
A Rational Entailment for Expressive
Description Logics via Description Logic

Programs

Giovanni Casini1,2(B) and Umberto Straccia1

1 ISTI - CNR, Pisa, Italy
{giovanni.casini,umberto.straccia}@isti.cnr.it

2 CAIR - University of Cape Town, Cape Town, South Africa

Abstract. Lehmann and Magidor’s rational closure is acknowledged as a land-
mark in the field of non-monotonic logics and it has also been re-formulated in
the context of Description Logics (DLs). We show here how to model a ratio-
nal form of entailment for expressive DLs, such as SROIQ, providing a novel
reasoning procedure that compiles a non-monotone DL knowledge base into a
description logic program (dl-program).

1 Introduction

One of the main non-monotonic formalism, namely Lehmann and Magidor’s rational
closure [23], is acknowledged as a landmark for non-monotonic reasoning due to its
logical properties. Rational closure, that falls under the more general class of the ratio-
nal entailment relations [23], has been proposed in the context of Description Logics
(DLs) [1], starting from basic DLs, such as ALC [3,4,8,9,11,17,18], and re-formulated
for low-complexity DLs, as EL⊥ [12,15], as for expressive ones, up to SROIQ [2].

Here we show an implementation of a rational entailment relation for an expressive
DL such as SROIQ [19]. The main contribution of this paper is that we re-formulate
the decision procedure for rational closure by compiling a non-monotone DL knowl-
edge base into a description logic program (dl-program) [13]. Dl-programs have been
proposed to combine DLs with Answer Set Programming [14], an established approach
to implement non-monotonic reasoning for rule-based languages. In this way our app-
roach can be easily implemented on top of existing reasoners supporting dl-programs,
such as DLV1.

We proceed as follows. In Sect. 2 we briefly present the logical systems we will
refer to in the definition of our method, which is worked out in Sect. 3. Eventually, in
Sect. 4 we briefly recall related work and then we conclude.

2 Preliminaries

For the sake of completeness and to ease the reading, we introduce here a minimum of
basic notions.

1 http://www.dlvsystem.com.

c© Springer Nature Switzerland AG 2022
E. Jembere et al. (Eds.): SACAIR 2021, CCIS 1551, pp. 177–191, 2022.
https://doi.org/10.1007/978-3-030-95070-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95070-5_12&domain=pdf
http://orcid.org/0000-0002-4267-4447
http://orcid.org/0000-0001-5998-6757
http://www.dlvsystem.com
https://doi.org/10.1007/978-3-030-95070-5_12

178 G. Casini and U. Straccia

2.1 Description Logic Programs

Normal Logic Programs. Assume a first-order vocabulary Φ = 〈P, C〉, with C a set of
constants {a, b, . . . } and P a set of predicates {p, q, . . . }, and let X be a set of variables
{x, y, . . . }, with P, C, X mutually disjoint. A term t is either a variable from X or a
constant from C, and an atom is an expression p(t1, . . . , tn), where p is a n-ary predicate
in P and each ti is a term. A literal l is an atom or its negation (via connective ¬), while
a negation-as-failure literal (NAF-literal) is of the form not l, where l is a literal. A rule
r is an expression of the form (m ≥ k ≥ 0)

a ← b1, . . . , bk, not bk+1, . . . , not bm , (1)

where a, b1, . . . , bm are literals. Intuitively, a rule has to be read as “if we know that
b1, . . . , bk are true, but we are not aware that bk+1, . . . , bm are true, then we can con-
clude a”. We indicate by H(r) (head of r) the literal a, by B+(r) (positive body of
r) the set {b1, . . . , bk} and by B−(r) (negative body of r) the set {bk+1, . . . , bm}. A
normal program P is a finite set of rules, while a positive program P is a finite set of
rules in which B−(r) = ∅ for every rule r.

As usual, atoms, literals, rules and programs are considered ground if they do not
contain any variable. The Herbrand Universe of a program P (HUP) is the set of all
the constants that appear in P , while the Herbrand Base of P (HBP) is the set of all
the literals that can be constructed from the predicates in P and the constants in HUP .
A ground instance of a rule r is obtained substituting every variable occurring in r with
a constant symbol in HUP , and, given a program P , ground(P) is the set of all ground
instances of rules in P .

From the semantics point of view, an interpretation I of a program P is a consistent
subset of HBP , i.e. I ⊆ HBP and there is no atom a such that both a and ¬a are in I .
The truth value of a literal l is true, false, or unknown in I iff, respectively, l ∈ I , ¬l ∈ I ,
or {l,¬l} ∩ I = ∅, where ¬¬a is a. The satisfiability of a program P is reduced to the
satisfiability of its rules expressed in ground form: that is, I is a model of a program P
iff it is a model of ground(P), i.e. if B+(r) ⊆ I and B−(r) ∩ I = ∅, then H(r) ∈ I
for every rule in ground(P).

In case of a positive program P , the answer set of P is the least model of P with
respect to set inclusion: the fact that P is positive guarantees the uniqueness of its
answer set [13]. If P is not positive, the notion of answer set is defined via the so-called
Gelfond-Lifschitz transformation (see, e.g. [14]). Specifically, consider a program P
and an interpretation I ⊆ HBP . The Gelfond-Lifschitz transformation of P relative
to I gives back a positive program P I , and it is obtained from ground(P) with the
following procedure:

– delete from ground(P) every rule r s.t. B−(r) ∩ I
= ∅; and
– from the remaining rules delete the negative part of the body.

In this way, we end up with a positive program P I , and I is an answer set for P iff
I is the answer set for the positive ground program P I . We indicate with ans(P) the
set of the answer sets of a program P . Eventually, we define a cautious (resp., brave)
consequence relation |=c (|=b) as follows: P |=c l (P |=b l) iff the literal l is true in any
(some) answer set of P .

A Rational Entailment for Expressive Description Logics 179

Example 1. Let P be a program composed of the following rules:

feline(a) ←
feline(b) ←

big(b) ←
docile(x) ← feline(x), not big(x) .

Consider the interpretation I = {feline(a), feline(b), big(b), docile(a)}. Then P I is
defined as follows:

feline(a) ←
feline(b) ←

big(b) ←
docile(a) ← feline(a) .

It is straightforwardly verified that I is the least model of P I and, thus, I is an answer
set of P (actually, it is the only one).

Description Logics. We shall refer here to an expressive DLs, namely SROIQ (for
more details about it, we refer the reader to [19]). The SROIQ signature is composed
of a set of concept names At = {A,B, . . .}, a set of role names S = {R,S, . . . }, and
a set O of individuals {a, b, . . . }. The set of roles is R = S ∪ {R− | R ∈ S} ∪ {U},
where R− is the inverse of a role R (R−− is R) and U is the universal role. We can
also compose the roles in R into finite chains such as R1 ◦ . . . ◦ Rn. The set C of
SROIQ concepts is defined inductively as:

(i) At ⊆ C;
(ii) ,⊥ ∈ C;

(iii) if {a1, . . . , an} ⊆ O, then {a1, . . . , an} ∈ C;
(iv) if C,D ∈ C, then C � D,C � D,¬C ∈ C;
(v) if C ∈ C, R ∈ R, then ∃R.C,∀R.C,≥n R.C,≤n R.C,∃R.Self ∈ C.

Condition (iii) indicates that the enumerated sets of individuals (nominals) can be used
also in the TBox as concepts. An interpretation is a pair 〈ΔI , ·I〉, where ΔI is a
nonempty set, called domain, and the interpretation function ·I assigns to every indi-
vidual a member of the domain ΔI , to every concept name a subset of ΔI , and to every
role name a subset of ΔI × ΔI . The function ·I is extended to all the concepts and
roles in the following way:

– {o1, . . . , on}I = {oI
1 , . . . , oI

n};
– (C � D)I = CI ∩ DI ;
– (C � D)I = CI ∪ DI ;
– (¬C)I = ΔI/CI ;
– (∃R.C)I = {x ∈ ΔI | ∃y.(x, y) ∈ RI ∧ y ∈ CI};
– (∀R.C)I = {x ∈ ΔI | ∀y.(x, y) ∈ RI → y ∈ CI};
– (≥n R.C)I = {x ∈ ΔI | #{y | (x, y) ∈ RI ∧ y ∈ CI} ≥ n};

180 G. Casini and U. Straccia

– (≤n R.C)I = {x ∈ ΔI | #{y | (x, y) ∈ RI ∧ y ∈ CI} ≤ n};
– (∃R.Self)I = {x ∈ ΔI | (x, x) ∈ RI};
– (R−)I = {(a, b) | (b, a) ∈ R};
– (U)I = ΔI × ΔI ;
– (R1 ◦ . . . ◦ Rn)I = {(a, b) | ∃x1, . . . , xn−1.(a, x1) ∈ RI

1 , (x1, x2) ∈ RI
2 , . . .,

(xn−1, b) ∈ RI
n}.

where #S is the cardinality of set S ⊆ ΔI . A DL knowledge base L is a triple
〈A, T ,R〉, where A is an ABox, containing information about the individuals, T is
a TBox, containing information about the relations between the concepts, and R is
an RBox, containing information about the roles. The form of the allowed axioms are
described in Table 1, with their respective semantics (n ≥ 1).

Table 1. Axioms of ABox,TBox and RBox.

Axiom name Syntax Semantics

ABox Concept membership axiom C(a) aI ∈ CI

Role membership axiom R(a, b) (aI , bI) ∈ RI

TBox Concept inclusion axiom C � D CI ⊆ DI

RBox Role inclusion axiom R1 ◦ . . . ◦ Rn � S (R1 ◦ . . . ◦ Rn)
I ⊆ SI

Transitivity Trans(R) RI is transitive

Functionality Fun(R) RI is a function

Reflexivity Ref(R) RI is reflexive

Irreflexivity Irr(R) RI is irreflexive

Symmetry Sym(R) RI is symmetric

Asymmetry Asy(R) RI is asymmetric

Disjointness Dis(R, S) RI and SI are disjoint

A RBox has further to comply with an additional syntactical restriction: that is, a
RBox has to be regular, which essentially prevents a RBox from containing cyclic
dependencies among roles that are known to lead to undecidability [20]. For ease of
presentation we do not include the definition here and refer the reader to [19, Def-
inition 2] instead. We use C = D as a shorthand of the concept inclusion axiom
 � (¬C � D) � (¬D � C). With |= we denote the classical, monotonic, conse-
quence/entailment relation, which is defined as usual.

Note also that every ABox axiom can be reformulated as an equivalent TBox axiom.
In particular, C(a) can be reformulated as {a} � C, while R(a, b) is equivalent to
{a} � ∃R.{b}. Consequently, in what follows we will not consider ABoxes.

Description Logic Programs. A description logic program (dl-program) is composed
of a pair K = 〈L,P 〉, where L is a DL knowledge base and P is a set of dl-rules
[13], which we are going to specify next. The DL knowledge base L is defined over a
vocabulary composed of a set of concept names At, a set of role names S, and a set O

A Rational Entailment for Expressive Description Logics 181

of individuals, while P is defined over a vocabulary Φ = 〈P, C〉, with C a set of constants
and P a set of predicates, and with X a set of variables. We assume that the predicative
part of the two formalisms are independent, that is At ∪ S is disjoint from P, while the
same domain of individuals is shared, that is HUP ⊆ C ⊆ O.

Dl-programs use the notions of dl-query and dl-atom to be used in rule bodies to
express queries to the DL knowledge base L. That is, a dl-query Q(t) can have various
forms, but to what concerns us, it is sufficient to consider the following ones:

– a concept membership axiom C(t) (so, t = t);
– a role membership axiom R(t1, t2) (so, t = 〈t1, t2〉).

On the other hand, a dl-atom is an expression of the form2

DL[S1 � p1, . . . , Sm � pm;Q](t)

with m ≥ 0, where each Si is either a concept or a role (Si ∈ C ∪ R), and each pi
is a predicate symbol from P, unary if Si is a concept, binary otherwise, and Q(t) is
a dl-query. The operator � is functional to the updating of the DL knowledge base L
with factual information obtained from the activation of the rules in the program. That
is, each Si � pi indicates that the extension of Si is increased by the extension of pi.

Now, a dl-rule r is of the form (1), where any literal b1, . . . , bm ∈ B(r) may be a
dl-atom and a dl-program is a pair K = 〈L,P 〉, where L is a DL knowledge base and
P is a set of dl-rules.

From a semantics points of view, for an interpretations I ⊆ HBP , we say that I is
a model of a ground literal or dl-atom l under L (I |=L l) iff

– if l ∈ HBP , then I |=L l iff l ∈ I;
– if l is a ground dl-atom DL[λ,Q](c), where λ = S1 � p1, . . . , Sm � pm, then

I |=L l iff L(I;λ) |= Q(c), where L(I;λ) = L∪
⋃m

i=1 Ai(I), with, for 1 ≤ i ≤ m,
Ai(I) = {Si(e) | pi(e) ∈ I},

As usual, an interpretation I is a model of a ground dl-rule r iff I |=L l for all
l ∈ B+(r) and I
|=L l for all l ∈ B−(r) implies I |=L H(r). I is a model of a dl-
program K = 〈L,P 〉 (written I |= K) iff I |=L r for all r ∈ ground(P). We say that
K is satisfiable if it has a model.

Let KB = 〈L,P 〉 be a dl-program. The strong dl-transform of P w.r.t. L and I
(denoted sP I

L) is the set of all dl-rules obtained from ground(P) by deleting

– every dl-rule r s.t. I |=L l for some l ∈ B−(r);
– from the remaining dl-rule r all literals in B−(r).

Note that (i) 〈L, sP I
L〉 has only monotonic dl-atoms and no NAF-literals anymore; and

(ii) a positive dl-program, if satisfiable, has a least model [13]. Now, a strong answer
set of K = 〈L,P 〉 is an interpretation I ⊆ HBP s.t. I is the least model of 〈L, sP I

L〉.
We denote with anss(K) the set of the strong answer sets of K. l is a cautious (brave)

2 The definition given here is again simpler than the original one, as we consider only the form
strictly required for our proposal.

182 G. Casini and U. Straccia

consequence of K, indicated as K |=s,c l (K |=s,b l) iff l is true in every (some) strong
answer of K.

Note that given a dl-program K = 〈L,P 〉 and an answer set I of K, I is a minimal
model of K [13].

Example 2. Consider a dl-program K = 〈L,P 〉. Let L = 〈T 〉, with

T = {{a} � Cat, {b} � Feline, {b} � Big} ,

and consider a dl-program P composed of the following rules:

feline(x) ← DL[Cat](x)

docile(x) ← DL[Feline � feline;Feline](x), not DL[Big](x) .

It can easily be shown that K has a unique answer set

I = {feline(a), docile(a)} .

In fact, I is the least model of the following set sP I
L of dl-rules:

feline(b) ← DL[Cat](b)

feline(a) ← DL[Cat](a)

docile(a) ← DL[Feline � feline;Feline](a) .

2.2 Rational Closure for ALC
For convenience, we recap here some salient notions related to rational closure (RC)
for DLs, specifically for the DL ALC (see, e.g. [8]).

Remark 1. We remind that ALC concepts are inductively defined as (i) At ⊆ C; (ii)
,⊥ ∈ C; (iii) if C,D ∈ C, then C � D,C � D,¬C ∈ C; (iv)] if C ∈ C, R ∈ R, then
∃R.C,∀R.C ∈ C.

Now, a defeasible concept inclusion axiom is of the form C �∼ D, where, without loss of
generality, C and D are assumed to be atomic concepts or their negation. The expression
C �∼ D has to be read as ‘if an individual falls under the concept C, typically it falls also
under the concept D’. A defeasible DL knowledge base is a pair L = 〈T ,D〉, where T
(the TBox) is a finite set of concept inclusion axioms of the form C � D, where C,D
are ALC concepts, and D (the DBox) is a finite set of defeasible concept inclusion of
the form C �∼ D.

We next briefly describe the decision procedure for RC for ALC, referring in par-
ticular to the one presented in [3], that in turn has been obtained by refining the one
presented in [8]. Consider L = 〈T ,D〉. The first step of the procedure is to assign a
rank to each defeasible axiom in D. The rank of the defeasible axioms indicates, in case
of conflictual information, which axiom is associated to more specific premises, and has
the priority over the axioms associated to more general premises. Central to this step is
the exceptionality procedure Exceptional(·) (see below). The procedure makes use of
the notion of materialisation, to reduce concept exceptionality checking to entailment
checking, were the materialisation of D is defined as D := {¬C � D | C �∼ D ∈ D}.

A Rational Entailment for Expressive Description Logics 183

Procedure Exceptional(L)
Input: A DL knowledge base L = 〈T , D〉
Output: E ⊆ D

1 E := ∅;

2 foreach C �∼ D ∈ D do
3 if T |=

�
D � ¬C then

4 E := E ∪ {C �∼ D}

5 return E

Procedure ComputeRanking(L)
Input: A DL knowledge base L = 〈T , D〉
Output: L∗ = 〈T ∗, D∗〉 and an exceptionality ranking E

1 T ∗ := T ;
2 D∗ := D;
3 repeat
4 i := 0;
5 E0 := D∗;
6 E1 := Exceptional(〈T ∗, E0〉);
7 while Ei+1 �= Ei do
8 i := i + 1;
9 Ei+1 := Exceptional(〈T ∗, Ei〉);

10 D∗
∞ := Ei;

11 T ∗ := T ∗ ∪ {C � D | C �∼ D ∈ D∗
∞};

12 D∗ := D∗ \ D∗
∞;

13 until D∗
∞ = ∅;

14 E := (E0, . . . , Ei−1);
15 return (L∗ = 〈T ∗, D∗〉, E);

The ranking of the defeasible axioms is done via the ComputeRanking(·) procedure.
In short, the ComputeRanking(·) takes as input L = 〈T ,D〉 and gives back a new

semantically equivalent knowledge base L = 〈T ∗,D∗〉 (with T ⊆ T ∗ and D∗ ⊆ D),
where possibly some defeasible information in D has been identified as strict and added
to T . Also, a sequence of ⊆-ordered subsets of D (E0, . . . , Ei−1), with increasing level
of specificity. That is, in case of potential conflicts, the axioms in a set Ej , j ≥ 0, have
the priority over the axioms in any Ei, 0 ≤ i < j. Now, by considering the ranking
E0, . . . , Ei−1, we can define a ranking function r that associates to every defeasible
concept inclusion in D a number, representing its level of exceptionality: that is,

r(C �∼ D) =
{

j if C �∼ D ∈ Ej and C �∼ D /∈ Ej+1

∞ if C �∼ D ∈ Ej for every j .

Similarly, we may associate a rank to a concept C in the following way: consider the
result (L∗ = 〈T ∗,D∗〉, E = (E0, . . . , En)) of ComputeRanking(·). Then

184 G. Casini and U. Straccia

r(C) =
{

j if T ∗ |=
�

Ej � ¬C and T ∗
|=
�

Ej+1 � ¬C
∞ if T ∗ |=

�
Ej � ¬C for every j .

Note that r(C �∼ D) = r(C). Now, we will say that C �∼ D is entailed by the rational
closure of a DL knowledge base L (denoted L �rat C �∼ D) iff r(C) < r(C � ¬D)
[23, Theorem 5.17]). Finally, the procedure RationalClosure(·) determines whether
L �rat C �∼ D. We recall that the defined entailment relation is indeed as so-called
rational consequence relation [23], i.e. satisfies the following properties:

(REF) L rat C �∼ C Reflexivity

(LLE)
L rat C �∼ F L |= C = D

L rat D �∼ F
Left Logical Equival

(RW)
L rat C �∼ D L |= D � F

L rat C �∼ F
Right Weakening

(CT)
L rat C �∼ D L |= C � D �∼ F

L rat C �∼ F
Cut (Cumulative Trans.)

(OR)
L rat C �∼ F L rat D �∼ F

L rat C � D �∼ F
Left Disjunction

(RM)
L rat C �∼ F L �rat C �∼ ¬D

L rat C � D �∼ F
Rational Monotony

Procedure RationalClosure(L, α)

Input: L = 〈T , D〉 and a query α = C �∼ D.
Output: true if L rat C �∼ D, false otherwise

1 (L∗ = 〈T ∗, D∗〉, E = (E0, . . . , En)) := ComputeRanking(L);
2 i := 0;
3 while T ∗ |=

�
Ei � C � ⊥ and i ≤ n do

4 i := i + 1;

5 if i ≤ n then
6 return T ∗ |=

�
Ei � C � D;

7 else
8 return T ∗ |= C � D;

We refer the reader to [3] for further explanations and details and limit our presentation
to a concluding example.

Example 3. Assume a DL knowledge base 〈T ,D〉 with

T = {Cat � Feline, T iger � Feline, T iger � Big, BigFeline = Feline � Big }
D = {Feline �∼ Agile, Feline �∼ Docile, BigFeline �∼ ¬Docile } .

A Rational Entailment for Expressive Description Logics 185

By applying the ranking procedure, we end up with

r(Cat) = r(Feline) = 0
r(Feline �∼ Agile) = r(Feline �∼ Docile) = 0

r(Tiger) = r(Feline � Big) = 1
r(BigFeline �∼ ¬Docile) = 1 .

So, for instance, we can conclude that

K �rat Cat �∼ Docile ,K �rat Cat �∼ Agile ,K �rat Cat �∼ ¬Big

K �rat Tiger �∼ ¬Docile ,K �rat Cat �∼ ¬Tiger .

3 Rational Entailment for DLs via Dl-Programs

In this section we show that, starting from a non-monotonic DL (SROIQ) knowledge
base L = 〈T ,R,D〉, we can compile L into a dl-program K = 〈〈T ∗,R〉, P 〉 such that
the conditions for rational consequence relations are preserved. So, consider a defea-
sible SROIQ knowledge base L = 〈T ,D〉. Our approach consists of two steps: a
ranking step and a compilation step.

Ranking Step. To L we apply the procedure ComputeRanking(L) described in
Sect. 2.23 and, thus, we end up with a new defeasible DL knowledge base L∗ =
〈T ∗,R,D∗〉 that correctly separates the strict and the defeasible information contained
in the original pair L = 〈T ,R,D〉, and a ranking value r(C �∼ D) for every defeasible
axiom C �∼ D ∈ D∗.

Note that in order to adapt the procedures Exceptional(·) and
ComputeRanking(·) to SROIQ it is sufficient to consider also R into the ranking
procedure: the inputs of both the procedures is a DL knowledge base L = 〈T ,R,D〉
instead of L = 〈T ,D〉, and line 3 in Procedure Exceptional(·) is modified from
T |=

�
D � ¬C to T ∪ R |=

�
D � ¬C. The set R comes out untouched from

the ranking procedure, since D is the only ranked set, and the only possible new strict
information is of the form C � D, with C and D concepts, hence it can affect only
the content of T . Hence, starting from a knowledge base 〈T ,R,D〉 we end up with a
ranked knowledge base 〈T ∗,R,D∗〉.

Dl-program Compilation Step. Given L∗ = 〈T ∗,R,D∗〉 from the ranking step, we
now compile the defeasible information in D∗ into a a set of dl-rules P , which together
with T ∗,R defines then the final dl-program K = 〈〈T ∗,R〉, P 〉.

To alleviate the reading, let L = 〈T ,R,D〉 := 〈T ∗,R,D∗〉; that is, we assume
that 〈T ,R,D〉 has already been ranked via the previous ranking step. Now, define a
signature Φ = 〈P, C〉 with C = O, while P is composed of the predicates (c, d, e, . . .)
representing at the level of programs the concept names in T ∪ D, i.e. for each concept

3 Of course, Exceptional(·) and, thus, ComputeRanking(·), can be applied to a DL
SROIQ knowledge base L as the classical entailment relation for SROIQ is decidable.

186 G. Casini and U. Straccia

C in At we have an unary predicate c representing it in the rules. We will use the same
name with or without the uppercase initial letter to indicate if it is a concept in DL (e.g.,
Male) or a predicate in P (e.g., male), respectively. Let us also recall that for each
C �∼ D ∈ D, C and D are either atomic concepts or their negation. Given the ranking
of the defeasible axioms in D, let

Dk = {C �∼ D | C �∼ D ∈ D and r(C �∼ D) = k}

be the subset of D composed of the axioms with rank value k. Now, define the set

ADk
= {C | C �∼ D ∈ Dk}

as the set of all the antecedents of the defeasible axioms of rank k. Moreover, we con-
sider also the set of the consequents of the defeasible axioms

CD = {D | C �∼ D ∈ D} .

Now, for every axiom C �∼ D ∈ D of rank k, we create a pair of rules of the form4

d(x) ← DL[λ;C](x),

not DL[λ;
⊔

{C ′ | C ′ ∈ ADm
, with m > k}](x),

not ¬d(x)
¬d(x) ← DL[λ;¬D](x) . (2)

Additionally, for all C ∈ ADm
with m > 1, we also consider a rule

¬c(x) ← not DL[λ;C](x) . (3)

In all rules above, λ = {E� e,¬E� ¬e | E ∈ CD}. Note that the size of the grounding
of the compiled dl-program is polynomially bounded by the size of the defeasible DL
knowledge base.

The intuitive meaning of the rule (2) is the following: assume we have an individual
a that is an instance of concept C, which is the antecedent of the defeasible axiom C �∼
D of rank k; if a is not an instance of any other D-antecedent that is more exceptional
than C, i.e. not DL[λ;

⊔
{C ′ | C ′ ∈ ADm

, with m > k}](x) holds, and d(a) is
consistent with our knowledge base, then we can conclude d(a).

On the other hand, the purpose of rule (2) is to update P , in case we derive in L that
the conclusion of a defeasible axiom is negated and, thus, the defeasible axiom cannot
be applied. λ is necessary to update the DL-base L with the conclusions drawn at the
program level.

Finally, rules of form (3) impose that the individuals we are dealing with are as
typical as possible. That is, if we are not aware that an exceptional premise applies to
them (any concept in ADm

, with m > 1), then we assume that it doesn’t apply (e.g., if
we note that a is a bird, but we are not aware that it is a penguin, then we presume that
it is not a penguin). In the following, we illustrate our technique via an example.

4 We assume to simplify double negation: that is, for a concept name F , ¬¬F is F , and similarly,
for a logic program predicate f , ¬¬f is f . See also Example 4 later on.

A Rational Entailment for Expressive Description Logics 187

Example 4. Assume we have a DL vocabulary with At = {B,P, F, I, F i,W,
Preyins, Preyfish}, S = {Prey}, and O = {a, b}, were the symbols stand for;
B �→ bird, P �→ penguin, F �→ flies, I �→ insect, Fi �→ fish, W �→ has wings,
Preyins �→ eats insects, Preyfish �→ eats fishes, while Prey is the relation preys on.

The DL base L = 〈T ,D〉 is composed of

T = { {a} � B, {b} � P, P � B, I � ¬Fi,

Preyins = ∀Prey.I � ∃Prey.,

P reyfish = ∀Prey.F i � ∃Prey. }

D = {B �∼ F, P �∼ ¬F,B �∼ Preyins, P �∼ Preyfish,B �∼ W } .

Now, it can be verified that the ranking step returns the following ranking of axioms D:

D0 = {B �∼ F,B �∼ Preyins,B �∼ W }
D1 = {P �∼ ¬F, P �∼ Preyfish } .

Therefore, AD0 = {B }, AD1 = {P }, CD = {F,¬F, Preyins, Preyfish,W }.
The compilation step proceeds now as follows. We define a vocabulary Φ = 〈P, C〉 with
C = {a, b}, while P is composed of predicates that represent at the program level the DL
atomic concepts and roles: that is, P = {b, p, f, i, fi, w, preyins, preyfish, prey}. The
program P , resulting from the compilation step, is composed of the following rules:

f(x) ← DL[λ;B](x), not DL[λ;P](x), not ¬f(x)

¬f(x) ← DL[λ;¬F](x)

preyins(x) ← DL[λ;B](x), not DL[λ;P](x), not ¬preyins(x)

¬preyins(x) ← DL[λ;¬Preyins](x)

w(x) ← DL[λ;B](x), not DL[λ;P](x), not ¬w(x)

¬w(x) ← DL[λ;¬W](x)

¬f(x) ← DL[λ;P](x), not f(x)

f(x) ← DL[λ;F](x)

preyfish(x) ← DL[λ;P](x), not ¬preyfish(x)

¬preyfish(x) ← DL[λ;¬Preyfish](x)

¬p(x) ← not DL[λ;P](x) ,

with

λ = {F � f,¬F � ¬f,W � w,¬W � ¬w,Preyins � preyins,

¬Preyins � ¬preyins, Preyfish � preyfish,¬Preyfish � ¬preyfish } .

188 G. Casini and U. Straccia

Now, note that the only answer set to the program P is the interpretation

I = {f(a), preyins(a), w(a),¬p(a),¬f(b), preyfish(b)} .

In fact, I is the least model of the grounded positive program P I

f(a) ← DL[λ;B](a)
preyins(a) ← DL[λ;B](a)

w(a) ← DL[λ;B](a)
¬f(b) ← DL[λ;P](b)

preyfish(b) ← DL[λ;P](b)
¬p(a) ← .

So, we obtain the intuitive conclusions that, if we are aware about an individual that it
is just a bird, we can conclude that, presumably, it flies, eats insects and has wings. On
the other hand, if we are informed that it is a penguin, we can conclude that it doesn’t
fly and eats fishes.

As well known and already noted in [8], having nominal concepts may end up in
having multiple extensions, i.e., in our context, we may have multiple strong answer
sets as shown with the following simple example.

Example 5. Consider a knowledge base L = 〈T ,D〉, with

T = {{a} � ∃R.{b}, C = D � ∀R.¬D }
D = { �∼ C } .

By applying our method we obtain the following program P

c(x) ← DL[λ;](x), not ¬c(x)
¬c(x) ← DL[λ;¬C](x) .

Now, it can be verified that from the dl-program K = 〈L,P 〉 we obtain now two strong
answer sets: namely,

I = {c(a),¬c(b) }
I ′ = {c(b),¬c(a) } .

Nevertheless, the main result of this paper is that each strong answer set defines a ratio-
nal consequence relation. In fact, we consider the content of the DL base updated with
the content of an answer set I by means of the operator �. That is, we define a con-
sequence relation |=P I where, K = 〈L,P 〉 |=P I C(a) iff the DL base L augmented,
using �, with the content of a strong answer set I of K, entails C(a). Specifically, we
can show that

Proposition 1. Given K = 〈L,P 〉, were L contains a SROIQ TBox and a SROIQ
RBox, P is the result of compiling L into dl-rules, and a strong answer set I of K. Then
the consequence relation |=P I satisfies the following properties:5

5 For ease of comprehension, we write concept assertions as D(b) in place of the equivalent
inclusion axiom {b} � D in expressions like L ∪ {D(b)}.

A Rational Entailment for Expressive Description Logics 189

REFDL 〈L, P 〉 |=P I C(a) for every C(a) ∈ L

LLEDL
〈L ∪ {D(b)}, P 〉 |=P I C(a) L |= D = E

〈L ∪ {E(b)}, P 〉 |=P I C(a)

RWDL
〈L, P 〉 |=P I C(a) L |= C � D

〈L, P 〉 |=P I D(a)

CTDL
〈L ∪ {D(b)}, P 〉 |=P I C(a) 〈L, P 〉 |=P I D(b)

〈L, P 〉 |=P I C(a)

ORDL
〈L ∪ {D(b)}, P 〉 |=P I C(a) 〈L ∪ {E(b)}, P 〉 |=P I C(a)

〈L ∪ {(D � E)(b)}, P 〉 |=P I C(a)

RMDL
〈L, P 〉 |=P I C(a) 〈L, P 〉 �|=P I ¬D(b)

〈L ∪ {D(b)}, P 〉 |=P I C(a)

Proof. (Sketch) The proofs for REFDL, LLEDL are RWDL are straightforward, con-
sidering the set-theoretic semantics of DLs.

In what follows, given the strong answer set I , the expression IDL indicates the
obvious translation of the answer set into the DL base L, so that 〈L,P 〉 |=P I C(a) iff
L ∪ IDL |= C(a).

For CTDL, if I is an answer set for both 〈L,P 〉 and 〈L ∪ {D(b)}, P 〉, then we
have L ∪ {D(b)} ∪ IDL |= C(a) and L ∪ IDL |= D(b), and, since every classical DL
consequence relation |= satisfies CT , we have L∪IDL |= C(a), i.e. 〈L,P 〉 |=P I C(a).

For ORDL, if I is an answer set for both 〈L ∪ {D(b)}, P 〉 and 〈L ∪ {E(b)}, P 〉, it
must be an answer set also for 〈L ∪ {(D � E)(b)}, P 〉: since |= is monotonic, it is not
possible to derive from L∪{(D�E)(b)} some element of the set B−(r) of some r in P
that could not be derived from L∪{D(b)} or L∪{E(b)}; hence a rule can be eliminated
from P only if also L∪{D(b)} or L∪{E(b)} would eliminate it. Given the validity of
OR for |=, we have that L ∪ {D(b)} ∪ IDL |= C(a) and L ∪ {E(b)} ∪ IDL |= C(a)
imply L ∪ {(D � E)(b)} ∪ IDL |= C(a), i.e. 〈L ∪ {D(b)}, P 〉 |=P I C(a).

For RMDL, assume 〈L,P 〉 |=P I C(a) and 〈L,P 〉
|=P I ¬D(b). It is sufficient to
show that the answer set I must be an answer set also for 〈L∪{D(b)}, P 〉. Assume the
opposite, i.e. I is not an answer set for 〈L ∪ {D(b)}, P 〉. Then, there must be in P a
rule r associated to a defeasible axiom with rank equal to k s.t. not α ∈ B−(r), where
α is some literal s.t. L
|= αDL and L ∪ {D(b)} |= αDL (αDL is the translation of α
into the DL-language). In such a case, r must have been a ground rule of form

e(c) ←DL[λ;C](c), not DL[λ;
⊔

{C ′ |
C ′ ∈ ADm

, with m > k}](c), not¬e(c) .

α cannot be ¬e(c), since from the activation of the rule we would have 〈L,P 〉 |=P I

e(c)DL, and consequently 〈L,P 〉 |=P I ¬D(b), which contradicts the hypothesis. As a
consequence, α must be the dl-atom of the form not DL[λ;

⊔
{C ′}](c). But then again,

the activation of the rule for the individual c under 〈L,P 〉 implies that the individual c
is ranked at the value k (the rank of an individual a is the rank of {a}, i.e. r({a})).

Having every C ′ a higher ranking value than k, and so also
⊔

{C ′}, we can conclude
〈L,P 〉 |=P I ¬

⊔
{C ′}(c), from which, again, we have 〈L,P 〉 |=P I ¬D(b), contrary to

hypothesis. This concludes the proof.

190 G. Casini and U. Straccia

4 Related Work

Several non-monotonic DLs exist, but somewhat related to our proposal are
[2–6,8,9,11,12,15–18,24,25], as they address the application of the preferential
semantics [23]. As far as we know, [2,5,6] are the only works that consider also a
DL as expressive as SROIQ. [5,6] propose a language, associated to a preferential
semantics, that is more expressive than the one presented here, allowing the representa-
tion of many forms of defeasibily. However, at the moment such a logic is still missing
a mature entailment relation. Bonatti [2] defines a semantic construction that extends
rational closure to SROIQ: the previous proposals [3,12,18] rely on the disjoint model
union property, that does not hold for a DL as expressive as SROIQ, while Bonatti
proposes an alternative construction based on stable rankings, that is applicable for
every DLs. We are not aware of any approach that relies on dl-programs, but [15,16]
propose an ASP-based decision procedure for the DL SROEL, relying on a Datalog
encoding of the DL knowledge base.

5 Conclusions

The introduction of rational monotonicity into the field of dl-programs allows the use
of a non-monotonic formalism that at the same time satisfies important logical proper-
ties and gives back intuitive conclusions. From the implementation point of view, our
proposal allows to compile the decision procedures into dl-programs and, thus, it can
be implemented on top of existing reasoners supporting dl-programs such as DLV.

Regarding future work, we believe that two aspects are particularly urgent. Firstly,
a comparison with the semantic characterisation of rational closure for SROIQ in [2].

Also, we would like to address the computational complexity of our approach. So
far, we know that computing the rankings can be done in polynomial number of calls [8,
12] to an oracle deciding SROIQ entailment (the latter is complete for 2NEXP [21]). It
remains to be seen whether, by reasoning similarly as done in [13], in which it has been
shown that w.r.t. SHOIN the existence of answer sets, cautious and brave reasoning
problems are complete for PNEXP (recall that the entailment problem for SHOIN is
complete for NEXP [26]), the same problems are complete for P2NEXP w.r.t. our SROIQ
setting, i.e. solvable in polynomial time by relying on an oracle for 2NEXP.

Eventually, from the inferential point of view rational closure has some well-
known weaknesses: while there can be intuitive, desirable conclusions that cannot be
derived [22], it remains an important basic construction that can be extended into richer
entailment relations such as those proposed in [7,10,11,17]. Future work will be partly
dedicated to extending the present method to some of these entailment relations.

Acknowledgments. This research was supported by TAILOR, a project funded by EU Horizon
2020 research and innovation programme under GA No. 952215.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook. Cambridge University Press, Cambridge (2003)

A Rational Entailment for Expressive Description Logics 191

2. Bonatti, P.A.: Rational closure for all description logics. Artif. Intell. 274, 197–223 (2019)
3. Britz, K., Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Principles of KLM-

style defeasible description logics. ACM Trans. Comput. Log. 22(1), 1:1–1:46 (2021)
4. Britz, K., Meyer, T., Varzinczak, I.J.: Concept model semantics for dl preferential reasoning.

In: DL 2011 (2011)
5. Britz, K., Varzinczak, I.: Context-based defeasible subsumption for dSROIQ. In: COM-

MONSENSE 2017. CEUR Workshop Proceedings, vol. 2052. CEUR-WS.org (2017)
6. Britz, K., Varzinczak, I.: Towards defeasible SROIQ. In: DL-17. CEUR, vol. 1879 (2017)
7. Casini, G., Meyer, T., Moodley, K., Nortjé, R.: Relevant closure: a new form of defeasible

reasoning for description logics. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI),
vol. 8761, pp. 92–106. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-
0 7

8. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: JELIA-10, pp.
77–90. No. 6341 in LNAI, Springer (2010)

9. Casini, G., Straccia, U.: Defeasible inheritance-based description logics. In: IJCAI 2011, pp.
813–818 (2011)

10. Casini, G., Straccia, U.: Lexicographic closure for defeasible description logics. In: Pro-
ceedings of the Eighth Australasian Ontology Workshop - AOW 2012, pp. 28–39. No. 969
in CEUR Workshop Proceedings, CEUR (2012)

11. Casini, G., Straccia, U.: Defeasible inheritance-based description logics. J. Artif. Intell. Res.
48, 415–473 (2013). https://doi.org/10.1613/jair.4062

12. Casini, G., Straccia, U., Meyer, T.: A polynomial time subsumption algorithm for nominal
safe ELO⊥ under rational closure. Inf. Sci. 501, 588–620 (2019)

13. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. Artif. Intell. 172(12–13), 1495–
1539 (2008)

14. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Gen. Comput. 9, 365–385 (1991)

15. Giordano, L., Dupré, D.T.: ASP for minimal entailment in a rational extension of SROEL.
Theory Pract. Log. Program. 16(5–6), 738–754 (2016)

16. Giordano, L., Dupré, D.T.: Reasoning in a rational extension of SROEL. In: DL 2016. CEUR
Workshop Proceedings, vol. 1577. CEUR-WS.org (2016)

17. Giordano, L., Gliozzi, V.: A reconstruction of multipreference closure. Artif. Intell. 290
(2021)

18. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Semantic characterization of rational
closure: From propositional logic to description logics. Artif. Intell. 226, 1–33 (2015)

19. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR-06, pp. 57–67.
AAAI Press, Palo Alto (2006)

20. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms. Art.
Intell. 160, 79–104 (2004)

21. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: KR-08, pp. 274–284 (2008)
22. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Art. Int. 15, 61–82

(1995)
23. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell.

55(1), 1–60 (1992). https://doi.org/10.1016/0004-3702(92)90041-U
24. Pensel, M., Turhan, A.: Reasoning in the defeasible description logic EL⊥. Int. J. Appr.

Reas. 103, 28–70 (2018)
25. Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. IJCAI-93, pp. 676–

681 (1993)
26. Tobies, S.: Complexity results and practical algorithms for logics in knowledge representa-

tion. Ph.D. thesis, RWTH-Aachen (2001)

https://doi.org/10.1007/978-3-319-11558-0_7
https://doi.org/10.1007/978-3-319-11558-0_7
https://doi.org/10.1613/jair.4062
https://doi.org/10.1016/0004-3702(92)90041-U

