
Fuzzy Ontology Representation using OWL 2 I

Fernando Bobilloa, Umberto Stracciab

aDepartment of Computer Science and Systems Engineering, University of Zaragoza, Spain
bIstituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR), Pisa, Italy

Abstract

The need to deal with vague information in Semantic Web languages is rising
in importance and, thus, calls for a standard way to represent such information.
We may address this issue by either extending current Semantic Web languages
to cope with vagueness, or by providing a procedure to represent such informa-
tion within current standard languages and tools. In this work, we follow the
latter approach, by identifying the syntactic differences that a fuzzy ontology
language has to cope with, and by proposing a concrete methodology to rep-
resent fuzzy ontologies using OWL 2 annotation properties. We also report on
the prototypical implementations.

Key words: Fuzzy OWL 2, Fuzzy Ontologies, Fuzzy Languages for the
Semantic Web, Fuzzy Description Logics

1. Introduction

Today, there is a growing interest in the development of knowledge representa-
tion formalisms able to deal with uncertainty, which is a very common require-
ment in real world applications. Despite the undisputed success of ontologies,
classical ontology languages are not appropriate to deal with vagueness or impre-
cision in the knowledge, which is inherent to most of the real world application
domains [29].

Since fuzzy set theory and fuzzy logic [30] are suitable formalisms to handle
these types of knowledge, fuzzy ontologies emerge as useful in several applica-
tions, ranging from (multimedia) information retrieval to image interpretation,
ontology mapping, matchmaking, decision making, or the Semantic Web [19].

Description Logics (DLs for short) [1] are a family of logics for representing
structured knowledge. Each logic is denoted by using a string of capital letters
which identify the constructors of the logic and therefore its complexity. DLs

IThis paper is a revised and considerably extended version of “Representing Fuzzy On-
tologies in OWL 2”, published in the Proceedings of the 19th IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE 2010).

Email addresses: fbobillo@unizar.es (Fernando Bobillo), straccia@isti.cnr.it
(Umberto Straccia)

Preprint submitted to arXive.org October 27, 2010

ar
X

iv
:1

00
9.

33
91

v2
 [

cs
.L

O
]

 2
6

O
ct

 2
01

0

have proved to be very useful as ontology languages. For instance, the language
OWL 2, which has very recently become a W3C Recommendation for ontology
representation [9, 17], is equivalent to the DL SROIQ(D).

Several fuzzy extensions of DLs can be found in the literature (see the sur-
vey in [15]) and some fuzzy DL reasoners have been implemented, such as
fuzzyDL [5], DeLorean [2] and Fire [20]. Not surprisingly, each reasoner
uses its own fuzzy DL language for representing fuzzy ontologies and, thus,
there is a need for a standard way to represent such information.

A first possibility would be to adopt as an standard one of the fuzzy exten-
sions of the languages OWL and OWL 2 that have been proposed [10, 21, 22].
However, we do not expect a fuzzy OWL extension to become a W3C proposed
standard in the near future. Furthermore, we argue that current fuzzy exten-
sions are not expressive enough, as they only provide syntactic modifications in
the ABox.

In this work, we propose to use OWL 2 itself to represent fuzzy ontolo-
gies. More precisely, we use OWL 2 annotation properties to encode fuzzy
SROIQ(D) ontologies. The use of annotation properties makes possible (i)
to use current OWL 2 editors for fuzzy ontology representation, and (ii) that
OWL 2 reasoners discard the fuzzy part of a fuzzy ontology, producing the same
results as if would not exist. Additionally, we identify the syntactic differences
that a fuzzy ontology language has to cope with, and show how to address them
using OWL 2 annotation properties.

The remainder of this paper is organized as follows. In Section 3 we present
a fuzzy extension of DL SROIQ(D), the logic behind OWL 2, including some
additional constructs, peculiar to fuzzy logic. Section 4 discusses how to encode
it using OWL 2 language. Section 5 illustrates the methodology with some
application problems. Section 6 discusses the implementation status of our
approach and compares it with the related work. Finally, Section 7 sets out
some conclusions and ideas for future research.

2. Fuzzy Logic

Fuzzy set theory and fuzzy logic were proposed by L. Zadeh [30] to manage
imprecise and vague knowledge. While in classical set theory elements either
belong to a set or not, in fuzzy set theory elements can belong to a set to some
degree. More formally, let X be a set of elements called the reference set. A
fuzzy subset A of X is defined by a membership function µA(x), or simply A(x),
which assigns any x ∈ X to a value in the interval of real numbers between 0 and
1. As in the classical case, 0 means no-membership and 1 full membership, but
now a value between 0 and 1 represents the extent to which x can be considered
as an element of X.

Changing the usual true/false convention leads to a new concept of state-
ment, whose compatibility with a given state of facts is a matter of degree,
usually called the degree of truth of the statement. In this article we will con-
sider fuzzy statements of the form φ≥α or φ≤β, where α, β ∈ [0, 1] [11] and φ

2

is a statement. This encodes the fact that the degree of truth of φ is at least
l (resp. at most u). For example, ripeTomato≥ 0.9 says that we have a rather
ripe tomato (the degree of truth of ripeTomato is at least 0.9).

All crisp set operations are extended to fuzzy sets. The intersection, union,
complement and implication set operations are performed by a t-norm function,
a t-conorm function, a negation function and an implication function, respec-
tively. These operations can be grouped in families or fuzzy logics. It is well
known that different fuzzy logics have different properties [11].

There are three main fuzzy logics: Lukasiewicz, Gödel, and Product. The
importance of these three fuzzy logics is due the fact that any continuous t-
norm can be obtained as a combination of Lukasiewicz, Gödel, and Product
t-norm [16]. It is also common to consider the fuzzy connectives originally
considered by Zadeh (Gödel conjunction and disjunction, Lukasiewicz negation
and Kleene-Dienes implication), which is sometimes known as Zadeh fuzzy logic.
Table 1 shows these four fuzzy logics: Zadeh, Lukasiewicz, Gödel, and Product.

Table 1: Some popular fuzzy logics
Family t-norm α⊗ β t-conorm α⊕ β negation 	α implication α⇒ β

Zadeh min{α, β} max{α, β} 1− α max{1− α, β}

Gödel min{α, β} max{α, β}
{

1, α = 0
0, α > 0

{
1 α ≤ β
β, α > β

 Lukasiewicz max{α+ β − 1, 0} min{α+ β, 1} 1− α min{1− α+ β, 1}

Product α · β α+ β − α · β
{

1, α = 0
0, α > 0

{
1 α ≤ β
β/α, α > β

A fuzzy set C is included in another fuzzy set D iff ∀x ∈ X,µC(x) ≤ µD(x).
According to this definition, which is usually called Zadeh’s set inclusion, fuzzy
set inclusion is a yes-no question. In order to overcome this, other definitions
have been proposed. For example, the degree of inclusion of C in D can be
computed using some implication function as infx∈X µC(x) ⇒ µD(x). Note
that these two approaches are equivalent under Rescher implication, defined as
α⇒ β = 1 iff α ≤ β, or α⇒ β = 0 otherwise.

A (binary) fuzzy relation R over two countable classical sets X and Y is a
function R : X×Y → [0, 1]. The inverse of R is the function R−1 : Y ×X → [0, 1]
with membership function R−1(y, x) = R(x, y), for every x ∈ X and y ∈ Y . The
composition of two fuzzy relations R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1]
is defined as (R1 ◦R2)(x, z) = supy∈Y R1(x, y)⊗R2(y, z). A fuzzy relation R is
transitive iff R(x, z)≥ (R ◦R)(x, z).

A fuzzy interpretation I satisfies a fuzzy statement φ≥ l (resp., φ≤u) or
I is a model of φ≥ l (resp., φ≤u), denoted I |=φ≥ l (resp., I |=φ≤u), iff
I(φ)≥ l (resp., I(φ)≤u). The notions of satisfiability and logical consequence
are defined in the standard way. We say that φ≥ l is a tight logical consequence
of a set of fuzzy statements K iff l is the infimum of I(φ) subject to all models I
ofK. Notice that the latter is equivalent to l= sup {r | K |=φ≥ r}. For reasoning
algorithms for fuzzy propositional and First-Order Logics see [11].

3

3. The Fuzzy DL SROIQ(D)

In this section we describe the fuzzy DL SROIQ(D), a subset of the language
presented in [8], which was inspired by the logics presented in [4, 5, 26]. Here,
concepts denote fuzzy sets of individuals and roles denote fuzzy binary relations.
Axioms are also extended to the fuzzy case and some of them hold to a degree.

3.1. Syntax

To begin with, we will introduce two important elements of our logic: fuzzy
modifiers and fuzzy concrete domains.

Fuzzy modifiers. A fuzzy modifier mod is a function fmod : [0, 1]→ [0, 1] which
applies to a fuzzy set to change its membership function. We will allow mod-
ifiers defined in terms of linear hedges (Figure 1 (e)) and triangular functions
(Figure 1 (b)) [25]. Formally:

mod → linear(c) | (M1)
triangular(a, b, c) (M2)

where in linear modifiers we assume that a = c/(c+ 1), b = 1/(c+ 1).

Example 1. Modifier very can be defined as linear(0.8).

Fuzzy concrete domains. A fuzzy concrete domain [25] (also called a fuzzy
datatype) D is a pair 〈∆D,ΦD〉, where ∆D is a concrete interpretation do-
main, and ΦD is a set of fuzzy concrete predicates d with an arity n and an
interpretation dI : ∆n

D → [0, 1], which is an n-ary fuzzy relation over ∆D.
As fuzzy concrete predicates we allow the following functions defined over

an interval [k1, k2] ⊆ Q: trapezoidal membership function (Figure 1 (a)), the
triangular (Figure 1 (b)), the left-shoulder function (Figure 1 (c)) and the right-
shoulder function (Figure 1 (d)) [25].

Furthermore, we will also allow fuzzy modified datatypes, obtained after the
application of a fuzzy modifier mod to a fuzzy concrete domain interpretation.

Formally:

d → left(k1, k2, a, b) | (D1)
right(k1, k2, a, b) | (D2)

triangular(k1, k2, a, b, c) | (D3)
trapezoidal(k1, k2, a, b, c, d) | (D4)

mod(d) (D5)
Note that in fuzzy modified datatypes k1 = 0, k2 = 1. Furthermore, we allow
nesting of modifiers, as for example mod(mod(d)).

Example 2. We may define the fuzzy datatype YoungAge : [0, 200]→ [0, 1], de-
noting the degree of a person being young, as YoungAge(x) = left(0, 200, 10, 30).

4

(a) (b) (c) (d) (e)

Figure 1: (a) Trapezoidal function; (b) Triangular function; (c) L-function; (d) R-function;
(e) Linear function.

Symbols. Fuzzy SROIQ(D) assumes three alphabets of symbols, for (abstract
and concrete) fuzzy concepts, fuzzy roles and individuals. The syntax of fuzzy
concepts and roles is shown in Table 2.

Concept constructors (C1)–(C16) correspond to the concept constructors of
crisp SROIQ(D). The only difference here are modified concepts (C17).

Example 3. Concept Humanu∃hasAge.YoungAge denotes the fuzzy set of young
humans. very(Human u ∃hasAge.YoungAge) denotes very young humans.

Role constructors (R1)–(R3) correspond to the role constructors of crisp SROIQ(D).
(R4) corresponds to modified roles.

Notation. Let us introduce some notation that will be used in the rest of the
paper:

• C,D are (possibly complex) fuzzy concepts,

• A is an atomic fuzzy concept,

• R is a (possibly complex) abstract fuzzy role,

• RA is an atomic fuzzy role,

• S is a simple fuzzy role 1,

• T is a concrete fuzzy role,

• a, b are abstract individuals, v is a concrete individual,

• d is a fuzzy concrete predicate,

• n,m are natural numbers with n≥ 0,m > 0,

• mod is a fuzzy modifier,

• B ∈ {≥, >},C ∈ {≤, <}, ./ ∈ {≥, >,≤, <},
• α ∈ [0, 1].

A Fuzzy Knowledge Base (KB) contains a finite number of axioms. The axioms
that are allowed in our logic are shown in Table 2. They can be grouped into
a fuzzy ABox with axioms (A1)–(A7), a fuzzy TBox with axioms (A8)–(A11),
and a fuzzy RBox with axioms (A12)–(A25). All the axioms have a equivalent
in crisp SROIQ(D).

1Simple roles are needed to guarantee the decidability of the logic. Intuitively, simple roles
cannot take part in cyclic role inclusion axioms (see [3] for a formal definition).

5

Example 4. The fuzzy concept assertion 〈paul : Tall ≥ 0.5〉 states that Paul is
tall with at least degree 0.5. The fuzzy RIA 〈isFriendOf isFriendOf v isFriendOf ≥
0.75〉 states that the friends of my friends can also be considered as my friends
with at least degree 0.75.

3.2. Semantics

Fuzzy interpretation. A fuzzy interpretation I with respect to a fuzzy concrete
domain D is a pair (∆I , ·I) consisting of a non empty set ∆I (the interpretation
domain) disjoint with ∆D and a fuzzy interpretation function ·I mapping:

• A fuzzy abstract individual a onto an element aI ⊆ ∆I .

• A fuzzy concrete individual v onto an element vD ⊆ ∆D.

• A fuzzy concept C onto a function CI : ∆I → [0, 1].

• A fuzzy abstract role R onto a function RI : ∆I ×∆I → [0, 1].

• A fuzzy concrete role T onto a function T I : ∆I ×∆D → [0, 1].

• An n-ary fuzzy concrete domain d onto a function dI : ∆n
D → [0, 1].

• A fuzzy modifier mod onto a function fmod : [0, 1]→ [0, 1]].

CI (resp. RI) denotes the membership function of the fuzzy concept C (resp.
fuzzy role R) w.r.t. I. CI(a) (resp. RI(a, b)) gives us to what extent the
individual a can be considered as an element of the fuzzy concept C (resp. to
what extent (a, b) can be considered as an element of the fuzzy role R) under
the fuzzy interpretation I.

The fuzzy interpretation function is defined for fuzzy concepts, roles, con-
crete domains and axioms as shown in Table 2. We say that a fuzzy interpreta-
tion I satisfies a fuzzy KB K iff I satisfies each element in K.

Note that we have included some syntactic sugar axioms: concept equiv-
alences (A9), disjoint concept axioms (A10), disjoint union concepts (A11),
domain role axioms (A16), range role restrictions (A17), and functional role
axioms (A18). In fact, while in the classical case the meaning of these axioms
is very clear, in the fuzzy case this is not always the case. As discussed in [22],
there could be alternative definitions for disjoint concepts, and range role ax-
ioms. Consequently, it was convenient to write the formal definition of these
axioms.

3.3. Reasoning tasks

There are several reasoning tasks in fuzzy SROIQ(D) [23, 26].

• Fuzzy KB satisfiability. A fuzzy interpretation I satisfies (is a model of)
a fuzzy KB K iff it satisfies each axiom in K.

• Concept satisfiability. C is α-satisfiable w.r.t. a fuzzy KB K iff there exists
a model I of K such that CI(x) ≥ α for some x ∈ ∆I .

6

Table 2: Syntax and semantics of the fuzzy DL SROIQ(D).

Concept Syntax (C) Semantics of CI(x)

(C1) A AI(x)
(C2) > 1
(C3) ⊥ 0

(C4) C uD CI(x)⊗DI(x)

(C5) C tD CI(x)⊕DI(x)

(C6) ¬C 	CI(x)

(C7) ∀R.C infy∈∆I {R
I(x, y)⇒ CI(y)}

(C8) ∃R.C supy∈∆I {R
I(x, y)⊗ CI(y)}

(C9) ∀T.d infv∈∆D
{TI(x, v)⇒ dI(v)}

(C10) ∃T.d supv∈∆D
{TI(x, v)⊗ dI(v)}

(C11) {α/a} α if x = oIi , 0 otherwise

(C12) ≥ m S.C supy1,...,ym∈∆I (minm
i=1{S

I(x, yi)⊗ CI(yi)})
⊗

((⊗)1≤j<k≤m{yj 6= yk})
(C13) ≤ n S.C infy1,...,yn+1∈∆I (minn+1

i=1 {S
I(x, yi)⊗ CI(yi)})⇒ ((⊕)1≤j<k≤n+1{yj = yk})

(C14) ≥ m T.d supv1,...,vm∈∆D
(minm

i=1{T
I(x, vi)⊗ dI(vi)})

⊗
((⊗)j<k{vj 6= vk})

(C15) ≤ n T.d) infv1,...,vn+1∈∆D
(minn+1

i=1 {T
I(x, vi)⊗ dI(vi)})⇒ ((⊕)j<k{vj = vk})

(C16) ∃S.Self SI(x, x)

(C17) mod(C) fmod(CI(x))

(C18) α · C α · CI(x)

(C19) (α1 · C1) + · · ·+ (αk · Ck)
∑k

i=1 αi · CIi (x)

Role Syntax (R) Semantics of RI(x, y)

(R1) RA RIA(x, y)

(R2) R− RI(y, x)
(R3) U 1

(R4) mod(R) fmod(RI(x, y))

(R5) T TI(x, y)

Datatype Syntax (d) Semantics of dI

(D1–D4) See Section 3.1 dD

(D5) mod(d) fmod(dI)
Axiom Syntax (τ) Semantics (I satisfies τ if . . .)

(A1) 〈a :C ./ α〉 CI(aI) ./ α

(A2) 〈(a, b) :R ./ α〉 RI(aI , bI) ./ α

(A3) 〈(a, b) :¬R ./ α〉 	RI(aI , bI) ./ α

(A4) 〈(a, v) :T ./ α〉 TI(aI , vD) ./ α

(A5) 〈(a, v) :¬T ./ α〉 	TI(aI , vD) ./ α

(A6) 〈a 6= b〉 aI 6= bI

(A7) 〈a = b〉 aI = bI

(A8) 〈C v D B α〉 infx∈∆I {C
I(x)⇒ DI(x)}B α

(A9) C1 ≡ . . . Cm ∀x∈∆IC
I
1 (x) = · · · = CIm(x)

(A10) dis(C1, . . . , Cm) ∀x, y ∈ ∆I ,min{CI1 (x, y), . . . , CIm(x, y)} = 0
(A11) disUnion(C1, . . . , Cm) dis(C2, . . . , Cm), C1 ≡ C2 t · · · t Cm

(A12) 〈R1 . . . Rm v RB α〉 infx1,xn+1∈∆I {supx2...xm∈∆I {(R
I
1 (x1, x2)⊗ · · · ⊗ RIn(xm, xm+1))⇒

RI(x1, xm+1)}}B α

(A13) 〈T1 v T2 B α〉 infx∈∆I ,v∈∆D
{TI1 (x, v)⇒ TI2 (x, v)}B α

(A14) R1 ≡ . . . Rm ∀x,y∈∆IR
I
1 (x, y) = · · · = RIm(x, y)

(A15) T1 ≡ . . . Tm ∀x∈∆I ,v∈∆D
RI1 (x, v) = · · · = RIm(x, v)

(A16) domain(R,C) 〈∃R.> v C ≥ 1〉
(A17) range(R,C) 〈> v ∀R.C ≥ 1〉
(A18) func(R) 〈> v (≤ 1 R.>) ≥ 1〉
(A19) trans(R) ∀x, y, z ∈ ∆I , RI(x, z)⊗ RI(z, y) ≤ RI(x, y)

(A20) dis(S1, . . . , Sm) ∀x, y ∈ ∆I ,min{SI1 (x, y), . . . , SIm(x, y)} = 0

(A21) dis(T1, . . . , Tm) ∀x ∈ ∆I , v ∈ ∆D,min{TI1 (x, v), . . . , TIm(x, v)} = 0

(A22) ref(R) ∀x ∈ ∆I , RI(x, x) = 1

(A23) irr(S) ∀x ∈ ∆I , SI(x, x) = 0

(A24) sym(R) ∀x, y ∈ ∆I , RI(x, y) = RI(y, x)

(A25) asy(S) ∀x, y ∈ ∆I , if SI(x, y) > 0 then SI(y, x) = 0

7

• Entailment : A fuzzy concept (or role) assertion τ is entailed by a fuzzy
KB K iff every model of K satisfies τ .

• Concept subsumption: D subsumes C (denoted C v D) w.r.t. a fuzzy KB
K iff every model I of K satisfies ∀x ∈ ∆I , CI(x) ≤ DI(x).

• Best degree bound (BDB). The BDB of a concept or role assertion τ is
defined as the sup{α : K |= 〈τ ≥ α〉}.

• Maximal concept satisfiability degree. The maximal satisfiability degree
of a fuzzy concept C w.r.t. a fuzzy KB K is defined as the sup{α|C is
α-satisfiable }.

However, these reasoning tasks are part of the query language and not of the
representation language. Thus, we shall not represent them in a fuzzy ontology.

4. Representation of Fuzzy Ontologies in OWL 2

In this section we will explain a methodology to represent fuzzy SROIQ(D) on-
tologies using OWL 2. We anticipate that the methodology has some differences
with a previous version in the paper [8], as explained in Section 6.

The idea of our representation is to use an OWL 2 ontology, extending
their elements with annotation properties representing the features of the fuzzy
ontology that OWL 2 cannot directly encode.

For the sake of clarity, we will use OWL 2 abstract syntax [17] for OWL 2,
and an XML syntax to write the value of annotation properties2.

Let us begin with an illustrating example.

Example 5. Consider the fuzzy concept assertion of Example 4, 〈paul : Tall ≥
0.5〉. To represent it in OWL 2, we consider the crisp assertion paul : Tall as
represented in OWL 2, ClassAssertion(paul Tall) and then we add an an-
notation property including the information ≥ 0.5 to it.

It is worth to note that OWL 2 only provides for annotations on ontologies,
axioms, and entities [17]. This is not the case of OWL DL, which only provides
for annotations on ontologies and entities.

4.1. Syntactic Requirements of Fuzzy Ontologies

To begin with, we will summarize the syntactic differences between the fuzzy and
non-fuzzy ontologies. There are 6 cases depending on the annotated element.

Case 1. Fuzzy modifiers do not have an equivalence in the non-fuzzy case:
(M1), (M2).

2Of course, the final result depends on the syntax (for instance, in OWL 2 XML syntax
the characters ≥ and ≤ of the annotations are escaped), but OWL 2 ontology editors make
these issues transparent to the user.

8

Case 2. Fuzzy datatypes do not have an equivalence in the non-fuzzy case:
(D1)–(D5).

Case 3. Some fuzzy concepts have syntactic differences with the non-fuzzy case
(C11) or do not have an equivalence (C17)–(C19).

Case 4. Some fuzzy roles do not have an equivalence in the non-fuzzy case:
(R4).

Case 5. Some axioms require an inequality sign and a degree of truth: (A1)–
(A5), (A8), (A12)–(A13).

Case 6. Ontologies can be annotated with a fuzzy logic.

4.2. Annotations

Instead of using any of the defaults annotation properties from OWL 2, we will
use an annotation property fuzzyLabel. Furthermore, for every element of the
ontology there can be at-most one annotation of this type.

Every annotation will be delimited by a start tag <FuzzyOwl2> and an end
tag </FuzzyOwl2>, with an attribute fuzzyType specifying the fuzzy element
being tagged. In the following, we will address the different cases in detail.

4.3. Fuzzy modifiers

According to Section 3.1, the fuzzy modifiers that we want to represent have
parameters a, b, c. Consequently, they can be represented as in the previous case,
with the particularities that the type of datatype should be double (xsd:double)
and that there is no need to use xsd:minInclusive and xsd:maxInclusive

(they are assumed to be 0, 1).
The value of fuzzyType will be modifier, and there will be a tag Modifier

with an attribute type (possible values linear, and triangular), and at-
tributes a, b, c, depending on the type of the modifier.

Domain of the annotation. An OWL 2 datatype declaration of the type base
double xsd:double.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" modifier">
<MODIFIER >

</fuzzyOwl2 >

<MODIFIER > :=
<Modifier type=" linear" c="<DOUBLE >" /> |
<Modifier type=" triangular" a="<DOUBLE >" b="<DOUBLE >" c="<DOUBLE >" />

9

Semantical restrictions. The parsers should check that the following constraints:

• a, b, c ∈ [0, 1]

• b = 0 iff a = 1

• b = 1 iff c = 1

Example 6. Let us define the fuzzy modifier Very = linear(0.8). We create a
datatype Very.

DatatypeDefinition (Very DatatypeRestriction (
xsd:double
xsd:minInclusive "0"^^ xsd:double
xsd:maxInclusive "1"^^ xsd:double

))

Then, we add the following annotation property to it:

<fuzzyOwl2 fuzzyType =" modifier">
<Modifier type=" linear" c="0.8" />

</fuzzyOwl2 >

4.4. Fuzzy datatypes

Firstly, we will consider fuzzy datatypes (D1)–(D4), and then we will consider
the case (D5).

4.4.1. Fuzzy atomic datatypes

According to Section 3.1, these fuzzy datatypes have parameters k1, k2, a, b, c, d.
The first four parameters are common to all of them, c only appears in (D4),
(D5); and d only appears in (D5).

Domain of the annotation. An OWL 2 datatype declaration of the type base of
the fuzzy datatype (integer xsd:integer or double xsd:double), such that:

xsd:minInclusive ="<DOUBLE >"
xsd:maxInclusive ="<DOUBLE >"

<DOUBLE> denotes a rational number. xsd:minInclusive should take the value
k1, whereas xsd:maxInclusive should take the value k2. These parameters are
optional and, if omitted, then the minimum and maximum of the attributes
(a, b, c, d) is assumed, respectively.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" datatype">
<DATATYPE >

</fuzzyOwl2 >

<DATATYPE > :=
<Datatype type=" leftshoulder" a="<DOUBLE >" b="<DOUBLE >" /> |
<Datatype type=" rightshoulder" a="<DOUBLE >" b="<DOUBLE >" /> |
<Datatype type=" triangular" a="<DOUBLE >" b="<DOUBLE >" c="<DOUBLE >" /> |
<Datatype type=" trapezoidal" a="<DOUBLE >" b="<DOUBLE >" c="<DOUBLE >" d="<DOUBLE >" />

10

Semantical restrictions. The parsers should check the following restrictions:

• k1 ≤ a ≤ b ≤ c ≤ d ≤ k2 is verified.

Example 7. Let us represent the fuzzy datatype YoungAge = left(0, 200, 10, 30)
denoting the age of a young person. This fuzzy datatype is represented using a
datatype definition of base type xsd:integer with range in [0, 200]:

DatatypeDefinition (YoungAge DatatypeRestriction (
xsd:integer
xsd:minInclusive "0"^^ xsd:integer
xsd:maxInclusive "200"^^ xsd:integer

))

Then we add the following annotation property to it:

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" leftshoulder" a="10" b="30" />

</fuzzyOwl2 >

4.4.2. Fuzzy modified datatypes

In this case, the parameters are two: the modifier, and the fuzzy datatype that
is being modified.

Domain of the annotation. An OWL 2 datatype declaration of any type base.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" modified" modifier="<STRING >" base="<STRING >" />

</fuzzyOwl2 >

Semantical restrictions. The parsers should check the following restrictions:

• modifier has already been defined as a fuzzy modifier.

• base has already been defined as a fuzzy datatype.

Example 8. Let us represent the fuzzy datatype VeryYoungAge. To begin with,
we assume that the fuzzy datatype YoungAge has been created as in Example 7,
and that the fuzzy datatype very has been created as in Example 6. Next, we
define a new datatype VeryYoungAge, adding the following annotation property
to it:

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" modified" modifier ="very" base=" YoungAge" />

</fuzzyOwl2 >

4.5. Fuzzy concepts

In this case, we create a new concept D and to add an annotation property
describing the type of the constructor and the value of their parameters. Now,
the value of fuzzyType is concept, and there is a tag Concept with an attribute
type, and other attributes, depending on the concept constructor. The general
rule is that recursion is not allowed, i.e., D cannot be defined in terms of D, so
D is not a valid value for these attributes.

11

4.5.1. Fuzzy modified concepts

Here, the value of type is modified. There are also two additional attributes:
modifier (fuzzy modifier), and base (the name of the fuzzy concept that is
being modified).

Domain of the annotation. An OWL 2 concept declaration.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" concept">
<MODIFIED_CONCEPT >

</fuzzyOwl2 >

<MODIFIED_CONCEPT > := <Concept type=" modified" modifier="<STRING >"
base="<STRING >" />

Semantical restrictions. The parsers should check the following restrictions:

• modifier has already been defined as a fuzzy modifier.

• The name of the concept C is different from the name of the annotated
concept.

Example 9. Let us represent now the concept very(C). We assume that the
fuzzy modifier has been created as in Example 6. To that end, we create the
atomic concept VeryC and annotate it:

Class (VeryC Annotation(fuzzyLabel
<fuzzyOwl2 fuzzyType =" concept">

<Concept type=" modified" modifier ="very" base="C" />
</fuzzyOwl2 >

))

4.5.2. Weighted concepts

Here, the value of type is weighted. There are also two additional attributes:
value (a real number in (0, 1]), and base (the name of the fuzzy concept that
is being weighted).

Domain of the annotation. An OWL 2 concept declaration.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" concept">
<WEIGHTED_CONCEPT >

</fuzzyOwl2 >

<WEIGHTED_CONCEPT > := <Concept type=" weighted" value="<DOUBLE >" base="<STRING >" />

12

Semantical restrictions. The parsers should check the following restrictions:

• value in (0, 1].

• The name of the concept C is different from the name of the annotated
concept.

Example 10. Let us represent now the concept (0.8 C). We create the atomic
Weight0.8C and annotate it:

Class (Weight0 .8C Annotation(fuzzyLabel
<fuzzyOwl2 fuzzyType =" concept">

<Concept type=" weighted" value ="0.8" base="C" />
</fuzzyOwl2 >

))

4.5.3. Weighted sum concepts

Here, the value of type is weightedSum. There are also several additional tags
representing weighted concepts.

Domain of the annotation. An OWL 2 concept declaration.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" weightedSum">

(<WEIGHTED_CONCEPT >)+
</Concept >

</fuzzyOwl2 >

Semantical restrictions. Let k be the number of weighted concepts taking part
in the definition. The parsers should check the following restrictions:

• k ≥ 2.

•
∑k
i=1 valuek = 1.

• The names of the concepts Ci are different from the name of the annotated
concept.

Example 11. Let us represent now the concept (0.8 A + 0.2 B). We create the
atomic Sum08Aplus02B and annotate it:

Class (Sum08Aplus02B Annotation(fuzzyLabel
<fuzzyOwl2 fuzzyType =" concept">

<Concept type=" weightedSum">
<Concept type=" weighted" value ="0.8" base="A" />
<Concept type=" weighted" value ="0.2" base="B" />

</Concept >
</fuzzyOwl2 >

))

4.5.4. Fuzzy nominals

Here, the value of type is nominal. There are also two additional attributes:
value (a real number in (0, 1]), and individual (the name of the individual
that is being weighted).

13

Domain of the annotation. An OWL 2 concept declaration.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" concept">
<FUZZY_NOMINAL_CONCEPT >

</fuzzyOwl2 >

<FUZZY_NOMINAL_CONCEPT > := <Concept type=" nominal" value=<DOUBLE > individual=<STRING > />

Semantical restrictions. The parsers should check the following restrictions:

• value ∈ (0, 1].

Example 12. Let us represent now the concept {0.75/ind}. We create the
atomic ind075 and annotate it:

Class (ind075 Annotation(fuzzyLabel
<fuzzyOwl2 fuzzyType =" concept">

<Concept type=" nominal" value ="0.75" individual ="ind" />
</fuzzyOwl2 >

))

4.6. Fuzzy roles

In this case, we create a new concept R and to add an annotation property
describing the type of the constructor and the value of their parameters. Now,
the value of fuzzyType is role, and there is a tag Role with an attribute type,
and other attributes, depending on the role constructor. The general rule is
that recursion is not allowed. For the moment, we only support fuzzy modified
roles.

4.6.1. Fuzzy modified roles

Here, the value of type is modified. There are also two additional attributes:
modifier (fuzzy modifier), and base (the name of the fuzzy role that is being
modified).

Domain of the annotation. An OWL 2 (object or data) property declaration.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType ="role">
<MODIFIED_ROLE >

</fuzzyOwl2 >

<MODIFIED_ROLE > := <Role type=" modified" modifier="<STRING >"
base="<STRING >" />

14

Semantical restrictions. The parsers should check the following restrictions:

• modifier has already been defined as a fuzzy modifier.

• The name of the roleR is different from the name of the annotated concept.

Example 13. Let us represent now the abstract role very(R). We assume that
the fuzzy modifier has been created as in Example 6. To that end, we create the
atomic object property VeryR and annotate it:

ObjectProperty (VeryR Annotation(fuzzyLabel
<fuzzyOwl2 fuzzyType ="role">

<Role type=" modified" modifier ="very" base="R" />
</fuzzyOwl2 >

))

4.7. Fuzzy axioms

It is possible to add a degree of truth to some axioms, i.e., (A1)–(A5), (A8),
(A12)–(A13). The value of fuzzyType is axiom. There is an optional tag
Degree, with and attribute value. If omitted, we assume degree 1.

It would also be possible to specify an inequality sign but we will assume ≥.
An axiom of the form 〈τ > α〉 is equivalent to 〈τ ≥ α + ε〉. Regarding axioms
involving C, note that 〈τ C α〉 is equivalent to 〈τ C− 1 − α〉3 in axioms (A1)–
(A5). In axioms (A8), (A12), (A13) we argue that it does not make sense to
have axioms of the form 〈τ Cα〉 because such axioms do not have an equivalent
expression in classical DLs.

Domain of the annotation. An OWL 2 axiom of the following types: concept
assertion,role assertion, GCI, RIA. That is, the crisp equivalents of axioms (A1),
(A1)–(A5), (A8), (A12)–(A13).

Syntax for the annotation.

<fuzzyOwl2 fuzzyType ="axiom">
<Degree value="<DOUBLE >" />

</fuzzyOwl2 >

Semantical restrictions. The parsers should check the following restrictions:

• value in (0, 1].

Example 14. Let us consider again, in greater detail, Example 5. Firstly, we
create an OWL 2 concept assertion:

ClassAssertion(paul Tall)

Then, we annotate it as follows:

<fuzzyOwl2 fuzzyType ="axiom">
<Degree value ="0.5" />

</fuzzyOwl2 >

3./− denotes the reflection of the operator ./ and is defined as follows: ≥−=≤, >−=<
,≤−=≥<−=>.

15

4.8. Ontologies

We may also annotate the ontology and specify the fuzzy logic to be considered
in the semantics.

The value of fuzzyType is ontology. There is a tag FuzzyLogic, with
and attribute logic, that specifies the default fuzzy logic which is used in the
semantics of the fuzzy ontology.

Domain of the annotation. An OWL 2 ontology.

Syntax for the annotation.

<fuzzyOwl2 fuzzyType =" ontology">
<FuzzyLogic logic=<LOGIC > />

</fuzzyOwl2 >

<LOGIC > := "lukasiewicz" | "zadeh"

At the moment, we only allow two fuzzy logics, Lukasiewicz and Zadeh.

5. Some Applications of Fuzzy Ontologies

In this section, we will provide some examples illustrating how use fuzzy ontolo-
gies to model the knowledge in real application problems, and how to encode
the fuzzy ontologies using the methodology explained in Section 44.

5.1. Matchmaking

To begin with, we will address the family of matchmaking problems. The fol-
lowing example is a modified version of the one in [5].

Assume that a car seller sells a sedan car. A buyer is looking for a sec-
ond hand passenger car. Both the buyer as well as the seller have preferences
(restrictions). Our aim is to find the best agreement. The preferences are as
follows. Concerning the buyer:

1. If there is an alarm system in the car then he is completely satisfied with
paying no more than 22300, but he can go up to 22750 to a lesser degree
of satisfaction.

2. He wants a driver insurance and either a theft insurance or a fire insurance.

3. He wants air conditioning and the external color should be either black or
grey.

4. Preferably the price is no more than 22000, but he can go up to 24000 to
a lesser degree of satisfaction.

4The full examples may be downloaded from http://www.straccia.info.

16

http://www.straccia.info

5. The kilometer warranty is preferably at least 175000, but he may go down
to 150000 to a lesser degree of satisfaction.

6. The weights of the preferences 1–5 are 0.1, 0.2, 0.1, 0.2, 0.4, respectively.
The higher the value, the more important the preference is.

7. There is a strict requirement: he does not want to pay more than 26000
(buyer reservation value).

Concerning the seller:

1. If there is an navigator pack system in the car then he is completely
satisfied with a price of at least 22750, but he can go down to 22500 to a
lesser degree of satisfaction.

2. He would prefer to sell the Insurance Plus package.

3. The kilometer warranty is preferably at most 100000, but he may go up
to 125000 to a lesser degree of satisfaction.

4. The monthly warranty is preferably at most 60, but he may go up to 72
to a lesser degree of satisfaction.

5. If the color is black then the car has air conditioning.

6. The weights of the preferences 1–5 are, 0.3, 0.1, 0.3, 0.1, 0.2, respectively.
The higher the value, the more important the preference is.

7. There is a strict requirement: he wants to sell no less than 22000 (seller
reservation value).

We have also some background theory about the domain:

1. There are several types of vehicles: car, sport utility vehicle (SUV), truck,
and van. Each of these vehicles has some subclasses. For instance, there
are luxury cars and passenger cars. In particular, a sedan is a passenger
car (see Figure 2).

2. There are several car makers, e.g., BMW, Ferrari, Volkswagen . . .

3. There are several car colors, e.g., back, grey . . .

4. A satellite alarm system is an alarm system.

5. The Navigator Pack is a satellite alarm system with a GPS system.

6. The Insurance Plus Package is a driver insurance together with a theft
insurance.

17

Figure 2: Definition of the concept Sedan.

Let us show now how to encode the previous knowledge. A concept Buy collects
all the buyer’s preferences together in such a way that the higher is the maximal
degree of satisfiability of Buy, the more the buyer is satisfied.

Buy = BuyerRequirements u BuyerPreferences
BuyerRequirements = PassengerCar u ∃hasPrice.leq26000
B1 = ¬(∃hasAlarmSystem.AlarmSystem) t ∃hasPrice.ls22300-22750
B2 = (∃hasInsurance.DriverInsurance) u ∃hasInsurance.(TheftInsurance t FireInsurance)
B3 = (∃hasAirConditioning.AirConditioning) u ∃HasExColor.(ExColorBlack t ExColorGray)
B4 = ∃hasPrice.ls22000-24000
B5 = ∃hasKMWarranty.rs15000-175000

BuyerPreferences is a weighted sum concept, so we add the following annotation
property to it:

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" weightedSum">

<Concept type=" weighted" value ="0.1" base="B1" />
<Concept type=" weighted" value ="0.2" base="B2" />
<Concept type=" weighted" value ="0.1" base="B3" />
<Concept type=" weighted" value ="0.2" base="B4" />
<Concept type=" weighted" value ="0.4" base="B5" />

</Concept >
</fuzzyOwl2 >

18

leq26000, ls22300-22750, ls22000-24000, and rs15000-175000 are defined datatypes
with annotation properties. For instance, ls22000-24000 has the following an-
notation property (see Figure 3):

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" leftshoulder" a="22000" b="24000" />

</fuzzyOwl2 >

Figure 3: Annotation property defining fuzzy datatype ls22000-24000.

Note that if a = b, then we have a crisp concept. This is the case of the datatype
leq26000, which is represented as follows:

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" leftshoulder" a="26000" b="26000" />

</fuzzyOwl2 >

Similarly to the buyer case, the concept Sell collects all the seller’s preferences
together in such a way that the higher is the maximal degree of satisfiability of
Sell, the more the seller is satisfied.

19

Sell = SellerRequirements u SellerPreferences
SellerRequirements = SedanCar u ∃hasPrice.geq22000
S1 = ¬(∃hasNavigator.NavigatorPack) t ∃hasPrice.rs225000-22750
S2 = ∃hasInsurance.InsurancePlus
S3 = ∃hasKMWarranty.SellerKmWarr
S4 = ∃hasMWarranty.SellerMWarr
S5 = ¬(∃hasExColor.ExColorBlack) t ∃hasAirConditioning.AirConditioning

SellerPreferences is a weighted sum concept, so we add the following annotation
property to it (see Figure 4):

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" weightedSum">

<Concept type=" weighted" value ="0.3" base="S1" />
<Concept type=" weighted" value ="0.1" base="S2" />
<Concept type=" weighted" value ="0.3" base="S3" />
<Concept type=" weighted" value ="0.1" base="S4" />
<Concept type=" weighted" value ="0.2" base="S5" />

</Concept >
</fuzzyOwl2 >

Similar as in the case of the buyer, geq22000, rs225000-22750, SellerKmWarr,
SellerMWarr are defined datatypes. For instance, SellerKmWarr is defined as:

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" leftshoulder" a="100000" b="125000" />

</fuzzyOwl2 >

Now, it is clear that the best agreement among the buyer and the seller is
determined by the maximal degree of satisfiability of the conjunction Buyu Sell
under Lukasiewicz fuzzy logic. So, an optimal match (the degree is 0.7625)
would be an agreement on a price of 22500, with 100000 kilometer warranty
and 60 month warranty.

5.2. Multi-criteria Decision Making

Now, we will concentrate in the family of fuzzy multi-criteria decision making
(MCDM) problems. The following example is a modified version of the one
in [27].

Given a set of n decision alternatives and a set of m criteria according to
which the desirability of an action is judged, a MCDM problem of m criteria
and n alternatives consists in determining the optimal alternative a? with the
highest degree of desirability.

Usually, alternatives represent different choices of action available to the
decision maker. The decision criteria (also referred to as goals or attributes)
represent the different dimensions from which the alternatives can be viewed.
For instance, cost, quality, or delivery time. A standard feature of MCDM
methods is that a MCDM problem can be expressed by means of a decision
matrix. In the matrix, each row corresponds to an alternative ai, and each
column belongs to a criterion cj . The score pij describes the performance of
alternative ai against criterion cj .

20

Figure 4: Annotation property defining concept SellerPreferences.

Most of the MCDM methods require to establish the relative importance of
every criterion in the decision by assigning a weight to it. The weights of the
criteria are usually determined on subjective basis and may also be seen as a
kind of profit of the criteria. Usually, these weights are normalized to add up
to one.

We assume the existence of some experts ek that define the performances
and the weights. Given a criterion cj , the expert ek associated to it a relative
importance wkj ∈ [0, 1] such that

∑n
j=1 w

k
j = 1. Also, ek defines the perfor-

mance pkij for each alternative i and for each criterion j by means of a fuzzy
number. In fuzzy MCDM, the principal difference with the classical case is ac-
tually the fact that performance factors are fuzzy numbers defined by means of
triangular membership functions triangular(a, b, c), which are intended to be
an approximation of the number b.

For instance, if there are 2 experts, 2 alternatives and 2 criteria, we may
have the following decision matrix:

21

e1 c1 c2
a1 triangular(0.6, 0.7, 0.8) triangular(0.9, 0.95, 1)

a2 triangular(0.6, 0.7, 0.8) triangular(0.4, 0.5, 0.6)

e2 c1 c2
a1 triangular(0.55, 0.6, 7) triangular(0.4, 0.45, 0.5)

a2 triangular(0.35, 0.4, 0.45) triangular(0.5, 0.55, 0.6)

For this decision matrix, we may have the following weights wkj :

c1 c2
e1 0.48 0.52

e2 0.52 0.48

There are many alternative methods to compute the final ranking values from
the decision matrix. We will use the Weighted Sum Method (WSM), which
is among the simplest methods in MCDM, but has the advantage to be easy
embedded within fuzzy DLs. Formally, Aki =

∑m
j=1 p

k
ijw

k
j is the the final ranking

value of the alternative ai according to the expert k.
The final ranking value of the alternative ai is obtained as an average of the

values obtained for every expert: Ai =
∑p
k=1A

k
i .

The ranking of the alternatives is obtained by ordering the alternatives in
descending order with respect to the final ranking value and the optimal alterna-
tive a? is the one that maximizes the final ranking value, i.e., a? = arg maxai Ai.

Let us show now how to encode the previous knowledge. Every triangular
membership function in the decision matrix is represented using a datatype with
an annotation property indicating the parameters of the triangular membership
function. For every performance pkij we have a defined datatype a-ijk. For
instance, the datatype a-211 contains the parameters of the triangular function
which defines the performance for the alternative 2, criterion 1, and expert 1:

<fuzzyOwl2 fuzzyType =" datatype">
<Datatype type=" triangular" a="0.6" b="0.7" c="0.8" />

</fuzzyOwl2 >

For each alternative ai, for each criterion cj , and for each expert ek, we define
a concept Performance-ijk establishing the relation with the corresponding cell
of the decision matrix. For instance, Performance-211 is defined as:

Performance-211 = ∃hasScore.a-211
For each alternative ai, and for each expert ek, we define a concept LocalValue-ik,
annotated as a weighted sum concept. For instance, LocalValue-11 is annotated
as follows:

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" weightedSum">

<Concept type=" weighted" value ="0.48" base=" Performance -111" />
<Concept type=" weighted" value ="0.52" base=" Performance -121" />

</Concept >
</fuzzyOwl2 >

For each alternative ai, we define a concept GlobalValue-i, annotated as a weighted
sum concept. For instance, GlobalValue-1 is annotated as follows:

22

<fuzzyOwl2 fuzzyType =" concept">
<Concept type=" weightedSum">

<Concept type=" weighted" value ="0.5" base=" LocalValoration11" />
<Concept type=" weighted" value ="0.5" base=" LocalValoration12" />

</Concept >
</fuzzyOwl2 >

Finally, the best one is the alternative ai maximizing the satisfiability degree of
the fuzzy concept GlobalValue-i. Following our example, the satisfiability degree
of GlobalValue-1 is 0.26, and the satisfiability degree of GlobalValue-2 is 0.32.
Consequently, the optimal alternative is a2.

6. Discussion

This section discusses the implementation status of our approach and compares
it with the related work.

6.1. Implementation

This representation of fuzzy ontologies suggests a methodology for fuzzy ontol-
ogy development. First, we can build the core part of the ontology by using any
ontology editor supporting OWL 2, such as Protégé 4.15 [13, 18]. This allows
to reason with this part using standard ontology reasoners. Then, we add the
fuzzy part of the ontology by using annotation properties. This can also be done
directly with an OWL 2 ontology editor.

Once the fuzzy ontology has been created, it has to be translated into the
language supported by some fuzzy DL reasoner, so that we can reason with it.
For this purpose, we have developed a template code for a parser translating
from OWL 2 with annotations of type fuzzyLabel into the language supported
by some fuzzy DL reasoner.

This general parser can be adapted to any particular fuzzy DL reasoner.
As illustrative purposes, we have adapted it to the languages supported by the
fuzzy DL reasoners fuzzyDL6 [5] and DeLorean7 [2]. The template and the
parsers can be freely obtained from the web pages of fuzzyDL and DeLorean.
It is important to point out that similar parsers for other fuzzy DL reasoners
can be obtained without difficulties. These three parsers are publicly available
on the web8.

The parsers are based on OWL API 3 9 [12]. OWL API 3 is a high level
Application Programming Interface for working with OWL 2 ontologies. It is
becoming a de-facto standard and many SW tools already support it. OWL
API allows to iterate over the elements of the ontology in a transparent way.

5http://protege.stanford.edu/
6http://www.straccia.info/software/fuzzyDL/fuzzyDL.html
7http://webdiis.unizar.es/~fbobillo/delorean
8http://www.straccia.info/software/FuzzyOWL/
9http://owlapi.sourceforge.net

23

http://protege.stanford.edu/
http://www.straccia.info/software/fuzzyDL/fuzzyDL.html
http://webdiis.unizar.es/~fbobillo/delorean
http://www.straccia.info/software/FuzzyOWL/
http://owlapi.sourceforge.net

Whenever an element is supported by the fuzzy DL reasoner, it is mapped into
its internal representation of a fuzzy ontology. The output of the process is a
fuzzy ontology, which can be printed in the standard output or saved in a text
file.

Table 3: Fragments of fuzzy OWL 2 supported by the fuzzy DL reasoners fuzzyDL and
DeLorean.

Concept fuzzyDL DeLorean

(C1) Yes Yes
(C2) Yes Yes
(C3) Yes Yes
(C4) Yes Yes
(C5) Yes Yes
(C6) Yes Yes
(C7) Yes Yes
(C8) Yes Yes
(C9) Yes Yes
(C10) Yes Yes
(C11) No Yes
(C12) No Yes
(C13) No Yes
(C14) No Yes
(C15) No Yes
(C16) Yes Yes
(C17) Yes Yes
(C18) Yes No
(C19) Yes No
Role fuzzyDL DeLorean

(R1) Yes Yes
(R2) Yes Yes
(R3) No Yes
(R4) No No
(R5) Yes Yes

Axiom fuzzyDL DeLorean

(A1) Yes Yes
(A2) Yes Yes
(A3) No Yes
(A4) Yes Yes
(A5) Yes Yes
(A6) No Yes
(A7) No Yes
(A8) Yes Yes
(A9) Yes Yes
(A10) Yes Yes
(A11) Yes Yes
(A12) Partial Yes
(A13) Yes Yes
(A14) Yes Yes
(A15) Yes Yes
(A16) Yes Yes
(A17) Yes Yes
(A18) Yes Yes
(A19) Yes Yes
(A20) No Yes
(A21) No Yes
(A22) Yes Yes
(A23) No Yes
(A24) Yes Yes
(A25) No Yes

A full reasoning algorithm for the logic presented in Section 3 is not known yet.
Consequently, the parsers only cover the fragments of fuzzy OWL 2 currently
supported by these reasoners. Table 3 summarizes the fragments of fuzzy OWL
2 supported by fuzzyDL and DeLorean10. Such table should not be intended as
a comparison of the two reasoners. Even if fuzzyDL is based of fuzzy SHIF(D)
instead of fuzzy SROIQ(D), there are many features that are not available in
other fuzzy DL reasoner.

6.2. Related work

This is, to the best of our knowledge, the first effort towards fuzzy ontology
representation using OWL 2.

Näıve fuzzy extensions of ontology languages have been presented, more
precisely OWL [10, 22] and OWL 2 [21]. These languages are obviously not
complaint with OWL 2 and current ontology editors, as it happens under out
approach. Furthermore, they are not expressive enough since they only allow

10We say that fuzzyDL partially supports axioms (A12) because they are restricted to the
case m = 1.

24

a fuzzy ABox. That is, they are restricted to a subset of our case 5, only for
axioms (A1)–(A3).

A similar work provides an OWL ontology for fuzzy ontology representa-
tion [7]. There, annotation properties are not used, but concepts, roles and
axioms are represented as individuals. For instance, Example 4 would be rep-
resented using the following axioms (in abstract syntax):

(ClassAssertion paul Individual)
(ClassAssertion tall Concept)
(ClassAssertion ax1 ConceptAssertion)
(ObjectPropertyAssertion ax1 isComposedOfAbstractIndividual)
(ObjectPropertyAssertion ax1 isComposedOfAbstractConcept)

However, this representation has many problems:

• Representing concepts, roles and axioms as individuals causes (meta)logical
problems.

• Instead of reusing current ontology editors, the method requires a com-
pletely different and user-unfriendly way of modelling, e.g., a concept con-
junction is not represented using intersectionOf, but using a specific
encoding using a individual (representing the concept) related with two
individuals (each of them representing one of the conjuncts).

• Last but no least, it is not an efficient representation, since the ontology
grows exponentially with the size of the ontology.

A closer approach to ours is [14], which also uses annotation properties to add
probabilistic constraints, but it is restricted to a subset of our case 5, axioms
(A1) and (A8).

A pattern for uncertainty representation in ontologies has also been pre-
sented in [28]. However, it is restricted to a subset of our case 5, only for axioms
(A1). Furthermore, it relies in OWL Full, thus not making possible to reason
with the ontology.

Our approach should not be confused with a series of works that describe,
given a fuzzy ontology, how to obtain an equivalent OWL 2 ontology (see for
example [3, 4, 6, 21, 24]). In these works it is possible to reason using a crisp
DL reasoner instead of a fuzzy DL reasoner, which is not our case. However, the
advantage of our approach is that we provide a specific format to represent fuzzy
ontologies which can be easily managed by current OWL editors and understood
by humans.

The W3C Uncertainty Reasoning for the World Wide Web Incubator Group
(URW3-XG) defined an ontology of uncertainty, a vocabulary which can be used
to annotate different pieces of information with different types of uncertainty
(e.g. vagueness, randomness or incompleteness), the nature of the uncertainty,
etc. [29]. But unlike our approach, it can only be used to identify some kind of
uncertainty, and not to represent and manage uncertain pieces of information.

Finally, we explain the main differences with a previous version of our
work [8].

25

• In the previous version, there are some concept constructors that have
several versions depending on the fuzzy logic considered. For instance,
we had uG and u L denoting Gödel and Lukasiewicz t-norm, respectively.
This has the advantage that the user is free to combine connectives from
different fuzzy connectives. However, this also has some problems. Firstly,
from a practical point of view, such combinations are not clear yet from a
reasoning point of view. Secondly, since OWL 2 does not make possible to
annotate concept expressions, this would require to create a new named
entity every time these constructors are used, which is problematic from
a modelling point of view. For instance, given a concept C1 uG C2 would
require to create a new concept D = C1 u C2 and to annotate it with the
semantics of the fuzzy logic.

• In the previous version, there also some axioms which have several versions
depending on the fuzzy logic considered, but we do not allow them either
for the sake of coherence.

• As a consequence of the previous differences, now we allow to annotate
ontologies, in order to specify the fuzzy logic considered in the semantics
of all the elements of the ontology.

• In the previous version, we used annotation properties of type rdfs:comment.
Obviously, there was not a clear separation between real comments and
fuzzy information. This has been solved by using a new annotation prop-
erty fuzzyLabel.

• In the current version, we are restricted to Lukasiewicz and Zadeh fuzzy
logics, which are supported by fuzzyDL or DeLorean. However, it is trivial
to extend the syntax to cover alternative fuzzy logics, such as Gödel or
Product.

7. Conclusions and Future Work

In this article we have dealt with the problem of fuzzy ontology representation.
Instead of proposing a fuzzy extension of an ontology language as a candidate
to become a standard for fuzzy ontologies, which is not foreseeable in the next
years, we have proposed a framework represent fuzzy ontologies using current
languages and resources.

To begin with, we have claimed that the current fuzzy extensions are not
expressive enough, and have identified the syntactical differences that a fuzzy
ontology language has to cope with, grouping them into 5 different cases. Our
work consider a very general fuzzy extension of the DL SROIQ(D), which is the
logical formalism of OWL 2. In fact, our logic is not restricted to a simple fuzzy
ABox, but there are many differences with respect to the case, such as fuzzy
datatypes, fuzzy modifiers or weighted sum concepts. However, our approach is
extensible and can easily be augmented to support, e.g., alternative fuzzy logics,
modifier functions and fuzzy datatypes.

26

Then, we have provided a representation using the current standard language
OWL 2, by using annotation properties. A similar approach cannot be repre-
sented in OWL DL as it does not support rich enough annotation capabilities.
This way, we can use OWL 2 editors to develop fuzzy ontologies. Furthermore,
non-fuzzy reasoners applied over such a fuzzy OWL ontology can discard the
fuzzy part, i.e., the annotations, producing the same results as if they would
not exist.

This work suggests a methodology for fuzzy ontology development. First, we
can build the core part of the ontology by using any ontology editor supporting
OWL 2. This allows to reason with this part using standard ontology reasoners.
Then, we add the fuzzy part of the ontology by using annotation properties.
This can also be done directly with an OWL 2 ontology editor, even if some
sort of user assistance would be highly appreciated.

In this regard, we have also developed some parsers translating from OWL
2 with annotations of type fuzzyLabel into the languages supported by some
fuzzy DL reasoners. Firstly, we develop a general parser that can be adapted
to any fuzzy DL reasoner. Then, as illustrative purposes, we adapted it to the
languages supported by the fuzzy DL reasoners fuzzyDL and DeLorean. Similar
parsers for other fuzzy DL reasoners could be easily obtained.

We are currently developing a graphical interface (a Protégé plug-in) to make
the encoding of annotation properties transparent to the user. In future work,
we would like to develop similar parsers for other fuzzy DL reasoners, such as
Fire.

Acknowledgement

F. Bobillo has been partially funded by the Spanish Ministry of Science
and Technology (project TIN2009-14538-C02-01) and Ministry of Education
(program José Castillejo, grant JC2009-00337).

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[2] F. Bobillo, M. Delgado, and J. Gómez-Romero. DeLorean: A reasoner
for fuzzy OWL 1.1. In Proceedings of the 4th International Workshop on
Uncertainty Reasoning for the Semantic Web (URSW 2008), volume 423
of CEUR Workshop Proceedings, 10 2008.

[3] F. Bobillo, M. Delgado, and J. Gómez-Romero. Crisp representations and
reasoning for fuzzy ontologies. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, 17(4):501–530, 2009.

27

[4] F. Bobillo, M. Delgado, J. Gómez-Romero, and U. Straccia. Fuzzy Descrip-
tion Logics under Gödel semantics. International Journal of Approximate
Reasoning, 50(3):494–514, 2009.

[5] F. Bobillo and U. Straccia. fuzzyDL: An expressive fuzzy Description Logic
reasoner. In Proceedings of the 17th IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE 2008), pages 923–930. IEEE Computer Soci-
ety, 6 2008.

[6] F. Bobillo and U. Straccia. Towards a crisp representation of fuzzy De-
scription Logics under Lukasiewicz semantics. In Proceedings of the 17th
International Symposium on Methodologies for Intelligent Systems (ISMIS
2008), volume 4994 of Lecture Notes in Computer Science, pages 309–318.
Springer-Verlag, 5 2008.

[7] F. Bobillo and U. Straccia. An OWL ontology for fuzzy OWL 2. In J. R.
et al., editor, Proceedings of the 18th International Symposium on Method-
ologies for Intelligent Systems (ISMIS 2009), volume 5722 of Lecture Notes
in Computer Science, pages 151–160. Springer-Verlag, 9 2009.

[8] F. Bobillo and U. Straccia. Representing fuzzy ontologies in OWL 2. In
Proceedings of the 19th IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2010), pages 2695–2700. IEEE Press, July 2010.

[9] B. Cuenca-Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider,
and U. Sattler. OWL 2: The next step for OWL. Journal of Web Semantics,
6(4):309–322, 2008.

[10] M. Gao and C. Liu. Extending OWL by fuzzy Description Logic. In
Proceedings of the 17th IEEE International Conference on Tools with Ar-
tificial Intelligence (ICTAI 2005), pages 562–567. IEEE Computer Society,
11 2005.

[11] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.

[12] M. Horridge and S. Bechhofer. The OWL API: A Java API for working
with owl 2 ontologies. In Proceedings of the 6th International Workshop on
OWL: Experiences and Directions (OWLED 2009), volume 529 of CEUR
Workshop Proceedings, 10 2009.

[13] M. Horridge, D. Tsarkov, and T. Redmond. Supporting early adoption of
OWL 1.1 with Protege-OWL and FaCT++. In Proceedings of the 2nd Inter-
national Workshop on OWL: Experience and Directions (OWLED 2006),
volume 216 of CEUR Workshop Proceedings, 11 2006.

[14] P. Klinov and B. Parsia. Optimization and evaluation of reasoning in proba-
bilistic description logic: Towards a systematic approach. In Proceedings of
the 7th International Semantic Web Conference (ISWC 2008), volume 5318
of Lecture Notes in Computer Science, pages 213–228. Springer-Verlag, 10
2008.

28

[15] T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in De-
scription Logics for the semantic web. Journal of Web Semantics, 6(4):291–
308, 2008.

[16] P. S. Mostert and A. L. Shields. On the structure of semigroups on a
compact manifold with boundary. Annals of Mathematics, 65(1):117–143,
1957.

[17] B. Motik, P. F. Patel-Schneider, and B. P. (editors). OWL 2 Web On-
tology Language structural specification and functional-style syntax, 2009.
[Online] Available: http://www.w3.org/TR/owl2-syntax/.

[18] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A.
Musen. Creating Semantic Web contents with Protégé-2000. IEEE Intelli-
gent Systems, 16(2):60–71, 2001.

[19] E. Sanchez, editor. Fuzzy Logic and the Semantic Web, volume 1 of Cap-
turing Intelligence. Elsevier Science, 2006.

[20] G. Stoilos, N. Simou, G. Stamou, and S. Kollias. Uncertainty and the
semantic web. IEEE Intelligent Systems, 21(5):84–87, 2006.

[21] G. Stoilos and G. Stamou. Extending fuzzy Description Logics for the se-
mantic web. In Proceedings of the 3rd International Workshop on OWL:
Experiences and Directions (OWLED 2007), volume 258 of CEUR Work-
shop Proceedings, 6 2007.

[22] G. Stoilos, G. Stamou, and J. Z. Pan. Fuzzy extensions of OWL: Logical
properties and reduction to fuzzy Description Logics. International Journal
of Approximate Reasoning, 51:656–679, 2010.

[23] U. Straccia. Reasoning within fuzzy Description Logics. Journal of Artifi-
cial Intelligence Research, 14:137–166, 2001.

[24] U. Straccia. Transforming fuzzy Description Logics into classical descrip-
tion logics. In Proceedings of the 9th European Conference on Logics in
Artificial Intelligence (JELIA 2004), volume 3229 of Lecture Notes in Com-
puter Science, pages 385–399. Springer-Verlag, 9 2004.

[25] U. Straccia. Description logics with fuzzy concrete domains. In Proceedings
of the 21st Conference on Uncertainty in Artificial Intelligence (UAI 2005).
AUAI Press, 7 2005.

[26] U. Straccia. A fuzzy Description Logic for the semantic web. In E. Sanchez,
editor, Fuzzy Logic and the Semantic Web, volume 1 of Capturing Intelli-
gence, pages 73–90. Elsevier Science, 2006.

[27] U. Straccia. Multi-criteria decision making in fuzzy Description Log-
ics: A first step. In Proceedings of the 13th International Conference on
Knowledge-Based & Intelligent Information & Engineering Systems (KES

29

http://www.w3.org/TR/owl2-syntax/

2009), volume 5711 of Lecture Notes in Artificial Intelligence, pages 79–87.
Springer-Verlag, 2009.

[28] M. Vacura, V. Svátek, and P. Smrž. A pattern-based framework for repre-
sentation of uncertainty in ontologies. In Proceedings of the 11th Interna-
tional Conference on Text, Speech, and Dialogue (TSD 2008), volume 5246
of Lecture Notes in Computer Science, pages 227–234. Springer-Verlag, 9
2008.

[29] W3C Incubator Group on Uncertainty Reasoning for the World Wide Web
Final Report: http://www.w3.org/2005/Incubator/urw3/XGR-urw3,
2008.

[30] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

A. From Fuzzy DLs to Fuzzy OWL

In this article we have used fuzzy DLs as the original language to express fuzzy
ontologies. As already claimed throughout this article, our objective is not
provide a new fuzzy ontology language, such as fuzzy OWL 2. However, for
the sake of completeness, we find useful to include as an appendix, a short note
about the relation between DLs and OWL 2.

An OWL 2 ontology contains descriptions of classes (or concepts in DL
terminology), properties (roles in DL terminology) and individuals. There are
two types of properties: object properties (abstract roles) and datatype properties
(concrete roles). Table 4 includes the classes and properties constructors of
OWL 2, together with their correspondences in SROIQ(D).

There are two additional types of properties which do not have a coun-
terpart in the DL, namely annotation properties (owl:AnnotationProperty)
and ontology properties (owl:OntologyProperty), but they just include some
meta-properties of the ontology.

An OWL 2 document consists of optional ontology headers plus any number
of axioms: facts about individuals, class axioms and property axioms, which
according to the DL terminology correspond to the ABox, TBox and RBox,
respectively. Ontology headers are used for meta-information, ontology import
and relationships. Table 5 shows the OWL 2 axioms and their equivalences in
SROIQ(D).

30

http://www.w3.org/2005/Incubator/urw3/XGR-urw3

Table 4: Class and property constructors in OWL 2

OWL 2 abstract syntax DL syntax

Class (A) A
Class (owl:Thing) >
Class (owl:Nothing) ⊥
ObjectIntersectionOf (C,D) C uD
ObjectUnionOf (C,D) C tD
ObjectComplementOf (C) ¬C
ObjectAllValuesFrom (R,C) ∀R.C
ObjectSomeValuesFrom (R,C) ∃R.C
ObjectHasValue (R, o) ∃R.{o}
DataAllValuesFrom (T, d) ∀T.d
DataSomeValuesFrom (T, d) ∃T.d
DataHasValue (T, v) ∃T.{v}
ObjectOneOf (o1, . . . , om) {o1} t {o2} t {om}
ObjectMinCardinality (n, S,C) (≥ n S.C)
ObjectMaxCardinality (n, S,C) (≤ n S.C)
ObjectExactCardinality (n, S,C) (≥ n S.C) u (≤ n S.C)
ObjectMinCardinality (n, S) (≥ n S.>)
ObjectMaxCardinality (n, S) (≤ n S.>)
ObjectExactCardinality (n, S) (≥ n S.>) u (≤ n S.>)
DataMinCardinality (n, T, d) (≥ n T.d)
DataMaxCardinality (n, T, d) (≤ n T.d)
DataExactCardinality (n, T, d) (≥ n T.d) u (≤ n T.d)
DataMinCardinality (n, T) (≥ n T.>)
DataMaxCardinality (n, T) (≤ n T.>)
DataExactCardinality (n, T) (≥ n T.>) u (≤ n T.>)
ObjectExistsSelf (S) ∃S.Self
ObjectProperty (RA) RA
TopObjectProperty U
BottomObjectProperty ¬U
DatatypeProperty (T) T
TopDataProperty UD
BottomDataProperty ¬UD

31

Table 5: Axioms in OWL 2
OWL 2 abstract syntax DL syntax

ClassAssertion (a,C) a : C
ObjectPropertyAssertion (R, a, b)) (a, b) : R
NegativeObjectPropertyAssertion (R, a, b) (a, b) : ¬R
DataPropertyAssertion (T, a, v)) (a, v) : T
NegativeDataPropertyAssertion (T, a, v) (a, v) : ¬T
SameIndividual (a1, . . . , am) ai = aj , 1 ≤ i < j ≤ m
DifferentIndividuals (a1, . . . , am) ai 6= aj , 1 ≤ i < j ≤ m
SubClassOf (C1, C2) C1 v C2

EquivalentClasses (C1, . . . , Cm) C1 ≡ · · · ≡ Cm
DisjointClasses (C1, . . . , Cm) dis(C1, . . . , Cm)
DisjointUnion (C,C1, . . . , Cm) disUnion(C1, . . . , Cm)
SubObjectPropertyOf (subObjectPropertyChain (R1, . . . , Rm) R) R1 . . . Rm v R
SubObjectPropertyOf (R1R2) R1 v R2

SubDataPropertyOf (T1, T2) T1 v T2

EquivalentObjectProperties (R1, . . . , Rm) R1 ≡ · · · ≡ Rm
EquivalentDataProperties (T1, . . . , Tm) T1 ≡ · · · ≡ Tm
ObjectPropertyDomain (R,C) domain(R,C)
ObjectPropertyRange (R,C) range(R,C)
DataPropertyDomain (T, d) domain(T,d)
DataPropertyRange (T, d) range(T,d)
InverseObjectProperties (R1, R2) R1 ≡ R−2
FunctionalObjectProperty (S) func(S)
FunctionalDataProperty (T) func(T)
InverseFunctionalObjectProperty (S) func(S−)
TransitiveObjectProperty (R) trans(R)
DisjointObjectProperties (S1, S2) dis(S1, S2)
DisjointDataProperties (T1, T2) dis(T1, T2)
ReflexiveObjectProperty (R) ref(R)
IrreflexiveObjectProperty (S) irr(S)
SymmetricObjectProperty (R) sym(R)
AsymmetricObjectProperty (S) asy(S)

32

	1 Introduction
	2 Fuzzy Logic
	3 The Fuzzy DL SROIQ(D)
	3.1 Syntax
	3.2 Semantics
	3.3 Reasoning tasks

	4 Representation of Fuzzy Ontologies in OWL 2
	4.1 Syntactic Requirements of Fuzzy Ontologies
	4.2 Annotations
	4.3 Fuzzy modifiers
	4.4 Fuzzy datatypes
	4.4.1 Fuzzy atomic datatypes
	4.4.2 Fuzzy modified datatypes

	4.5 Fuzzy concepts
	4.5.1 Fuzzy modified concepts
	4.5.2 Weighted concepts
	4.5.3 Weighted sum concepts
	4.5.4 Fuzzy nominals

	4.6 Fuzzy roles
	4.6.1 Fuzzy modified roles

	4.7 Fuzzy axioms
	4.8 Ontologies

	5 Some Applications of Fuzzy Ontologies
	5.1 Matchmaking
	5.2 Multi-criteria Decision Making

	6 Discussion
	6.1 Implementation
	6.2 Related work

	7 Conclusions and Future Work
	A From Fuzzy DLs to Fuzzy OWL

