What is DLMedia?

DL-Media: An Ontology Mediated Multimedia Information Retrieval System

Umberto Straccia

ISTI-CNR, Pisa, Italy
straccia@isti.cnr.it
What is DLMedia?

Multimedia Information Retrieval (MIR)
- Retrieval of those multimedia objects of a collection that are relevant to a user information need

DLMedia: is an ontology mediated MIR system, which combines
- logic (semantic)-based retrieval
- multimedia feature-based similarity retrieval

An ontology layer is used to define (in terms of a description logic) the relevant abstract concepts

A content-based multimedia retrieval system is used for feature-based retrieval
What is DLMedia?

Illustrative, Conceptual Example (Logic-based MIR)

```
<table>
<thead>
<tr>
<th>IsAbout</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageRegion</td>
</tr>
<tr>
<td>o1</td>
</tr>
<tr>
<td>o2</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
```

“Find top-k image regions about white animals”

```latex
Query(x) \leftarrow ImageRegion(x) \land HasColor(x, white) \land isAbout(x, y) \land Animal(y)
```
From each multimedia object $o \in \mathcal{O}$ we automatically extract low-level features such as:

- text index term weights (object of type text)
- colour distribution, shape, texture, spatial relationships (object of type image)
- mosaiced video-frame sequences and time relationships (object of type video)

All this pieces of data belong to the multimedia data layer.

On top of it we have the so-called ontology layer:

- defines the relevant concepts through which we may retrieve the multimedia objects $o \in \mathcal{O}$.
What is DLMedia?

The DL-MEDIA architecture

- The ontology layer is managed by a Description Logic-based System
- The multimedia data layer is managed by the MILOS system

Umberto Straccia

DL-Media: An Ontology Mediated Multimedia Information Retrieval System
What is DLMedia?

The DL-MEDIA architecture

The Multimedia Retrieval Component

MILOS (Multimedia Content Management System),
http://milos.isti.cnr.it/

- General purpose multimedia software component supporting
 - multimedia data storage
 - content-based retrieval
 - multimedia metadata based on arbitrary XML metadata models
 - XML query language standards such as XPath and XQuery

- Is efficient and scalable w.r.t. storage and content-based retrieval
What is DLMedia?

The DL-MEDIA architecture

- **Raw Data**: text, images, video, audio
- **Metadata**: metadata about raw data
 - usually stored in XML format, e.g. MPEG7
- **Query**: keyword search, image similarity, . . .
 - XQuery is a query language for querying XML data
What is DLMedia?

The DL-MEDIA architecture

MILOS Data Example

The funky lobby of the Blue Tree hotel in Brasilia
What is DLMedia?

The DL-MEDIA architecture

Umberto Straccia

DL-Media: An Ontology Mediated Multimedia Information Retrieval System
What is DLMedia?

MILOS offers an advanced XML Search Engine (developed at ISTI-CNR)
- Supports XQuery (with some limitations and extensions)
- Offers image similarity search
- Text search
- Optimised for search intensive tasks

XQuery: for a in /library//pictures where a/name = 'Brasilia' return a/location

XQuery + Similarity: for a in /library//pictures where a/ColourDistribution \approx '...' return a/location
MILOS has been tested within the following applications

- **ECHO:**
 - 50 hour of A/V data with IFLA-FRBR and MPEG-7 metadata (21 Gb of MPEG-1, 43,000 XML files)

- **REUTERS:**
 - 810,000 XML encoded, news agencies (2.6 Gb)

- **DBLP and SIGMOD Records:**
 - 187 Mb of XML files

- **ANSA:**
 - 1000 Color images, with MPEG-7 visual descriptor metadata

- **PhotoBook:**
 - On-line photo sharing: http://milos.isti.cnr.it/milos/album (more than 500 K of images)
What is DLMedia?

The DL-MEDIA architecture

MILOS similarity search is based on the metric space approach

- The similarity among two objects $o_1, o_2 \in \mathcal{O}$ is determined by a distance function

$$d : \mathcal{O} \times \mathcal{O} \rightarrow [0, 1]$$

- $d(o, o) = 0$ (identity of indiscernibles)
- $d(o_1, o_2) = d(o_2, o_1)$ (symmetry)
- $d(o_1, o_2) \leq d(o_1, o') + d(o', o_2)$ (triangle inequality)
Supported similarity queries:

- **Range Queries**: given a query object $q \in \mathcal{O}$ and $r \in [0, 1]$, find

 $$\text{Range}(q, r) = \{ o \in \mathcal{O} \mid d(q, o) \leq r \}$$

- **k-Nearest Neighbors Queries**: given a query object $q \in \mathcal{O}$ and natural number k, find

 $$\text{NN}(q, k) = \text{Top}_k \{ \langle o, s \rangle \mid o \in \mathcal{O}, s = d(q, o) \}$$
What is DLMedia?

The DL-Media architecture

The Description Logic Component

- For computational reasons, DL-Media is based on an variant of the DLR-Lite Description Logic
 - it is LOGSPACE w.r.t. the size of the data
 - but is NP w.r.t. the size of the ontology

- DLR-Lite is considered as a good compromise between expressive power and computational complexity, for data intensive applications

Umberto Straccia

DL-Media: An Ontology Mediated Multimedia Information Retrieval System
DL-MEDIA allows to specify the ontology by relying on axioms

- Consider \(n \)-ary relation symbols (denoted \(R \)) and unary relations, called \textit{atomic concepts} (and denoted \(A \))
- An \textbf{axiom} is of the form

\[
Rl_1 \sqcap \ldots \sqcap Rl_m \sqsubseteq Rr ,
\]

where \(m \geq 1 \)

1. all \(Rl_i \) and \(Rr \) have the same arity
2. where each \(Rl_i \) is a so-called \textit{left-hand relation} and \(Rr \) is a \textit{right-hand relation}

- Informally, read as “if \(Rl_1 \) and \(Rl_2 \) \ldots and \(Rl_m \) then \(Rr \)”
Examples (axioms involving atomic concepts)

- “Any italian city is an european city”
 \[\text{ItalianCity} \sqsubseteq \text{EuropeanCity}\]

- “Any italian city, which is also big is a big european city”
 \[\text{ItalianCity} \sqcap \text{BigCity} \sqsubseteq \text{BigEuropeanCity}\]
Examples (axioms involving \(n \)-ary relations)

- Assume we have a relation `MyMetadata(docID, title, image, tag)`
- We allow to make projection of the `MyMetadata` relation on some specified columns

\[
\exists[1, 3] \text{MyMetadata} \sqsubseteq \exists[1, 2] \text{HasImageDescr}
\]

\[
\exists[1, 4] \text{MyMetadata} \sqsubseteq \exists[1, 2] \text{HasTag}
\]

\[
\exists[1, 2] \text{MyMetadata} \sqsubseteq \exists[1, 2] \text{HasTitle}
\]
What is DLMedia?

The DL-MEDIA architecture

Examples (axioms involving \(n \)-ary relations)

- In case of a projection, we may further restrict it according to some conditions.
- Assume we have a relation Person\((\text{firstname, lastname, age, email, sex})\)

\[
\exists[2, 3]\text{Person} \sqsubseteq \exists[1, 2]\text{hasAge}
\]

\[
\exists[2, 4]\text{Person} \sqsubseteq \exists[1, 2]\text{hasEmail}
\]

\[
\exists[2, 1, 4]\text{Person}.(([3] \geq 18) \sqcap ([5] = '\text{male}')) \\
\sqsubseteq \exists[1, 2, 3]\text{AdultMalePerson}
\]
What is DLMedia?

The DL-MEDIA architecture

Examples (axioms involving \(n \)-ary relations)

- We also allow to specify textual and image similarity conditions

\[
(\exists[1] \text{ImageDescr.}(\exists[3] \text{simImg } \text{urn1}))) \land (\exists[1] \text{Tag.}(\exists[2] = ' \text{sunrise' })) \sqsubseteq \text{Sunrise_On_Sea}
\]

\[
\exists[1] \text{Title.}(\exists[2] \text{simTxt}' \text{lion'}) \sqsubseteq \text{Lion}
\]

where \(\text{urn1} \) identifies the image

![Image](image_url)
What is DLMedia?

The DL-MEDIA architecture

Relation’s Syntax

\[Rr \rightarrow A \mid \exists[i_1, \ldots, i_k] R \]

\[Rl \rightarrow A \mid \exists[i_1, \ldots, i_k] R \mid \exists[i_1, \ldots, i_k] R. (Cond_1 \sqcap \ldots \sqcap Cond_h) \]

\[Cond \rightarrow ([i] \leq v) \mid ([i] < v) \mid ([i] \geq v) \mid ([i] > v) \mid ([i] = v) \mid ([i] \neq v) \mid ([i] \text{ simTxt' } k_1, \ldots, k_n) \mid ([i] \text{ simImg URN}) \]
A **DL-MEDIA query** consists of a conjunctive query of the form

\[
q(x) \leftarrow f(R_1(z_1), \ldots, R_l(z_l)) ,
\]

- \(x\) is a vector of variables, and every \(z_i\) is a vector of constants, or variables, \(f\) score combination function

\[
q(x) \leftarrow \text{Sunrise On Sea}(x) \\
\text{find objects about a sunrise on the sea}
\]

\[
q(x) \leftarrow \text{CreatorName}(x, y) \land (y = 'paolo') \land \text{Title}(x, z), (z \text{simTxt} 'tour') \\
\text{find images made by Paolo whose title is about 'tour'}
\]

\[
q(x) \leftarrow \text{ImageDescr}(x, y) \land (y \text{simImg urn2}) \\
\text{find images similar to a given image identified by } urn2
\]

\[
q(x) \leftarrow \text{ImageObject}(x) \land \text{isAbout}(x, y_1) \land \text{Car}(y_1) \land \text{isAbout}(x, y_2) \land \text{Racing}(y_2) \\
\text{find image objects about cars racing}
\]
What is DLMedia?

The DL-Media architecture

DL-Media Semantics

To be compliant with the underlying MIR system MILOS, DL-Media is based on mathematical fuzzy logic

- Given a concrete domain \(\langle \Delta_D, \Phi_D \rangle \) with predicates on strings, numbers and images
- An *interpretation* \(\mathcal{I} = \langle \Delta, \cdot^\mathcal{I} \rangle \) consists of
 - a *fixed infinite domain* \(\Delta \), containing \(\Delta_D \), and
 - an *interpretation function* \(\cdot^\mathcal{I} \) that maps
 - every atom \(A \) to a function \(A^\mathcal{I} : \Delta \to [0, 1] \)
 - maps an \(n \)-ary predicate \(R \) to a function \(R^\mathcal{I} : \Delta^n \to [0, 1] \)
 - constants to elements of \(\Delta \) such that \(a^\mathcal{I} \neq b^\mathcal{I} \) if \(a \neq b \) (unique name assumption).
What is DLMedia?

DL-Media Semantics (cont.)

- \mathcal{I} is a model of (satisfies) an axiom $Rl_1 \sqcap \ldots \sqcap Rl_m \sqsubseteq Rr$ iff for all $c \in \Delta^n$, $\min(Rl_1^\mathcal{I}(c), \ldots, Rl_l^\mathcal{I}(c)) \leq Rr^\mathcal{I}(c)$.

- \mathcal{I} is a model of (satisfies) a query q the form $q(x) \leftarrow \exists y \phi(x, y)$ iff for all $c \in \Delta^n$:

 $$q^\mathcal{I}(c) \geq \sup_{c' \in \Delta \times \ldots \times \Delta} \phi^\mathcal{I}(c, c')$$

- \mathcal{I} is a model of (satisfies) $\langle q(c), s \rangle$, iff $q^\mathcal{I}(c) \geq s$.

- \mathcal{O} entails $q(c)$ to degree s iff each model \mathcal{I} of \mathcal{O} is a model of $\langle q(c), s \rangle$.

- The greatest lower bound of $q(c)$ relative to \mathcal{O} is

 $$glb(\mathcal{O}, q(c)) = \sup\{s \mid \mathcal{O} \models \langle q(c), s \rangle\}$$.

- Basic inference problem: top-k retrieval problem

 $$ans_k(\mathcal{O}, q) = \Top_k\{\langle c, s \rangle \mid s = glb(\mathcal{O}, q(c))\}.$$
Query Answering

Based on query rewriting of $q(x) \leftarrow R_1(z_1) \land \ldots \land R_l(z_l)$

1. by considering \mathcal{O}, the user query q is reformulated into a set of conjunctive queries $r(q, \mathcal{O})$

 For instance, given the query $q(x) \leftarrow A(x)$ and suppose that \mathcal{O} contains the axioms $B_1 \sqsubseteq A$ and $B_2 \sqsubseteq A$, then we can reformulate the query into two queries $q(x) \leftarrow B_1(x)$ and $q(x) \leftarrow B_2(x)$, similarly as it happens for top-down resolution methods in logic programming

2. from the set of reformulated queries $r(q, \mathcal{O})$ we remove redundant queries

3. the reformulated queries $q' \in r(q, \mathcal{O})$ are translated to MILOS queries and evaluated. The query evaluation of each MILOS query returns the top-k answer set for that query

4. all the $n = |r(q, \mathcal{O})|$ top-k answer sets have to be merged into the unique top-k answer set $\text{ans}_k(\mathcal{O}, q)$. As $k \cdot n$ may be large, we apply the Disjunctive Threshold Algorithm (DTA) to merge all the answer sets
What is DLMedia?

Preliminary Experiments

- 560,000 images together with their MPEG-7 metadata
 - The data has been provided by Flickr http://www.flickr.com/
- 356 concept definitions
- 10 queries to be submitted to the system and measured for each of them
 - the precision at 10, \(i.e. \) the percentage of relevant images within the top-10 results
 - the number of queries generated after the reformulation process (\(q'_{ref} \))
 - the number of reformulated queries after redundancy elimination (\(q_{ref} \))
 - the time of the reformulation process (\(t_{ref} \))
 - the number of queries effectively submitted to MILOS (\(q_{MILOS} \))
 - the query answering time of MILOS for each submitted query (\(t_{MILOS} \))
 - the time of merging process using the DTA (\(t_{DTA} \))
 - the time needed to visualize the images in the user interface (\(t_{Img} \))
 - the total time from the submission of the initial query to the visualization of the final result (\(t_{tot} \))
What is DLMedia?

The DL-MEDIA architecture

Results:

<table>
<thead>
<tr>
<th>Query</th>
<th>Precision</th>
<th>q_{ref}'</th>
<th>q_{ref}</th>
<th>t_{ref}</th>
<th>q_{MILOS}</th>
<th>t_{MILOS}</th>
<th>t_{DTA}</th>
<th>t_{img}</th>
<th>t_{tot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>1.0</td>
<td>2</td>
<td>2</td>
<td>0.005</td>
<td>1</td>
<td>0.3</td>
<td>0</td>
<td>0.613</td>
<td>1.045</td>
</tr>
<tr>
<td>Q2</td>
<td>0.8</td>
<td>48</td>
<td>48</td>
<td>2.125</td>
<td>1</td>
<td>0.327</td>
<td>0</td>
<td>0.619</td>
<td>3.073</td>
</tr>
<tr>
<td>Q3</td>
<td>0.9</td>
<td>3</td>
<td>2</td>
<td>0.018</td>
<td>1</td>
<td>2.396</td>
<td>0</td>
<td>0.617</td>
<td>3.036</td>
</tr>
<tr>
<td>Q4</td>
<td>0.8</td>
<td>6</td>
<td>6</td>
<td>0.03</td>
<td>1</td>
<td>0.404</td>
<td>0</td>
<td>0.642</td>
<td>1.147</td>
</tr>
<tr>
<td>Q5</td>
<td>0.9</td>
<td>10</td>
<td>6</td>
<td>0.113</td>
<td>1</td>
<td>0.537</td>
<td>0</td>
<td>0.614</td>
<td>1.359</td>
</tr>
<tr>
<td>Q6</td>
<td>0.8</td>
<td>10</td>
<td>6</td>
<td>0.254</td>
<td>1</td>
<td>1.268</td>
<td>0</td>
<td>0.86</td>
<td>2.387</td>
</tr>
<tr>
<td>Q7</td>
<td>1.0</td>
<td>4</td>
<td>4</td>
<td>0.06</td>
<td>3</td>
<td>15.101</td>
<td>0.004</td>
<td>0.635</td>
<td>15.831</td>
</tr>
<tr>
<td>Q8</td>
<td>0.9</td>
<td>522</td>
<td>420</td>
<td>0.531</td>
<td>7</td>
<td>13.620</td>
<td>0.009</td>
<td>0.694</td>
<td>14.895</td>
</tr>
<tr>
<td>Q9</td>
<td>0.1</td>
<td>360</td>
<td>288</td>
<td>0.318</td>
<td>20</td>
<td>40.507</td>
<td>0.029</td>
<td>0.801</td>
<td>41.631</td>
</tr>
<tr>
<td>Q10</td>
<td>0.9</td>
<td>37</td>
<td>36</td>
<td>0.056</td>
<td>20</td>
<td>36.073</td>
<td>0.018</td>
<td>0.184</td>
<td>36.320</td>
</tr>
</tbody>
</table>
What is DLMedia?

The DL-MEDIA architecture

Conclusion & Outlook

- We’ve outlined the DL-MEDIA, i.e. an ontology mediated multimedia retrieval system
- Main features (so far) of DL-MEDIA:
 - DLR-Lite(\(D\)) like language as query and ontology representation language
 - supports feature-based queries, semantic-based queries and their combination
 - promisingly scalable
- A similar system has been developed that works on relational databases (postgres, mysql, ranksql)
 - DL-DB system: supports expressive top-k retrieval queries
 - Tested on Curricula Vitae matching (ca. 3000 OWL axioms, 10^5 records)
- Further investigating:
 - it seems reasonable to assume that the more specific the reformulated query becomes the less relevant may be its answers
 - multithreading of reformulated queries
 - allowing rules on top of axioms
 - to scale both to a DL-component with 10^4 concepts and to a MIR component indexing 10^6 images