *a* into an element of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ s.t. $a^{\mathcal{I}} \neq b^{\mathcal{I}}$ if $a \neq b$ (UNA)
- Interpretation function ·^I is extended to concept expressions:

$$\begin{array}{rcl} \boldsymbol{\top}^{\mathcal{I}} &=& \boldsymbol{\Delta}^{\mathcal{I}} \\ \boldsymbol{\bot}^{\mathcal{I}} &=& \boldsymbol{\emptyset} \\ [\mathcal{C}_1 \sqcap \mathcal{C}_2)^{\mathcal{I}} &=& \mathcal{C}_1^{\mathcal{I}} \sqcap \mathcal{C}_2^{\mathcal{I}} \\ (\mathcal{C}_1 \sqcup \mathcal{C}_2)^{\mathcal{I}} &=& \mathcal{C}_1^{\mathcal{I}} \cup \mathcal{C}_2^{\mathcal{I}} \\ (\neg \mathcal{C})^{\mathcal{I}} &=& \boldsymbol{\Delta}^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}} \\ [\exists \mathcal{R}. \mathcal{C}]^{\mathcal{I}} &=& \{x \in \boldsymbol{\Delta}^{\mathcal{I}} \mid \exists \mathcal{Y}. \langle x, y \rangle \in \boldsymbol{R}^{\mathcal{I}} \land y \in \boldsymbol{C}^{\mathcal{I}} \} \\ (\forall \mathcal{R}. \mathcal{C})^{\mathcal{I}} &=& \{x \in \boldsymbol{\Delta}^{\mathcal{I}} \mid \forall \mathcal{Y}. \langle x, y \rangle \in \boldsymbol{R}^{\mathcal{I}} \Rightarrow y \in \mathcal{C}^{\mathcal{I}} \} \end{array}$$

Finally, we say that

- \mathcal{I} is a model of $C \sqsubseteq D$, written $\mathcal{I} \models C \sqsubseteq D$, iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ \mathcal{I} is a model of *a*:*C*, written $\mathcal{I} \models a$:*C*, iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- \mathcal{I} is a model of (a, b):R, written $\mathcal{I} \models (a, b)$:R, iff $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$

э

イロト イポト イヨト イヨト

Note on DL Naming

- $\mathcal{AL}: \quad \mathcal{C}, \mathcal{D} \quad \longrightarrow \quad \top \quad | \perp \quad |\mathcal{A} \mid \mathcal{C} \sqcap \mathcal{D} \mid \neg \mathcal{A} \mid \exists \mathcal{R}. \top \quad |\forall \mathcal{R}. \mathcal{C}$
 - $\mathcal{C}\text{: Concept negation, } \neg \textit{C}\text{. Thus, } \mathcal{ALC} = \mathcal{AL} + \mathcal{C}$
 - $\mathcal{S} {:}~ \text{Used for } \mathcal{ALC} \text{ with transitive roles } \mathcal{R}_{+}$
 - \mathcal{U} : Concept disjunction, $C_1 \sqcup C_2$
 - \mathcal{E} : Existential quantification, $\exists R.C$
 - \mathcal{H} : Role inclusion axioms, $R_1 \sqsubseteq R_2$, e.g. *is_component_of* \sqsubseteq *is_part_of*
 - \mathcal{N} : Number restrictions, ($\geq n R$) and ($\leq n R$), e.g. ($\geq 3 has_Child$) (has at least 3 children)
 - Q: Qualified number restrictions, (≥ n R.C) and (≤ n R.C), e.g. (≤ 2 has_Child.Adult) (has at most 2 adult children)
 - \mathcal{O} : Nominals (singleton class), {*a*}, e.g. $\exists has_child.{mary}$. Note: *a*:*C* equiv to {*a*} \sqsubseteq *C* and (*a*, *b*):*R* equiv to {*a*} \sqsubseteq $\exists R.{b}$
 - \mathcal{I} : Inverse role, R^- , e.g. *isPartOf* = *hasPart*⁻
 - *F*: Functional role, *f*, e.g. *functional(hasAge)*
- R+: transitive role, e.g. *transitive*(*isPartOf*)

For instance,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Semantics of Additional Constructs

- $\mathcal{H}: \text{ Role inclusion axioms, } \mathcal{I} \models R_1 \sqsubseteq R_2 \text{ iff } R_1^{\mathcal{I}} \subseteq R_1^{\mathcal{I}}$
- $\begin{array}{l} \mathcal{N}: \text{ Number restrictions, } (\geq n \ R)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} : |\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\}| \geq n\}, \\ (\leq n \ R)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} : |\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\}| \leq n\} \end{array}$
- $\begin{array}{l} \mathcal{Q}: \mbox{ Qualified number restrictions,} \\ (\geq n \ R.C)^{\mathcal{I}} = \{x \in |\{y \mid \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}| \geq n\}, \\ (\leq n \ R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} : |\{y \mid \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}| \leq n\} \end{array}$
- \mathcal{O} : Nominals (singleton class), $\{a\}^{\mathcal{I}} = \{a^{\mathcal{I}}\}$
- $\mathcal{I}: \text{ Inverse role, } (R^{-})^{\mathcal{I}} = \{ \langle x, y \rangle \mid \langle y, x \rangle \in R^{\mathcal{I}} \}$
- \mathcal{F} : Functional role, $I \models fun(f)$ iff $\forall z \forall y \forall z$ if $\langle x, y \rangle \in f^{\mathcal{I}}$ and $\langle x, z \rangle \in f^{\mathcal{I}}$ the y = z
- $\mathcal{R}_+: \text{ transitive role, } (\mathcal{R}_+)^{\mathcal{I}} = \{ \langle x, y \rangle \mid \exists z \text{ such that } \langle x, z \rangle \in \mathcal{R}^{\mathcal{I}} \land \langle z, y \rangle \in \mathcal{R}^{\mathcal{I}} \}$

< ロ > < 同 > < 回 > < 回 >

• Concrete domains: reals, integers, strings, ...

(tim, 14):hasAge (sf, "SoftComputing"):hasAcronym (source1, "ComputerScience"):isAbout (service2, "InformationRetrievalTool"):Matches Minor = Person ⊓ ∃hasAge. ≤₁₈

• Semantics: a clean separation between "object" classes and concrete domains

- $D = \langle \Delta_D, \Phi_D \rangle$
- Δ_D is an interpretation domain
- Φ_D is the set of concrete domain predicates *d* with a predefined arity *n* and fixed interpretation d^D ⊆ Δⁿ_D
- Concrete properties: $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta_{D}$

Notation: (D). E.g., ALC(D) is ALC + concrete domains

• A DL Knowledge Base is a pair $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$, where

- \mathcal{T} is a TBox
 - containing general inclusion axioms of the form $C \sqsubseteq D$,
 - concept definitions of the form A = C
 - primitive concept definitions of the form $A \sqsubseteq C$
 - role inclusions of the form $R \sqsubseteq P$
 - role equivalence of the form R = P
- \mathcal{A} is a ABox
 - containing assertions of the form *a*:*C*
 - containing assertions of the form (a, b):R

• An interpretation \mathcal{I} is a model of \mathcal{K} , written $\mathcal{I} \models \mathcal{K}$ iff $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models \mathcal{A}$, where

- $\mathcal{I} \models \mathcal{T}$ (\mathcal{I} is a model of \mathcal{T}) iff \mathcal{I} is a model of each element in \mathcal{T}
- $\mathcal{I} \models \mathcal{A}$ (\mathcal{I} is a model of \mathcal{A}) iff \mathcal{I} is a model of each element in \mathcal{A}

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consistency: Check if knowledge is meaningful

- Is \mathcal{K} satisfiability? \mapsto Is there some model \mathcal{I} of \mathcal{K} ?
- Is C satisfiability? $\mapsto C^{\mathcal{I}} \neq \emptyset$ for some some model \mathcal{I} of \mathcal{K} ?

Subsumption: structure knowledge, compute taxonomy

• $\mathcal{K} \models C \sqsubseteq D$? \mapsto Is it true that $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{K} ?

Equivalence: check if two classes denote same set of instances

• $\mathcal{K} \models C = D$? \mapsto ls it true that $C^{\mathcal{I}} = D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{K} ?

Instantiation: check if individual a instance of class C

• $\mathcal{K} \models a:C$? \mapsto Is it true that $a^{\mathcal{I}} \in C^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{K} ?

Retrieval: retrieve set of individuals that instantiate C

• Compute the set $\{a \mid \mathcal{K} \models a:C\}$

< 回 > < 回 > < 回 > -

Problems are all reducible to KB satisfiability

Subsumption: $\mathcal{K} \models C \sqsubseteq D$ iff $\langle \mathcal{T}, \mathcal{A} \cup \{a: C \sqcap \neg D\} \rangle$ not satisfiable, where *a* is a new individual

Equivalence: $\mathcal{K} \models \mathcal{C} = \mathcal{D}$ iff $\mathcal{K} \models \mathcal{C} \sqsubseteq \mathcal{D}$ and $\mathcal{K} \models \mathcal{D} \sqsubseteq \mathcal{C}$

Instantiation: $\mathcal{K} \models a: C$ iff $\langle \mathcal{T}, \mathcal{A} \cup \{a: \neg C\} \rangle$ not satisfiable

Retrieval: The computation of the set $\{a \mid \mathcal{K} \models a:C\}$ is reducible to the instance checking problem

- OWL 2: tableaux based algorithms
- OWL 2 EL: structural based algorithms
- OWL 2 QL: query rewriting based algorithms
- OWL 2 RL: logic programming based algorithms

- Tableaux algorithm deciding satisfiability
- Try to build a tree-like model \mathcal{I} of the KB
- Decompose concepts C syntactically
 - Apply tableau expansion rules
 - Infer constraints on elements of model
- Tableau rules correspond to constructors in logic $(\sqcap, \sqcup, ...)$
 - Some rules are nondeterministic (e.g., \sqcup , \leq)
 - In practice, this means search
- Stop when no more rules applicable or clash occurs
 - Clash is an obvious contradiction, e.g., A(x), $\neg A(x)$
- Cycle check (blocking) may be needed for termination

 We have to transform concepts into Negation Normal Form: push negation inside using de Morgan' laws

$$\neg \top \mapsto \qquad \bot$$
$$\neg \bot \mapsto \qquad \top$$
$$\neg \neg C \mapsto \qquad C$$
$$\neg (C_1 \sqcap C_2) \mapsto \neg C_1 \sqcup \neg C_2$$
$$\neg (C_1 \sqcup C_2) \mapsto \neg C_1 \sqcap \neg C_2$$

and

$$\neg(\exists R.C) \mapsto \forall R.\neg C \\ \neg(\forall R.C) \mapsto \exists R.\neg C$$

• • • • • • • • • • • • •

This is a forest of trees, where

- each node x is labelled with a set L(x) of concepts
- each edge (x, y) is labelled with L((x, y)) = {R} for some role R (edges correspond to relationships between pairs of individuals)
- The forest is initialized with
 - a root node *a*, labelled $\mathcal{L}(x) = \emptyset$ for each individual *a* occurring in the KB
 - an edge $\langle a, b \rangle$ labelled $\mathcal{L}(\langle a, b \rangle) = \{R\}$ for each (a, b): *R* occurring in the KB
- Then, for each *a*:*C* occurring in the KB, set $\mathcal{L}(a) \to \mathcal{L}(a) \cup \{C\}$
- The algorithm expands the tree either by extending $\mathcal{L}(x)$ for some node x or by adding new leaf nodes.
- Edges are added when expanding ∃R.C
- A completion-forest contains a clash if, for a node x, $\{C, \neg C\} \subseteq \mathcal{L}(x)$
- If nodes x and y are connected by an edge (x, y), then y is called a successor of x and x is called a predecessor of y. Ancestor is the transitive closure of predecessor.
- A node y is called an R-successor of a node x if y is a successor of x and $\mathcal{L}(\langle x, y \rangle) = \{R\}$.
- The algorithm returns "satisfiable" if rules can be applied s.t. they yield a clash-free, complete (no more rules can be applied) completion forest

Rule		Description
(□)		$C_1 \sqcap C_2 \in \mathcal{L}(x) \text{ and} \{C_1, C_2\} \not\subseteq \mathcal{L}(x) \mathcal{L}(x) \to \mathcal{L}(x) \cup \{C_1, C_2\}$
(⊔)	2.	$egin{aligned} &\mathcal{C}_1 \sqcup \mathcal{C}_2 \in \mathcal{L}(x) ext{ and } \ &\{\mathcal{C}_1,\mathcal{C}_2\} \cap \mathcal{L}(x) = \emptyset \ &\mathcal{L}(x) o \mathcal{L}(x) \cup \{\mathcal{C}\} ext{ for some } \mathcal{C} \in \{\mathcal{C}_1,\mathcal{C}_2\} \end{aligned}$
(∃)	if 1. 2. then	$ \exists R.C \in \mathcal{L}(x) \text{ and } \\ x \text{ has no } R \text{-successor } y \text{ with } C \in \mathcal{L}(y) \\ \text{create a new node } y \text{ with } \mathcal{L}(\langle x, y \rangle) = \{R\} \text{ and } \mathcal{L}(y) = \{C\} $
(∀)	if 1. 2. then	$orall R.C \in \mathcal{L}(x)$ and x has an <i>R</i> -successor y with $C \notin \mathcal{L}(y)$ $\mathcal{L}(y) \rightarrow \mathcal{L}(y) \cup \{C\}$

イロト イ団ト イヨト イヨト

$\mathcal{L}(x) = \{ \exists R.C \sqcap \forall R.(\neg C \sqcup \neg D) \sqcap \exists R.D \}$

X

U. Straccia, F. Bobillo

From Fuzzy to Annotated SW Languages

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\mathcal{L}(x) = \{ \exists R.C \sqcap \forall R.(\neg C \sqcup \neg D) \sqcap \exists R.D \}$$

X

U. Straccia, F. Bobillo

From Fuzzy to Annotated SW Languages

 $\mathcal{L}(x) = \{ \exists R.C \sqcap \forall R.(\neg C \sqcup \neg D) \sqcap \exists R.D \}$

х

U. Straccia, F. Bobillo

From Fuzzy to Annotated SW Languages

イロト イヨト イヨト イヨト

 $\mathcal{L}(x) = \{\exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D\}$

х

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\mathcal{L}(x) = \{ \exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D \}$$

х

U. Straccia, F. Bobillo

From Fuzzy to Annotated SW Languages

$$\mathcal{L}(x) = \{ \exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D \}$$

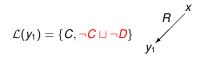
$$\mathcal{L}(y_1) = \{C\}_{y_1}^{R}$$

$$\mathcal{L}(x) = \{ \exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D \}$$

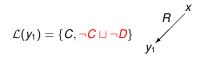
$$\mathcal{L}(y_1) = \{C\}_{y_1}^{R}$$

< ロ > < 同 > < 回 > < 回 >

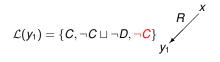
$$\mathcal{L}(x) = \{\exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D\}$$



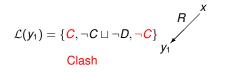
$$\mathcal{L}(x) = \{ \exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D \}$$



$$\mathcal{L}(x) = \{ \exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D \}$$

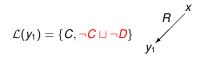


$$\mathcal{L}(x) = \{\exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D\}$$



A (10) A (10)

$$\mathcal{L}(x) = \{ \exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D \}$$



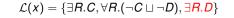
< ロ > < 同 > < 回 > < 回 >

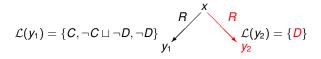
$$\mathcal{L}(x) = \{ \exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D \}$$

$$\mathcal{L}(y_1) = \{C, \neg C \sqcup \neg D, \neg D\}_{y_1}^{X}$$

$$\mathcal{L}(x) = \{ \exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D \}$$

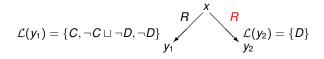
$$\mathcal{L}(y_1) = \{C, \neg C \sqcup \neg D, \neg D\}_{y_1}^{X}$$

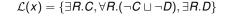


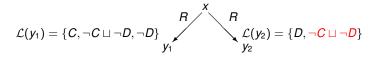


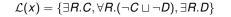
From Fuzzy to Annotated SW Languages

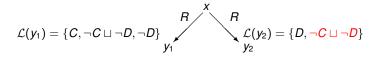
 $\mathcal{L}(x) = \{\exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D\}$



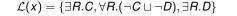


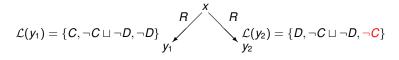






From Fuzzy to Annotated SW Languages





From Fuzzy to Annotated SW Languages

Example

Is $\exists R.C \sqcap \forall R.(\neg C \sqcup \neg D) \sqcap \exists R.D$ satisfiable? Yes.

$$\mathcal{L}(x) = \{ \exists R.C, \forall R.(\neg C \sqcup \neg D), \exists R.D \}$$

$$\mathcal{L}(y_1) = \{C, \neg C \sqcup \neg D, \neg D\}$$

$$R$$

$$R$$

$$\mathcal{L}(y_2) = \{D, \neg C \sqcup \neg D, \neg C\}$$

$$y_1$$

$$y_2$$

Finished. No more rules applicable and the tableau is complete and clash-free

- Hence, the concept is satisfiable
- The tree corresponds to a model $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - The nodes are the elements of the domain: $\Delta^{\mathcal{I}} = \{x, y_1, y_2\}$
 - For each atomic concept A, set $A^{\mathcal{I}} = \{z \mid A \in \mathcal{L}(z)\}$

•
$$C^{\mathcal{I}} = \{y_1\}, D^{\mathcal{I}} = \{y_2\}$$

• For each role *R*, set $R^{\mathcal{I}} = \{ \langle x, y \rangle \mid \text{ there is an edge labeled } R \text{ from } x \text{ to } y \}$

•
$$R^{\mathcal{I}} = \{ \langle x, y_1 \rangle, \langle x, y_2 \rangle \}$$

• It can be shown that $x \in (\exists R.C \sqcap \forall R.(\neg C \sqcup \neg D) \sqcap \exists R.D)^{\mathcal{I}} \neq \emptyset$

э.

Theorem

Let A be an ALC ABox and F a completion-forest obtained by applying the tableau rules to A. Then

- The rule application terminates;
- If F is clash-free and complete, then F defines a (canonical) (tree) model for A; and
- If A has a model I, then the rules can be applied such that they yield a clash-free and complete completion-forest.

- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable with $\mathcal{T} \neq \emptyset$?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x . \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - $\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\$ $\mathcal{A} = \{umberto:Human\}$

 $\mathcal{L}(umberto) = \{Human, \neg Human \sqcup \exists hasMother.Human\}$

umberto

・ロト ・ 四ト ・ ヨト ・ ヨト

э

- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable with $\mathcal{T} \neq \emptyset$?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

$$\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\$$

 $\mathcal{A} = \{umberto:Human\}$

 $\mathcal{L}(umberto) = \{Human, \neg Human \sqcup \exists hasMother.Human\}$

umberto

< ロ > < 同 > < 回 > < 回 >

- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

$$\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\$$

 $\mathcal{A} = \{umberto:Human\}$

 $\mathcal{L}(umberto) = \{Human, \neg Human \sqcup \exists hasMother. Human\}$

umberto

- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - $\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}$ $\mathcal{A} = \{umberto:Human\}$

 $\mathcal{L}(\textit{umberto}) = \{\textit{Human}, \neg \textit{Human} \sqcup \exists \textit{hasMother}.\textit{Human}, \neg \textit{Human}\} \qquad \textit{umberto}$

э.

- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

 $\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}$ $\mathcal{A} = \{umberto:Human\}$

 $\mathcal{L}(umberto) = \{ Human, \neg Human \sqcup \exists hasMother.Human, \neg Human \} umberto$ Clash

э.

- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - $\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\$ $\mathcal{A} = \{umberto:Human\}$

 $\mathcal{L}(umberto) = \{Human, \neg Human \sqcup \exists hasMother. Human\}$

umberto

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - $\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\$ $\mathcal{A} = \{umberto:Human\}$

 $\mathcal{L}(umberto) = \{Human, \neg Human \sqcup \exists hasMother.Human, \exists hasMother.Human\}$ umberto

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed

• E.g., consider
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$

$$\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\$$

 $\mathcal{A} = \{umberto:Human\}$

 $\mathcal{L}(umberto) = \{Human, \neg Human \sqcup \exists hasMother. Human, \exists hasMother. Human\} umberto$

< ロ > < 同 > < 回 > < 回 >

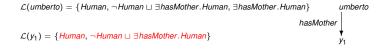
- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$

• we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node

But, termination is not guaranteed

• E.g., consider
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$

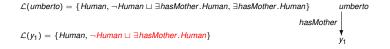
$$\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\} \\ \mathcal{A} = \{umberto:Human\}$$



- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

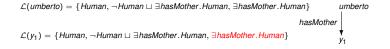
$$\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\$$

 $\mathcal{A} = \{umberto:Human\}$



- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

$$\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\ \mathcal{A} = \{umberto:Human\}$$

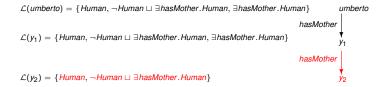


166 / 239

- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

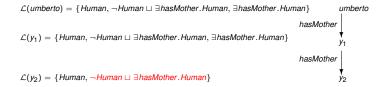
$$\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\$$

 $\mathcal{A} = \{umberto:Human\}$



- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

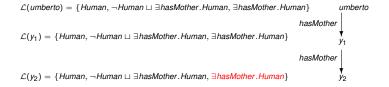
$$\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\ \mathcal{A} = \{umberto:Human\}$$



- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

$$\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\$$

 $\mathcal{A} = \{umberto:Human\}$



- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

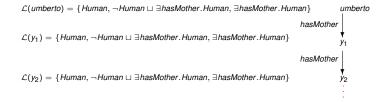
$$\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\$$

 $\mathcal{A} = \{umberto:Human\}$

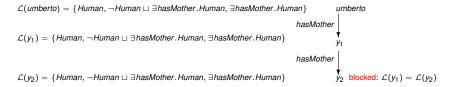
- We have seen how to test the satisfiability of an ABox A
- But, how can we check if a KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable?
- Basic idea: since $t(C \sqsubseteq D) \equiv \forall x. \neg t(C, x) \lor t(D, x)$
 - we use the rule: for each $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node
- But, termination is not guaranteed
 - E.g., consider $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

$$\mathcal{T} = \{Human \sqsubseteq \exists hasMother.Human\}\$$

 $\mathcal{A} = \{umberto:Human\}$



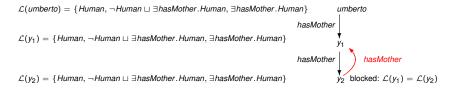
- When creating new node, check ancestors for equal label set
- If such a node is found, new node is blocked
- No rule is applied to blocked nodes



< 同 > < ∃ >

Node Blocking in \mathcal{ALC}

- When creating new node, check ancestors for equal label set
- If such a node is found, new node is blocked
- No rule is applied to blocked nodes



- Block represents cyclical model
 - $\Delta^{\mathcal{I}} = \{ umberto, y_1, y_2 \}$
 - Human^{$\mathcal{I}} = {umberto, y_1, y_2}$ </sup>
 - hasMother^{\mathcal{I}} = { $\langle umberto, y_1 \rangle, \langle y_1, y_2 \rangle, \langle y_2, y_1 \rangle$ }

- A non-root node x is blocked if for some ancestor y, y is blocked or L(x) = L(y), where y is not a root node
- A blocked node *x* is indirectly blocked if its predecessor is blocked, otherwise it is directly blocked
- If x is directly blocked, it has a unique ancestor y such that

 L(x) = *L*(y)
- if there existed another ancestor z such that L(x) = L(z) then either y or z must be blocked
- If x is directly blocked and y is the unique ancestor such that $\mathcal{L}(x) = \mathcal{L}(y)$, we will say that y blocks x

< 回 > < 回 > < 回 >

Rule		Description
(□)	if 1. 2. then	
(⊔)		$C_1 \sqcup C_2 \in \mathcal{L}(x)$, <i>x</i> is not indirectly blocked and $\{C_1, C_2\} \cap \mathcal{L}(x) = \emptyset$ $\mathcal{L}(x) \to \mathcal{L}(x) \cup \{C\}$ for some $C \in \{C_1, C_2\}$
(∃)	if 1. 2. then	- ();
(∀) (⊑)		$ \forall R.C \in \mathcal{L}(x), x \text{ is not indirectly blocked and} x has an R-successor y with C \notin \mathcal{L}(y) \mathcal{L}(y) \to \mathcal{L}(y) \cup \{C\} C \sqsubseteq D \in \mathcal{T}, x \text{ is not indirectly blocked and} \{nnf(\neg C), D\} \cap \mathcal{L}(x) = \emptyset \mathcal{L}(x) \to \mathcal{L}(x) \cup \{E\} \text{ for some} E \in \{nnf(\neg C), D\} (nnf(\neg C) \text{ is NNF of } \neg C) $

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem

Let \mathcal{K} be an \mathcal{ALC} KB and F a completion-forest obtained by applying the tableau rules to \mathcal{K} . Then

- The rule application terminates;
- If F is clash-free and complete, then F defines a (canonical) (tree) model for K; and
- If K has a model I, then the rules can be applied such that they yield a clash-free and complete completion-forest.

< 同 > < ∃ >

- We have seen how to "fuzzify" classical sets and FOL
 - Fuzzy statements are of the form $\langle \phi, n \rangle$, where ϕ is a statement and $n \in [0, 1]$
- The natural extension to fuzzy DLs consists then in replacing ϕ with a DL expression
- Several fuzzy variants of DLs have been proposed: they can be classified according to
 - The DL resp. ontology language that they generalize
 - The allowed fuzzy constructs
 - The underlying fuzzy logic
 - Their reasoning algorithms and computational complexity results

- In classical DLs, a concept C is interpreted by an interpretation I as a set of individuals
- In fuzzy DLs, a concept C is interpreted by I as a fuzzy set of individuals
- Each individual is instance of a concept to a degree in [0, 1]
- Each pair of individuals is instance of a role to a degree in [0, 1]

- (a:C, n) states that a is an instance of concept/class C with degree at least n
- ((a, b):R, n) states that (a, b) is an instance of relation R with degree at least n
- $\langle C_1 \sqsubseteq C_2, n \rangle$ states a vague subsumption relationship
 - The FOL statement $\forall x.C_1(x) \rightarrow C_2(x)$ is true to degree at least n
- Note: one may find also fuzzy DL expressions $\langle \alpha \ge n \rangle$, $\langle \alpha \le n \rangle$, $\langle \alpha \le n \rangle$, $\langle \alpha < n \rangle$, and $\langle \alpha = n \rangle$
- We use the form $\langle \alpha, n \rangle$, i.e. $\langle \alpha \ge n \rangle$ only
 - Remind that graded axioms are intended to be produced semi- or automatically
 - Hardly they may have the form $\langle \alpha \leq n \rangle$, $\langle \alpha > n \rangle$ or $\langle \alpha < n \rangle$

The semantics is an immediate consequence of the First-Order-Logic translation of DLs expressions

Interpretation:	\mathcal{I} $\mathcal{C}^{\mathcal{I}}$ $\mathcal{R}^{\mathcal{I}}$		$\begin{array}{l} \Delta^{\mathcal{I}} \\ \Delta^{\mathcal{I}} \rightarrow [0,1] \\ \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \rightarrow \end{array}$		⊗⊕「≯	= = =	t-norm s-norm negation implication
		Syn	tax	Semantics			
	<i>C</i> , <i>D</i>	\rightarrow	Τ	$\top^{\mathcal{I}}(x)$		=	1
			⊥	$\perp^{\mathcal{I}}(x)$		=	0
			A	$A^{\mathcal{I}}(x)$		\in	[0, 1]
			$C \sqcap D \mid$	$(C_1 \sqcap C_2)^{\mathcal{I}}$	(x)	=	$C_1^{\mathcal{I}}(x) \otimes C_2^{\mathcal{I}}(x)$
Concepts:			$C \sqcup D \mid$	$ \begin{array}{c} (C_1 \sqcap C_2)^{\mathcal{I}} \\ (C_1 \sqcup C_2)^{\mathcal{I}} \\ (C \to D)^{\mathcal{I}} \end{array} $	(x)	=	$C_1^{\mathcal{I}}(x) \oplus C_2^{\mathcal{I}}(x) C_1^{\mathcal{I}}(x) \Rightarrow D^{\mathcal{I}}(x)$
			$C \rightarrow D \mid$	$(C \rightarrow D)^{\mathcal{I}}$	(<i>x</i>)	=	$C^{\mathcal{I}}(x) \Rightarrow D^{\mathcal{I}}(x)$
			$\neg C \mid$	$(\neg C)^{\mathcal{I}}(x)$		=	$\neg C^{\mathcal{I}}(x)$
			∃ <i>R.C</i>	(∃ <i>R</i> . <i>C</i>) ^{<i>I</i>} (<i>x</i>)	=	$\sup_{y \in \Delta^{\mathcal{I}}} R^{\mathcal{I}}(x, y) \otimes C^{\mathcal{I}}(y)$
			∀R.C	$(\forall R.C)^{\mathcal{I}}(x)$)	=	$\inf_{y \in \Delta^{\mathcal{I}}} R^{\mathcal{I}}(x, y) \Rightarrow C^{\mathcal{I}}(y) $ 1 if $a^{\mathcal{I}} = x$, else 0
			{ a }	$\{a\}^{\mathcal{I}}(x)$		=	1 if $a^{\mathcal{I}} = x$, else 0

Assertions: $(a:C, r), \mathcal{I} \models (a:C, r)$ iff $C^{\mathcal{I}}(a^{\mathcal{I}}) \ge r$ (similarly for roles) General Inclusion Axioms: $(C \sqsubseteq D, r)$,

• $\mathcal{I} \models \langle C \sqsubseteq D, r \rangle$ iff $\inf_{x \in \Delta^{\mathcal{I}}} C^{\mathcal{I}}(x) \Rightarrow D^{\mathcal{I}}(x) \geq r$

- Like for fuzzy FOL, ∀ and ∃ are not complementary in general:
 i.e. ∀R.C ≠ ¬∃R.¬C
- $\forall R.C \equiv \neg \exists R. \neg C$ under Łukasiewicz logic and SFL
- $\langle C \sqsubseteq D, n \rangle$ may be rewritten as $\langle \top \sqsubseteq C \rightarrow D, n \rangle$
- In early works, a fuzzy GCI is of the form $C \sqsubseteq D$ with semantics:
 - \mathcal{I} is a model of $C \sqsubseteq D$ iff for every $x \in \Delta^{\mathcal{I}}$ we have that $C^{\mathcal{I}}(x) \leq D^{\mathcal{I}}(x)$
 - This is the same of fuzzy axiom $\langle \top \sqsubseteq C \rightarrow_x D, 1 \rangle$, where \rightarrow_x is an *r*-implication
- Disjointness: use $\langle C \sqcap D \sqsubseteq \bot, 1 \rangle$ rather than $\langle C \sqsubseteq \neg D, 1 \rangle$

• they are not the same, e.g. $\langle A \sqsubseteq \neg A, 1 \rangle$ says that $A^{\mathcal{I}}(x) \leq 0.5$, for all \mathcal{I} and for all $x \in \Delta^{\mathcal{I}}$

• Witnessed Interpretation:

Infima and suprema are attained at some point

$$\begin{array}{rcl} (\exists R.C)^{\mathcal{I}}(x) &=& R^{\mathcal{I}}(x,y) \otimes C^{\mathcal{I}}(y) \text{ for some } y \in \Delta^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}}(x) &=& R^{\mathcal{I}}(x,y) \Rightarrow C^{\mathcal{I}}(y) \text{ for some } y \in \Delta^{\mathcal{I}} \\ (C \sqsubseteq D)^{\mathcal{I}} &=& C^{\mathcal{I}}(x) \Rightarrow D^{\mathcal{I}}(x) \text{ for some } x \in \Delta^{\mathcal{I}} \end{array}$$

• It is customary to stick to witnessed interpretations only

- Fuzzy knowledge base: $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - T is a fuzzy TBox, that is a finite set of fuzzy GCI
 - A is a *fuzzy ABox*, that is a finite set of fuzzy assertions

Acyclic fuzzy ontologies: TBox with axioms of the form

$$A \sqsubseteq_n C (primitive GCI)$$

$$A \stackrel{\sim}{\sqsubseteq} C (\text{primitive GCI})$$

$$A \cong C$$
 (definitional GCI)

- A concept name
- $A \sqsubseteq_n C$ shorthand for $\langle \top \sqsubseteq A \rightarrow C, n \rangle$
- No nominal {a} occurs in the TBox

We say that

- concept name A directly uses concept name B w.r.t. T, denoted $A \rightarrow_T B$, if A is the head of some axiom $\tau \in T$ such that B occurs in the body of τ
- concept name A uses concept name B w.r.t. T, denoted A →_T B, if there exist concept names A₁,..., A_n, such that A₁ = A, A_n = B and, for every 1 ≤ i < n, it holds that A_i →_T A_{i+1}
- TBox \mathcal{T} is cyclic (acyclic) if there is (no) A such that $A \rightsquigarrow_{\mathcal{T}} A$
- TBox \mathcal{T} is unfoldable if
 - \mathcal{T} is acyclic
 - If $A = C \in T$ then A does not occur in the head of any other axiom

- \mathcal{I} satisfies (is a model of) $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ iff it satisfies each element in \mathcal{A} and \mathcal{T}
- A fuzzy KB K = ⟨T, A⟩ entails an axiom E, denoted K ⊨ E, iff every model of K satisfies E
- We say that two concepts *C* and *D* are equivalent, denoted $C \equiv_{\mathcal{K}} D$ iff in every model \mathcal{I} of \mathcal{K} and for all $x \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}}(x) = D^{\mathcal{I}}(x)$
- Best entailment degree: for assertion of GCI ϕ

$$bed(\mathcal{K}, \phi) = \sup \{r \mid \mathcal{K} \models \langle \phi, r \rangle \}$$

• Best satisfiability degree: for concept C

$$bsd(\mathcal{K}, C) = \sup_{\mathcal{I} \models \mathcal{K}} \sup_{x \in \Delta^{\mathcal{I}}} C^{\mathcal{I}}(x) .$$

Some Salient Fuzzy Concept Equivalences

Property	Łukasiewicz	Gödel	Product	SFL
$C\sqcap \neg C\equiv \perp$	•	٠	•	
$C \sqcup \neg C \equiv \top$	•			
${\mathcal C}\sqcap {\mathcal C}\equiv {\mathcal C}$		٠		•
${\it C} \sqcup {\it C} \equiv {\it C}$		٠		•
$\neg \neg C \equiv C$	•			•
$C ightarrow D \equiv eg \ C \sqcup D$	•			•
$C ightarrow D \equiv eg D ightarrow eg C$	•			•
$ eg (C o D) \equiv C \sqcap \neg D$	•			•
$\neg (C \sqcap D) \equiv \neg C \sqcup \neg D$	•	٠	•	•
$\neg (C \sqcup D) \equiv \neg C \sqcap \neg D$	•	•	•	•
$C \sqcap (D \sqcup E) \equiv (C \sqcap D) \sqcup (C \sqcap E)$		•		•
$C \sqcup (D \sqcap E) \equiv (C \sqcup D) \sqcap (C \sqcup E)$		٠		•
$\exists R.C \equiv \neg \forall R.\neg C$	•			•

- Recall that OWL 2 relates to SROIQ(D)
- We need to extend the semantics to fuzzy SROIQ(D)
- Additionally, we add
 - modifiers (e.g., very)
 - concrete fuzzy concepts (e.g., Young)
 - both additions have explicit membership functions
 - other extensions:
 - aggregation functions: weighted sum, OWA, fuzzy integrals
 - fuzzy rough sets, fuzzy spatial, fuzzy numbers

Number Restrictions, Inverse, Transitive roles, ...

● The semantics of the concept (≥ n R.C) is: ∧ interpreted as Gödel t-norm

$$\exists y_1, \ldots, y_n. \bigwedge_{i=1}^n R(x, y_i) \wedge C(y_i) \wedge \bigwedge_{1 \leq i < j \leq n} y_i \neq y_j$$

● The semantics of the concept (≤ n R.C) is: ∧ interpreted as Gödel t-norm

$$(\leq n R)^{\mathcal{I}}(x) = \forall y_1, \ldots, y_{n+1}, \bigwedge_{i=1}^{n+1} (R(x, y_i) \wedge C(y_i)) \Rightarrow \bigvee_{1 \leq i < j \leq n+1} y_j = y_j$$

• Note: $(\geq 1 R) \equiv \exists R. \top$

• For transitive roles *R* we impose: for all $x, y \in \Delta^{\mathcal{I}}$

$$R^{\mathcal{I}}(x,y) \geq \sup_{z \in \Delta^{\mathcal{I}}} R^{\mathcal{I}}(x,z) \otimes R^{\mathcal{I}}(z,y)$$

• For inverse roles we have for all $x, y \in \Delta^{\mathcal{I}}$

$$R^{\mathcal{I}}(x,y)=R^{\mathcal{I}}(y,x)$$

The semantics of fucntional roles fun(R) is

$$\forall x \forall y \forall z. \ R(x, y) \land R(x, z) \Rightarrow y = z$$

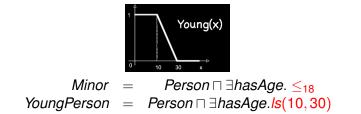
Similar for other SROIQ constructs

- E.g., Small, Young, High, etc. with explicit membership function
- Use the idea of concrete domains:
 - $D = \langle \Delta_D, \Phi_D \rangle$
 - Δ_D is an interpretation domain
 - Φ_D is the set of concrete unary fuzzy domain predicates d and fixed interpretation d^D: Δ_D → [0, 1]
- Specifically,

$$\begin{array}{rcl} \mathbf{d} & \rightarrow & \textit{ls}(a,b) \mid \textit{rs}(a,b) \mid \textit{tri}(a,b,c) \mid \textit{trz}(a,b,c,d) \\ & & \mid \geq_{v} \mid \leq_{v} \mid =_{v} \end{array}$$

$C, D \rightarrow \forall T.d \mid \exists T.d$

• Representation of Young Person:



• Representation of Heavy Rain:

HeavyRain = *Rain* $\sqcap \exists$ *hasPrecipitationRate.rs*(5, 7.5)

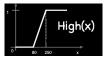
Modifiers

- Very, moreOrLess, slightly, etc.
- Fuzzy modifier *m* with function $f_m : [0, 1] \rightarrow [0, 1]$

$$C \rightarrow m(C) \mid \forall T.m(\mathbf{d}) \mid \exists T.m(\mathbf{d})$$

where *m* is a linear modifier

Representation of Sport Car



SportsCar = Car $\sqcap \exists speed. very(rs(80, 250))$

• Representation of Very Heavy Rain

 $VeryHeavyRain = Rain \sqcap \exists hasPrecipitationRate.very(rs(5,7.5))$.

Aggregation Operators

- Aggregation operators: aggregate concepts, using functions such as the mean, median, weighted sum operators
- Given an *n*-ary aggregation operator @ : [0, 1]ⁿ → [0, 1]
 - We fuzzy concepts by allowing to apply @ to *n* concepts *C*₁,..., *C*_n, i.e.

$$C \rightarrow @(C_1, \ldots, C_n)$$

Semantics:

$$\mathbb{Q}(C_1,\ldots,C_n)^{\mathcal{I}}(x) = \mathbb{Q}(C_1^{\mathcal{I}}(x),\ldots,C_n^{\mathcal{I}}(x)).$$

Allows to express the concept

 $GoodHotel = 0.3 \cdot ExpensiveHotel + 0.7 \cdot LuxuriousHotel$

• The membership function of good hotels is the weighted sum of being an expensive and luxurious hotel

U. Straccia, F. Bobillo

A (10) A (10)

Some Applications

- Information retrieval
- Recommendation systems
- Image interpretation
- Ambient intelligence
- Ontology merging
- Matchmaking
- decision making
- Summarization
- Robotics perception
- Software design
- Machine learning

Example (Graded Entailment)

Car	speed
audi_tt	243
mg	≤ 170
ferrari_enzo	\geq 350

SportsCar = $Car \sqcap \exists hasSpeed.very(High)$

- $\mathcal{K} \hspace{0.1in}\models\hspace{0.1in} \langle \textit{ferrari_enzo:SportsCar}, 1 \rangle$
- $\mathcal{K} \models \langle audi_tt:SportsCar, 0.92 \rangle$
- $\mathcal{K} \models \langle mg:\neg SportsCar, 0.72 \rangle$

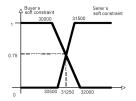
イロト イヨト イヨト イヨト

 $Minor = Person \sqcap \exists hasAge. \leq_{18}$ YoungPerson = Person \sqcap \exists hasAge. Young fun(hasAge)

 $\mathcal{K} \models \langle \textit{Minor} \sqsubseteq \textit{YoungPerson}, 0.6 \rangle$

Note: without an explicit membership function of *Young*, this inference cannot be drawn

Example (Simplified Matchmaking)



A car seller sells an Audi TT for 31500 €, as from the catalog price.

- A buyer is looking for a sports-car, but wants to to pay not more than around 30000€
- Classical sets: the problem relies on the crisp conditions on price

More fine grained approach: to consider prices as fuzzy sets (as usual in negotiation)

- Seller may consider optimal to sell above 31500€, but can go down to 30500€
- The buyer prefers to spend less than 30000 €, but can go up to 32000 €

AudiTT = SportsCar $\sqcap \exists hasPrice.rs(30500, 31500)$

- Query = SportsCar $\sqcap \exists hasPrice.ls(30000, 32000)$
- Highest degree to which the concept C = AudiTT — Query is satisfiable is 0.75 (the degree to which the Audi TT and the guery matches is 0.75)
- The car may be sold at 31250 €

Example: Learning fuzzy GCIs from data

- Learning of fuzzy GCIs from crisp data
- Use Case: What are Good hotels, using TripAdvisor data?
 - Given
 - OWL 2 Ontology about meaningful city entities and their descriptions
 - TripAdvisor data about hotels and user judgments
 - We may learn that in e.g., Pisa, Italy

 $\langle \exists hasAmenity.Babysitting \sqcap \exists hasPrice.fair \sqsubseteq Good_Hotel, 0.282 \rangle$

"A hotel having babysitting as amenity and a fair price is a good hotel (to degree 0.282)"

Real valued price attribute hasPrice has been automatically fuzzyfied

• • • • • • • • • • • • •

Example: Multi-Criteria Decision Making

- We have to select among two sites, A₁, A₂
- There are two criteria (C₁ -Transportation Issues, and C₂ -Public Nuisance) for judgement
- There are two experts (E₁, E₂) that make judgments
- The decision matrix of the experts is shown below:

E ₁		Criteria			E ₂		Criteria		
		0.48	0.52				0.52	0.48	
Alter. C ₁ C ₂			Alter.		C ₁	C ₂			
<i>x</i> ₁	A ₁	tri(0.6, 0.7, 0.8)	tri(0.9, 0.95, 1.0)		x ₁	A ₁	tri(0.55, 0.6, 0.7)	tri(0.4, 0.45, 0.5)	
<i>x</i> ₂	A ₂	tri(0.6, 0.7, 0.8)	tri(0.4, 0.5, 0.6)		x ₂	A ₂	tri(0.35, 0.4, 0.45)	tri(0.5, 0.55, 0.6)	

• For each expert k = 1, 2, for each alternative i = 1, 2 and for each criteria j = 1, 2, we define the concept

$$P_{ij}^k = \exists hasScore.a_{ij}^k$$

Now, for each expert k and alternative i, we define the weighted concept

$$A_i^k = w_1^k \cdot P_{i1}^k + w_2^k \cdot P_{i2}^k$$

Finally, we combine the two experts outcome, by defining the weighted concept

$$A_i = 0.5 \cdot A_i^1 + 0.5 \cdot A_i^2$$

It can be verified that rv(K, A₁) = bsd(K, A₁) = 0.26 and rv(K, A₂) = bsd(K, A₂) = 0.37

Representing Fuzzy OWL Ontologies in OWL

- OWL 2 is W3C standard, with classical logic semantics
 Hence, cannot support natively Fuzzy Logic
- However, Fuzzy OWL 2, has been defined using OWL 2
 - Uses the axiom annotation feature of OWL 2
- Any Fuzzy OWL 2 ontology is a legal OWL 2 ontology

• A java parser for Fuzzy OWL 2 exists

• Protégé plug-in exists to encode Fuzzy OWL ontologies

э

Consistency problem:

- Is K satisfiable?
- Is *C* coherent, i.e. is $C^{\mathcal{I}}(x) > 0$ for some $\mathcal{I} \models \mathcal{K}$ and $x \in \Delta^{\mathcal{I}}$?

Instance checking problem:

• Does $\mathcal{K} \models \langle a:C, n \rangle$ hold?

Subsumption problem:

• Does $\mathcal{K} \models \langle C \sqsubseteq D, n \rangle$ hold?

Best entailment degree problem:

What is bed(*K*, φ)?

Best satisfiability degree problem:

• What is $bsd(\mathcal{K}, \phi)$?

Instance retrieval problem:

• Compute the set $\{\langle a, n \rangle \mid n = bed(\mathcal{K}, a:C)\}$

Top-k retrieval problem:

Compute the top-k ranked elements of {(a, n) | n = bed(K, a:C)}

э

イロト イポト イヨト イヨト

Some Reductions

K is satisfiable iff bsd(K, a:⊥) > 0, where a is a new individual.

C is coherent w.r.t. K if one of the following holds:

- $\mathcal{K} \cup \{ \langle a: C > 0 \rangle \}$ is satisfiable, where *a* is a new individual
- $\mathcal{K} \not\models \langle \mathcal{C} \sqsubseteq \bot, 1 \rangle$
- *bsd*(*K*, *C*) > 0
- $\mathcal{K} \models \langle a:C, n \rangle$ if one of the following holds:
 - $\mathcal{K} \cup \{ \langle a: C < n \rangle \}$ is not satisfiable
 - bed(K, a:C) ≥ n
- $\mathcal{K} \models \langle C \sqsubseteq D, n \rangle$ if one of the following holds:
 - $\mathcal{K} \cup \{ \langle a: C \rightarrow D < n \rangle \}$ is not satisfiable, where *a* is a new individual
 - $bed(\mathcal{K}, C \sqsubseteq D) \ge n$

We have that

 $bed(\mathcal{K}, \phi) = \min x. \text{ such that } \mathcal{K} \cup \{ \langle \phi \le x \rangle \} \text{ satisfiable}$ $bsd(\mathcal{K}, \phi) = \max x. \text{ such that } \mathcal{K} \cup \{ \langle \phi \ge x \rangle \} \text{ satisfiable}$

<ロ> <問> <問> < 回> < 回> 、

- Algorithms for fuzzy DLs: are a mixture of classical DLs reasoning algorithms and algorithms for Mathematical Fuzzy Logic
- Fuzzy OWL 2:
 - Fuzzy tableaux based algorithms
 - Tableaux and non deterministic tableaux
 - Operational Research
 - Reduction into classical DLs
- Fuzzy OWL 2 EL: fuzzy structural based algorithms
- Fuzzy OWL 2 QL: fuzzy query rewriting based algorithms
- fuzzy OWL 2 RL: fuzzy logic programming based algorithms

A (10) > A (10) > A (10)

OR Fuzzy Tableaux: \mathcal{ALC} under SFL over [0, 1]

• Works as for classical ALC on completion forests

- Blocking is as for classical \mathcal{ALC}
- The completion forest is expanded by repeatedly applying inference rules
- The completion-forest is complete when none of the rules are applicable
- Additionally, at each inference step we add equational constraints that have to hold
- Eventually, the initial KB is satisfiable if the final set of equational constraints has a solution
 - For the latter case, we may use a MILP solver

A I > A = A A

e	Description
)	For variable $x_{V:C}$ add $x_{V:C} \in [0, 1]$ to $C_{\mathcal{F}}$. For variable $x_{(V, W):R}$, add $x_{(V, W):R} \in [0, 1]$ to $C_{\mathcal{F}}$
if	$ eg A \in \mathcal{L}(v)$ then add $x_{V:A} = 1 - x_{V:\neg A}$ to $\mathcal{C}_{\mathcal{F}}$
lf If	$\bot \in \mathcal{L}(v)$ then add $x_{v;\bot} = 0$ to $\mathcal{C}_\mathcal{F}$
lf If	$ op \in \mathcal{L}(v)$ then add $x_{v: op } = 1$ to $\mathcal{C}_{\mathcal{F}}$
if then	$C_1 \sqcap C_2 \in \mathcal{L}(v), v$ is not indirectly blocked $\mathcal{L}(v) \to \mathcal{L}(v) \cup \{C_1, C_2\}, \text{ and add } x_{v:C_1} \otimes x_{v:C_2} \ge x_{v:C_1} \sqcap C_2 \text{ to } C_F$
if then	$C_1 \sqcup C_2 \in \mathcal{L}(v), v \text{ is not indirectly blocked}$ $\mathcal{L}(v) \to \mathcal{L}(v) \cup \{C_1, C_2\}, \text{ and add } x_{v:C_1} \oplus x_{v:C_2} \ge x_{v:C_1} \sqcup C_2 \text{ to } C_F$
if	$\forall R.C \in \mathcal{L}(v), v \text{ is not indirectly blocked}$
then	$\mathcal{L}(w) \to \widetilde{\mathcal{L}}(w) \cup \{C\}$, and add $x_{w:C} \ge x_{v:\forall R.C} \otimes x_{(v,w):R}$ to $\mathcal{C}_{\mathcal{F}}$
if	$\exists R. C \in \mathcal{L}(v), v \text{ is not blocked}$
then	create new node w with $\mathcal{L}(\langle v, w \rangle) = \{R\}$ and $\mathcal{L}(w) = \{C\}$, and add $x_{w:C} \otimes x_{(v, w):R} \ge x_{v:\exists R.C}$ to $\mathcal{C}_{\mathcal{F}}$
if	$\langle C \sqsubseteq D, n \rangle \in \mathcal{T}, v$ is not indirectly blocked
then	$\mathcal{L}(v) \to \mathcal{L}(v) \cup \{C, D\}$, and add $x_{v:D} \ge x_{v:C} \otimes n$ to $\mathcal{C}_{\mathcal{F}}$

• Works as for classical ALC on completion forests

 Node labels L(v) contain, rather than DL concept expressions, expressions of the form (C, n)

"The truth degree of being v instance of C is $\geq n$ "

- Blocking is as for classical ALC
- The completion forest is expanded by repeatedly applying inference rules
- The completion-forest is complete when none of the rules are applicable
- Additionally, we adapt the notion of clash: a clash is either
 - $\langle \perp, n \rangle$ with n > 0; or
 - a pair $\langle C, n \rangle$ and $\langle \neg C, m \rangle$ with n > 1 m
- Eventually, the initial KB is satisfiable if there is a clash-free complete completion forest

- (\Box). If (*i*) $\langle C_1 \sqcap C_2, n \rangle \in \mathcal{L}(v)$, (*ii*) $\{\langle C_1, n \rangle, \langle C_2, n \rangle\} \not\subseteq \mathcal{L}(v)$, and (*iii*) node v is not indirectly blocked, then add $\langle C_1, n \rangle$ and $\langle C_2, n \rangle$ to $\mathcal{L}(v)$.
- (i). If (i) $\langle C_1 \sqcup C_2, n \rangle \in \mathcal{L}(v)$, (ii) $\{ \langle C_1, n \rangle, \langle C_2, n \rangle \} \cap \mathcal{L}(v) = \emptyset$, and (iii) node *v* is not indirectly blocked, then add some $\langle C, n \rangle \in \{ \langle C_1, n \rangle, \langle C_2, n \rangle \}$ to $\mathcal{L}(v)$.
- (\forall). If (*i*) $\langle \forall R.C, n \rangle \in \mathcal{L}(v)$, (*ii*) $\langle R, m \rangle \in \mathcal{L}(\langle v, w \rangle)$ with m > 1 n, (*iii*) $\langle C, n \rangle \notin \mathcal{L}(w)$, and (*iv*) node v is not indirectly blocked, then add $\langle C, n \rangle$ to $\mathcal{L}(w)$.
- (∃). If (*i*) $\langle \exists R.C, n \rangle \in \mathcal{L}(v)$, (*ii*) there is no $\langle R, n_1 \rangle \in \mathcal{L}(\langle v, w \rangle)$ with $\langle C, n_2 \rangle \in \mathcal{L}(w)$ such that $\min(n_1, n_2) \ge n$, and (*iii*) node *v* is not blocked, then create a new node *w*, add $\langle R, n \rangle$ to $\mathcal{L}(\langle v, w \rangle)$ and add $\langle C, n \rangle$ to $\mathcal{L}(w)$.
- (\sqsubseteq). If (i) $\langle \top \sqsubseteq D, n \rangle \in \mathcal{T}$, (ii) $\langle D, n \rangle \notin \mathcal{L}(v)$, and (iii) node v is not indirectly blocked, then add $\langle D, n \rangle$ to $\mathcal{L}(v)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- It's a combination of the analogous method for fuzzy propositional logic and analytical fuzzy tableau
- Rule example:

(\Box). If (*i*) $\langle C_1 \Box C_2, m \rangle \in \mathcal{L}(v)$, (*ii*) there are $m_1, m_2 \in L_n$ such that $m_1 \otimes m_2 = m$ with $\{\langle C_1, m_1 \rangle, \langle C_2, m_2 \rangle\} \not\subseteq \mathcal{L}(v)$, and (*iii*) node v is not indirectly blocked, then add $\langle C_1, m_1 \rangle$ and $\langle C_2, m_2 \rangle$ to $\mathcal{L}(v)$

- Same principle as for the reduction for propositional fuzzy logic
- Needs adaption to the DL constructs: e.g. \exists, \forall and \sqsubseteq
- Examples of reduction rules for SFL:

$$\begin{array}{ll} \rho(A,\geq\gamma) = & A_{\geq\gamma} \\ \rho(C\sqcap D,\geq\gamma) = & \rho(C,\geq\gamma) \sqcap \rho(D,\geq\gamma) \\ \rho(C\sqcap D,\leq\gamma) = & \rho(C,\geq\gamma) \sqcup \rho(D,\leq\gamma) \\ \rho(\forall R.C,\geq\gamma) = & \forall \rho(R,>1-\gamma).\rho(C,\geq\gamma) \\ \rho(\forall R.C,\leq\gamma) = & \exists \rho(R,\geq1-\gamma).\rho(C,\leq\gamma) \\ \rho(\exists R.C,\geq\gamma) = & \exists \rho(R,\geq\gamma).\rho(C,\geq\gamma) \\ \rho(\exists R.C,\leq\gamma) = & \forall \rho(R,>\gamma).\rho(C,\leq\gamma) \\ \rho(R,\geq\gamma) = & R_{\geq\gamma} \\ \rho(\langle a:C,\gamma\rangle) = & \{a:\rho(C,\geq\gamma)\} \\ \rho(\langle C\sqsubseteq D,n\rangle) = & \bigcup_{\alpha\in\bar{N}_{+}^{K},\alpha\leq n} \{\rho(C,\geq\alpha)\sqsubseteq\rho(D,\geq\alpha)\} \end{array}$$

The bad news...undecidability!

Proposition

Assume that fuzzy GCIs are restricted to be classical, i.e. of the form $\langle \alpha, 1 \rangle$ only. Then for the following fuzzy DLs, the KB satisfiability problem is undecidable over [0, 1]:

ELC with classical axioms only under Łukasiewicz logic and product logic;

- 2 ELC under any non Gödelt-norm ⊗;
- 3 \mathcal{ELC} with concept assertions of the form $\langle \alpha = n \rangle$ only under any non Gödelt-norm \otimes ;
- AL with concept implication operator \rightarrow and concept assertions of the form $\langle \alpha = n \rangle$ only under any non Gödelt-norm \otimes .
- ELC under SFL with weighted sum constructor.

Some decidability results ..

Proposition

The KB satisfiability problem is decidable for

- SROIQ under SFL over [0, 1] and Gödel logic over Ln
- SROIN under Łukasiewicz logic over Ln
- SHI under any continuous t-norm over L_n without TBox
- *ALC* with concept implication operator →, for any continuous t-norm over [0, 1] with acyclicTBox
- SHIF with concept implication operator \rightarrow , for Łukasiewicz logic over [0, 1] with acyclicTBox
- SI under any continuous t-norm over [0, 1] without TBox

< ロ > < 同 > < 回 > < 回 >

- For OWL 2, it it is like for RDFS, but annotation domain has to be a complete lattice
 - satisfiability problem is inherited from crisp variant if lattice is finite, else UNDECIDABLE (even for *ALC* with GCIs)
- Exception for OWL profiles OWL EL, OWL QL and OWL RL: annotation domains may be as for RDFS
 - the complexity is inherited from their crisp variants, plus complexity of domain operators

A (10) > A (10) > A (10)

Languages supported by fuzzy ontology reasoners:

Reasoner	Fuzzy DL	Logic	Degrees	Other constructors	GUI
fuzzyDL	SHIF(D)	Z,Ł	General	Modifiers, rough, aggregation	•
Fire	SHIN	Z	Numbers		•
FPLGERDS	ALC	Ł	Numbers	Role negatio/top/bottom	
YADLR	ALCOQ.	Z, Ł	General	Local reflexivity	
DeLorean	$SROIQ(\mathbf{D})$	Z, G	General	Modifiers, rough DL	•
GURDL	ALC	General	Numbers	-	No
FRESG	$\mathcal{ALC}(\mathbf{D})$	Z	Numbers	Fuzzy datatype expressions	•
LiFR	DLP fragment	Z	Numbers	Weighted concepts	
SMT-based solver	ALE	П	No	No	
DLMedia	DLR–Lite	Z, G	Numbers	Image similarity	•
SoftFacts	DLR–Lite	Z, G	Numbers	Fuzzy datataypes	•
ONTOSEARCH2	DL – Lite _R	General	Numbers		•

Reasoner	CON	ENT	CSAT	SUB	IR	BDB	Other tasks	OPT
fuzzyDL	•	٠	•	٠	٠	٠	Defuzzification	•
Fire	•	•	•	•		•	Classification	•
FPLGERDS		•						
YADLR		Partial			•	Partial	Realisation	
DeLorean	•	•	•	•		•		•
GURDL	•	•		•				•
FRESG	•	•	•		•		Realisation	
LiFR		Partial	•	•		•		
SMT-based solver			•					
DLMedia							Top-k Image Retrieval	•
SoftFacts							Top-k CQA	•
ONTOSEARCH2							Retrieval	

Reasoning services offered by fuzzy ontology reasoners

"CON", "ENT", "CSAT", "SUB", "IR", "BED", and "OPT" represent consistency, entailment, concept satisfiability, subsumption, instance retrieval, BED, and optimisations, respectively

< ロ > < 同 > < 回 > < 回 > < 回 >

The case of Logic Programs

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

LPs Basics (for ease, Datalog)

- Predicates are n-ary
- Terms are variables or constants
- Facts ground atoms For instance,

has_parent(mary, jo)

• Rules are of the form

$$P(\mathbf{x}) \leftarrow \varphi(\mathbf{x}, \mathbf{y})$$

where $\varphi(\mathbf{x}, \mathbf{y})$ is a formula built from atoms of the form $B(\mathbf{z})$ and connectors $\land, \lor, 0, 1$ For instance,

 $has_father(x, y) \leftarrow has_parent(x, y) \land Male(y)$

A (10) A (10)

- Extensional database (EDB): set of facts
- Intentional database (IDB): set of rules
- Logic Program \mathcal{P} :
 - $\mathcal{P} = EDB \cup IDB$
 - No predicate symbol in EDB occurs in the head of a rule in IDB
 - The principle is that we do not allow that *IDB* may redefine the extension of predicates in *EDB*
- EDB is usually, stored into a relational database

LPs Semantics: FOL semantics

P* is constructed as follows:

set \mathcal{P}^* to the set of all ground instantiations of rules in \mathcal{P} ;

2 replace a fact $p(\mathbf{c})$ in \mathcal{P}^* with the rule $p(\mathbf{c}) \leftarrow 1$

3 if atom A is not head of any rule in \mathcal{P}^* , then add $A \leftarrow 0$ to \mathcal{P}^* ;

) replace several rules in \mathcal{P}^* having same head

$$\left.\begin{array}{c} A \leftarrow \varphi_1 \\ A \leftarrow \varphi_2 \\ \vdots \\ A \leftarrow \varphi_n \end{array}\right\} \text{ with } A \leftarrow \varphi_1 \lor \varphi_2 \lor \ldots \lor \varphi_n \:.$$

- Note: in \mathcal{P}^* each atom $A \in B_{\mathcal{P}}$ is head of exactly one rule
- Herbrand Base of \mathcal{P} is the set $B_{\mathcal{P}}$ of ground atoms
- Interpretation is a function $I : B_{\mathcal{P}} \to \{0, 1\}$.
- Model $I \models \mathcal{P}$ iff for all $r \in \mathcal{P}^*$ $I \models r$, where $I \models A \leftarrow \varphi$ iff $I(\varphi) \le I(A)$

• Entailment: for a ground atom *p*(**c**)

 $\mathcal{P} \models p(\mathbf{c})$ iff all models of \mathcal{P} satisfy $p(\mathbf{c})$

• Least model $M_{\mathcal{P}}$ of \mathcal{P} exists and is least fixed-point of

$$T_{\mathcal{P}}(I)(A) = I(\varphi), \text{ for all } A \leftarrow \varphi \in \mathcal{P}^*$$

M can be computed as the limit of

• Query: is a rule of the form

$$q(\mathbf{x}) \leftarrow \varphi(\mathbf{x}, \mathbf{y})$$

- If $\mathcal{P} \models q(\mathbf{c})$ then **c** is called an answer to q
- The answer set of q w.r.t. \mathcal{P} is defined as

$$ans(\mathcal{P},q) = \{\mathbf{c} \mid \mathcal{P} \models q(\mathbf{c})\}$$

• Efficient query answering algorithms exists

Fuzzy LPs Basics

We consider fuzzy LPs, which extends classical LPs, where

- Truth space is [0, 1]
- Interpretation is a mapping $I: B_{\mathcal{P}} \rightarrow [0, 1]$
- Generalized LP rules are of the form

 $R(\mathbf{x}) \leftarrow \exists \mathbf{y}.f(R_1(\mathbf{z}_1),\ldots,R_k(\mathbf{z}_k),p_1(\mathbf{z}_1'),\ldots,p_h(\mathbf{z}_h'))$

- Meaning of rules: "take the truth-values of all R_i(z_i), p_j(z'_j), combine them using the truth combination function f, and assign the result to R(x)"
- Facts: ground expressions of the form $\langle R(\mathbf{c}), n \rangle$
 - Meaning of facts: "the degree of truth of $R(\mathbf{c})$ is at least n"
- Fuzzy LP: a set of facts (extensional database) and a set of rules (intentional database). No extensional relation may occur in the head of a rule

< ロ > < 同 > < 回 > < 回 >

Rules:

$$R(\mathbf{x}) \leftarrow \exists \mathbf{y}. \varphi(\mathbf{x}, \mathbf{y})$$

- **x** are the *distinguished variables*;
- 2 s is the score variable, taking values in [0, 1];
 - y are existentially quantified variables, called non-distinguished variables;
- z, z' are tuples of constants in KB or variables in x or y;
- p_j is an n_j-ary fuzzy predicate assigning to each n_j-ary tuple c_j the score p_j(c_j) ∈ [0, 1];
- f is a monotone scoring function f: [0, 1]^{k+h} → [0, 1], which combines the scores of the h fuzzy predicates p_i(c_i) with the k scores R_i(c_i)

A I > A = A A

Semantics of fuzzy LPs

• \mathcal{P}^* is constructed as follows (as for the classical case):

- set \mathcal{P}^* to the set of all ground instantiations of rules in \mathcal{P} ; replace a fact $p(\mathbf{c})$ in \mathcal{P}^* with the rule $p(\mathbf{c}) \leftarrow 1$
- ${}^{\textcircled{0}}$ if atom A is not head of any rule in \mathcal{P}^* , then add A \leftarrow 0 to \mathcal{P}^* ;
 - replace several rules in \mathcal{P}^* having same head

$$\left. \begin{array}{c} A \leftarrow \varphi_1 \\ A \leftarrow \varphi_2 \\ \vdots \\ A \leftarrow \varphi_n \end{array} \right\} \text{ with } A \leftarrow \varphi_1 \lor \varphi_2 \lor \ldots \lor \varphi_n \, .$$

- Note: in \mathcal{P}^* each atom $A \in B_{\mathcal{P}}$ is head of exactly one rule
- Herbrand Base of \mathcal{P} is the set $B_{\mathcal{P}}$ of ground atoms
- Interpretation is a function $I : B_{\mathcal{P}} \to [0, 1]$.
- Model $I \models \mathcal{P}$ iff for all $r \in \mathcal{P}^*$ $I \models r$, where $I \models A \leftarrow \varphi$ iff $I(\varphi) \le I(A)$
- Note:

$$I(f(R_{1}(\mathbf{c}_{1}), \dots, R_{k}(\mathbf{c}_{k}), p_{1}(\mathbf{c}_{1}'), \dots, p_{h}(\mathbf{c}_{h}'))) = f(I(R_{1}(\mathbf{c}_{1})), \dots, I(R_{k}(\mathbf{c}_{k})), p_{1}(\mathbf{c}_{1}'), \dots, p_{h}(\mathbf{c}_{h}')))$$

• • • • • • • • • • • •

Fuzzy LP Query Answering

• Least model $M_{\mathcal{P}}$ of \mathcal{P} exists and is least fixed-point of

$$T_{\mathcal{P}}(I)(A) = I(\varphi), \text{ for all } A \leftarrow \varphi \in \mathcal{P}^*$$

M can be computed as the limit of

$$\begin{aligned} \mathbf{I}_0 &= \mathbf{0} \\ \mathbf{I}_{i+1} &= T_{\mathcal{P}}(\mathbf{I}_i) . \end{aligned}$$

• Entailment: for a ground expression $\langle q(\mathbf{c}), s \rangle$, $s \in [0, 1]$

 $\mathcal{P} \models \langle q(\mathbf{c}), s \rangle$ iff least model of \mathcal{P} satisfies $l(q(\mathbf{c})) \geq s$

- We say that *s* is *tight* iff $s = \sup\{s' \mid \mathcal{P} \models \langle q(\mathbf{c}), s' \rangle\}$
- If $\mathcal{P} \models \langle q(\mathbf{c}), s \rangle$ and s is tight then $\langle \mathbf{c}, s \rangle$ is called an *answer* to q
- The answer set of q w.r.t. P is defined as

$$ans(\mathcal{P},q) = \{ \langle \mathbf{c}, s \rangle \mid \mathcal{P} \models \langle q(\mathbf{c}), s \rangle, \ s \text{ is tight} \}$$

Top-k Retrieval: Given a fuzzy LP \mathcal{P} , and a query q, retrieve k answers $\langle \mathbf{c}, s \rangle$ with maximal scores and rank them in decreasing order relative to the score s, denoted

$$ans_k(\mathcal{P},q) = \operatorname{Top}_k ans(\mathcal{P},q)$$
.

• Fuzzy LPs may be tricky:

$$egin{array}{ccc} \langle A,0
angle\ A & \leftarrow & (A+1)/2 \end{array}$$

- In the minimal model the truth of A is 1 (requires infinitely many $T_{\mathcal{P}}$ iterations)!
- There are several ways to avoid this pathological behavior:
 - We may consider $L = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$, *n* natural number, e.g. n = 100
 - In $A \leftarrow f(B_1, \ldots, B_n)$, f is bounded, i.e. $f(x_1, \ldots, x_n) \le x_i$

Example: Soft shopping agent

I may represent my preferences in Logic Programming with the rules

$Pref_1(x, p)$	\leftarrow	$HasPrice(x, p) \land LS(10000, 14000)(p)$
$Pref_2(x)$	\leftarrow	$HasKM(x, k) \land LS(13000, 17000)(k)$
Buy(x, p)	←	$0.7 \cdot Pref_1(x, p) + 0.3 \cdot Pref_2(x)$

ID	MODEL	PRICE	KM
455	MAZDA 3	12500	10000
34	ALFA 156	12000	15000
1812	FORD FOCUS	11000	16000
•		•	
•		•	•

- Problem: All tuples of the database have a score:
 - We cannot compute the score of all tuples, then rank them. Brute force approach not feasible for very large databases
- Top-k problem: Determine efficiently just the top-k ranked tuples, without evaluating the score of all tuples. E.g. top-3 tuples

ID	PRICE	SCORE
1812	11000	0.6
455	12500	0.56
34	12000	0.50

General top-down query procedure for Many-valued LPs

- Idea: use theory of fixed-point computation of equational systems over truth space (complete lattice or complete partial order)
- Assign a variable x_i to an atom $A_i \in B_P$
- Map a rule $A \leftarrow f(A_1, \ldots, A_n) \in \mathcal{P}^*$ into the equation $x_A = f(x_{A_1}, \ldots, x_{A_n})$
- A LP P is thus mapped into the equational system

$$\begin{cases} x_1 = f_1(x_{1_1}, \dots, x_{1_{a_1}}) \\ \vdots \\ x_n = f_n(x_{n_1}, \dots, x_{n_{a_n}}) \end{cases}$$

f_i is monotone and, thus, the system has least fixed-point, which is the limit of

$$\begin{array}{rcl} \mathbf{y}_0 & = & \mathbf{0} \\ \mathbf{y}_{i+1} & = & \mathbf{f}(\mathbf{y}_i) \end{array}$$

where $\mathbf{f} = \langle f_1, \dots, f_n \rangle$ and $\mathbf{f}(\mathbf{x}) = \langle f_1(x_1), \dots, f_n(x_n) \rangle$

The least-fixed point is the least model of P

Consequence: If top-down procedure exists for equational systems then it works for fuzzy
LPs too!

Procedure Solve(S, Q) **Input:** monotonic system $S = \langle \mathcal{L}, V, \mathbf{f} \rangle$, where $Q \subseteq V$ is the set of query variables; **Output:** A set $B \subset V$, with $Q \subset B$ such that the mapping v equals lfp(f) on B. A: = Q, dq: = Q, in: = \emptyset , for all $x \in V$ do v(x) = 0, exp(x) = 01. 2. while $A \neq \emptyset$ do select $x_i \in A$, A: $= A \setminus \{x_i\}$, dg: $= dg \cup s(x_i)$ З. 4. $r: = f_i(v(x_{i_1}), ..., v(x_{i_2}))$ 5. if $r \succ v(x_i)$ then $v(x_i) := r, A := A \cup (p(x_i) \cap dg)$ fi if not $exp(x_i)$ then $exp(x_i) = 1$, $A: = A \cup (s(x_i) \setminus in)$, $in: = in \cup s(x_i)$ fi 6. od

For $q(\mathbf{x}) \leftarrow \phi \in \mathcal{P}$, with s(q) we denote the set of *sons* of q w.r.t. r, i.e. the set of intentional predicate symbols occurring in ϕ . With p(q) we denote the set of *parents* of q, i.e. the set $p(q) = \{p_i : q \in s(p_i, r)\}$ (the set of predicate symbols directly depending on q).

< ロ > < 同 > < 回 > < 回 >

- The top-down procedure can be extended to
 - fuzzy Normal Logic Programs (Logic programs with non-monotone negation)
 - Many-valued Normal Logic Programs under Any-world Assumption
 - Logic Programs, without requiring the grounding of the program
- Other approaches for top-down methods for monotone fuzzy LPs:
- Magics sets like methods: yet to investigate ...
- There are also extensions to Fuzzy Disjunctive Logic Programs with or without default negation

- If the database contains a huge amount of facts, a brute force approach fails:
 - one cannot anymore compute the score of all tuples, rank all of them and only then return the top-*k*
- Better solutions exists for restricted fuzzy LP languages: Datalog + restriction on the score combination functions appearing in the body

- We do not compute all answers, but determine answers incrementally
- At each step *i*, from the tuples seen so far in the database, we compute a threshold δ
- The threshold δ has the property that any successively retrieved answer will have a score $s \leq \delta$
- Therefore, we can stop as soon as we have gathered *k* answers above δ , because any successively computed answer will have a score below δ

Example

Logic Program ${\mathcal{P}}$ is

	$\leftarrow p(x)$	
p(x)	$\leftarrow \min(r_1(x,y),r_2(y,z))$)

RecordID		<i>r</i> ₁			r_2	
1	а	b	1.0	m	h	0.95
2	С	d	0.9	m	j	0.85
3	е	f	0.8	f	k	0.75
4	1	т	0.7	m	п	0.65
5	0	р	0.6	p	q	0.55
:	1:	:	:	:	:	:

What is

$$\textit{Top}_1(\mathcal{P},q) = \textit{Top}_1\{\langle c,s\rangle \mid \mathcal{P} \models q(c,s)\} \ ?$$

æ

イロト イヨト イヨト イヨト

	RecordID		r ₁			r ₂		
	1	а	b	1.0	m	h	0.95	
	2	С	d	0.9	m	j	0.85	
	3	е	f	0.8	f	k	0.75	←
\rightarrow	4	1	т	0.7	m	п	0.65	
	5	0	р	0.6	p	q	0.55	
	•	· ·	•		· ·	•	•	
	•	•	•	•	· ·			

 $\begin{array}{l} q(x) \leftarrow p(x) \\ p(x) \leftarrow \min(r_1(x, y), r_2(y, z)) \end{array}$

Action: STOP, top-1 tuple score is equal or above threshold 0.75 = max(min(1.0, 0.75), min(0.7, 0.95))

Queue	δ	Predicate	Answers
_	0.75	q p	$\langle e, 0.75 \rangle \langle I, 0.7 \rangle$ $\langle e, 0.75 \rangle, \langle I, 0.7 \rangle$
		ρ	(0,0.75), (7,0.7)

 $\mathit{Top}_1(\mathcal{P}, q) = \{ \langle e, 0.75 \rangle \}$

Note: no further answer will have score above threshold δ

æ –

イロン イ理 とく ヨン イヨン

```
Procedure TopAnswers(\mathcal{L}, \mathcal{K}, q, k)
Input: Truth space \mathcal{L}, KB \mathcal{K} = \langle \mathcal{F}, P \rangle, guery relation q, k > 1
Output: Mapping rankedList such that rankedList(q) contains top-k answers of q
Init: \delta = 1, for all predicates p in \mathcal{P} do
                        if p intensional then rankedList(p) = \emptyset, Q(p) := \emptyset fi
                        if p extensional then rankedList(p) = T_p fi
                    endfor
1.
         loop
2.
             if A = \emptyset then A := \{q\}, dg := \{q\}, in := \emptyset, rL' := rankedList, initialise all pointers pt_r^r to 0
                                     for all intensional predicates p \operatorname{do} \exp(p) = \operatorname{false} \operatorname{endfor}
3.
             fi
4.
             select p \in A, A := A \setminus \{p\}, dg := dg \cup s(p)
5.
             \langle \mathbf{t}, \mathbf{s} \rangle := qetNextTuple(p)
             if (\mathbf{t}, \mathbf{s}) \neq null then rankedList(p) := rankedList(p) \cup \{ \langle \mathbf{t}, \mathbf{s} \rangle \}, A := A \cup (p(p) \cap dg) fi
6.
7.
             if not \exp(p) then \exp(p) = true, A := A \cup (s(p) \setminus in), in := in \cup s(p) fi
8.
             Update threshold \delta
9.
         until (rankedList(q) does contain k top-ranked tuples with score above query rule threshold)
                   or ((rL' = rankedList) and A = \emptyset)
10.
         return top-k ranked tuples in rankedList(q)
```

э

イロト イポト イヨト イヨト

Procedure getNextTuple(p) **Input:** intensional relation symbol *p*. Consider set of rules $\mathcal{R} = \{r \mid r : p(\mathbf{x}) \leftarrow f(A_1, \ldots, A_n) \in \mathcal{P}\}$ Output: Next instance of p together with the score **Init:** Let p_i be the relation symbol occurring in A_i 1. if $o(p) \neq \emptyset$ then $\langle \mathbf{t}, s \rangle := \operatorname{getTop}(\mathcal{O}(p))$, remove $\langle \mathbf{t}, s \rangle$ from $\mathcal{O}(p)$, return { $\langle \mathbf{t}, s \rangle$ } fi loop for all $r \in \mathcal{R}$ do 2. 3. Generate the set T of all new valid join tuples t for rule r, using tuples in rankedList(p_i) and pointers prt_i^r 4. for all $t \in T$ do 5 s := compute the score of $p(\mathbf{t})$ using f: if neither $\langle \mathbf{t}, \mathbf{s}' \rangle \in \text{rankedList}(p)$ nor $\langle \mathbf{t}, \mathbf{s}' \rangle \in \mathbb{Q}(p)$ with $\mathbf{s} \prec \mathbf{s}'$ then 6 insert $\langle \mathbf{t}, s \rangle$ into O(p) fi endfor endfor **until** $Q(p) \neq \emptyset$ or no new valid join tuple can be generated 7. if $O(p) \neq \emptyset$ then $\langle t, s \rangle := qetTop(O(p))$, remove $\langle t, s \rangle$ from O(p), return $\langle t, s \rangle$ else return null fi

э

Threshold computation

For an intentional predicate p, head of a rule $r : p(\mathbf{x}) \leftarrow f(p_1, p_2, \dots, p_n)$.

consider a threshold variable δ^p

• with $r.t_{p_i}^{\perp}$ ($r.t_{p_i}^{\top}$) we denote the last tuple seen (the top ranked one) in rankedList(p, r)

we define

$$p_i^{\top} = \max(\delta^{p_i}, r.\mathbf{t}_{p_i}^{\top}.score)$$
$$p_i^{\perp} = \delta^{p_i}$$

if p_i is an extensional predicate, we define

$$p_i^{\top} = r.\mathbf{t}_{p_i}^{\top}.score$$
$$p_i^{\perp} = r.\mathbf{t}_{p_i}^{\perp}.score$$

for rule *r* we consider the equation
$$\delta(r)$$

$$\delta^{\boldsymbol{p}} = \max(f(\boldsymbol{p}_1^{\perp}, \boldsymbol{p}_2^{\top}, \dots, \boldsymbol{p}_n^{\top}), f(\boldsymbol{p}_1^{\top}, \boldsymbol{p}_2^{\perp}, \dots, \boldsymbol{p}_n^{\top}), \dots, f(\boldsymbol{p}^{\top}, \boldsymbol{p}^{\top}, \dots, \boldsymbol{p}_n^{\perp}))$$

consider the set of equations of all equations involving intentional predicates, i.e.

$$\Delta = \bigcup_{r \in P} \{\delta(r)\} .$$

• for a query $q(\mathbf{x})$, the threshold δ of the TopAnswers algorithm is defined as to be

$$\delta = \overline{\delta}^q$$

where $\bar{\delta}^q$ is the solution to δ^q in the minimal solution $\bar{\Delta}$ of the set of equations Δ . note that $\bar{\delta}^q$, can be computed iteratively as least fixed-point

U. Straccia, F. Bobillo

• The problem of determining the truth of ground q in least model of P is

 $O(|\mathcal{P}^*|h(a+p))$

where h is the cardinality of the truth space, a is max arity of functions, p is max numbers of predecessors of an atom

• The problem of determining top-k answers to q is

 $O(|\mathcal{P}^*|h(a\log|H|+|\mathcal{P}|h(\bar{a}+|D_q|)))$

- *H* is Herbrand universe
- D_q is set of intentional relation symbols that *depend* on q
- $\bar{a} = \max(a, r)$, where *r* is the number of rules

< 回 > < 三 > < 三 >

- For Datalog, it it is like for RDFS
- The complexity is inherited from their fuzzy variants if lattice is finite, else conjectured undecidable in general

That's it !

From Fuzzy to Annotated SW Languages

Э.

イロト イロト イヨト イヨト